Kaili Wang | Engineering | Best Researcher Award

Ms. Kaili Wang | Engineering | Best Researcher Award

Student at NB U, China

MS Kaili Wang is a distinguished researcher in the field of gene editing and molecular diagnostics, specializing in nucleic acid detection for agricultural biotechnology. She is affiliated with Ningbo University, School of Food Science and Engineering, China, and collaborates with Zhejiang Academy of Agricultural Sciences and the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products. With a keen interest in genetic modification detection, her research focuses on improving the precision and sensitivity of detection methods for gene-edited organisms. Her recent work on droplet digital PCR (ddPCR) for MSTN gene-edited cattle has contributed significantly to the field of regulatory science and food safety. Dedicated to advancing biotechnology applications, she plays a crucial role in shaping methodologies for genetic monitoring, ensuring consumer safety, and fostering global discussions on gene editing and its implications.

Professional Profile

Education

MS Kaili Wang pursued her higher education in biotechnology, molecular biology, and food science, which provided a strong foundation for her research career. She earned her degrees from prestigious Chinese institutions, including Ningbo University, where she specialized in food science and genetic detection methods. Her academic training emphasized molecular diagnostics, genetic engineering, and PCR-based technologies, equipping her with the expertise necessary to develop innovative detection methods for genetically modified organisms (GMOs). Throughout her education, she engaged in interdisciplinary research, gaining hands-on experience in genetic modification analysis, nucleic acid quantification, and regulatory science. Her studies were complemented by rigorous laboratory work and collaborations with leading scientists in the field. This educational background has enabled her to contribute significantly to the advancement of gene-editing detection technologies, ensuring accuracy, sensitivity, and reliability in molecular diagnostics.

Professional Experience

With extensive experience in genetic research and molecular diagnostics, MS Kaili Wang has worked as a researcher at Ningbo University and in collaboration with Zhejiang Academy of Agricultural Sciences. She has been instrumental in developing innovative nucleic acid detection methods for gene-edited organisms, particularly using droplet digital PCR (ddPCR). Her work focuses on the safety assessment, traceability, and detection of genetically modified products, making a significant impact in the field of food safety and agricultural biotechnology. She has contributed to multiple high-impact research projects, collaborating with government agencies, regulatory bodies, and scientific institutions to establish robust methodologies for genetic monitoring. Her professional expertise extends to training young researchers, publishing peer-reviewed articles, and presenting her findings at international conferences related to gene editing and food safety. Her work plays a critical role in ensuring the accurate detection and regulation of gene-edited agricultural products.

Research Interests

MS Kaili Wang’s primary research interests lie in gene editing, nucleic acid detection, food safety, and molecular diagnostics. She is particularly focused on developing and optimizing PCR-based techniques, including ddPCR, qPCR, and CRISPR-based detection methods. Her research aims to enhance the specificity, sensitivity, and reliability of gene-editing detection, ensuring consumer safety and regulatory compliance. She is also deeply interested in the traceability of genetically modified organisms (GMOs) and their impact on food production, security, and public health. Through her work, she seeks to bridge the gap between scientific advancements and regulatory frameworks, contributing to the development of robust detection technologies that can be applied on a global scale. By integrating biotechnology with food safety regulations, she aims to provide innovative solutions for ensuring transparency in agricultural biotechnology and fostering public trust in gene-edited products.

Awards and Honors

Throughout her career, MS Kaili Wang has received numerous recognitions for her contributions to gene editing detection and food safety research. She has been honored with awards from academic institutions, regulatory bodies, and biotechnology organizations for her innovative work in nucleic acid quantification and molecular diagnostics. Her research on ddPCR-based detection of MSTN gene-edited cattle has gained international recognition, positioning her as a leading scientist in genetic monitoring and food safety regulation. She has been invited as a keynote speaker at scientific conferences, sharing her expertise on gene editing detection methodologies. Additionally, she has received grants and funding from government agencies to further her research in gene-editing detection and its application in regulatory science. Her dedication and contributions to biotechnology and food safety continue to make a profound impact, earning her a reputation as a pioneering researcher in the field.

Conclusion

MS Kaili Wang’s research is highly innovative and impactful, making significant contributions to gene editing detection and food safety monitoring. The work demonstrates scientific excellence, regulatory relevance, and technical robustness, making them a strong candidate for the Best Researcher Award. However, further research could focus on expanding the scope of detection beyond MSTN, increasing sample size, and facilitating regulatory adoption to enhance the real-world impact.

Publications Top Noted

Author: Kaili Wang, Yi Ji, Cheng Peng, Xiaofu Wang, Lei Yang, Hangzhen Lan, Junfeng Xu, Xiaoyun Chen
Year: 2025
Citation: Wang, K.; Ji, Y.; Peng, C.; Wang, X.; Yang, L.; Lan, H.; Xu, J.; Chen, X. (2025). “A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR.” Biology, 14(2), Article 0203. DOI: 10.3390/biology14020203.
Source: Multidisciplinary Digital Publishing Institute (MDPI)

 

Arvind Chaurasiya | Engineering | Best Researcher Award

Mr. Arvind Chaurasiya | Engineering | Best Researcher Award

Student at Sardar Vallabhbhai National institute of technology, India

Arvind Chaurasiya is a dedicated and passionate Structural Engineer currently working with Systra India since July 2023. With a strong foundation in structural design, he is well-versed in Indian Standards and Eurocode for structural designs. Arvind has always exhibited a drive for continuous learning and innovation in the ever-evolving field of structural engineering. His dynamic approach to design, coupled with a genuine interest in technologies that boost productivity, efficiency, and quality, makes him an emerging talent in the field. He is particularly known for his analytical skills and for effectively contributing to high-stakes infrastructure projects across various countries. Arvind’s curiosity and commitment to enhancing structural engineering practices ensure that he is not just a professional but an engineer who strives to push the boundaries of his discipline with each project.

Professional Profile

Education

Arvind Chaurasiya completed his education with a Bachelor’s degree in Civil Engineering, which laid the foundation for his career in structural engineering. Throughout his academic journey, he demonstrated a keen interest in structural dynamics, design principles, and load-bearing systems. His education included in-depth coursework on various Indian Standards, Eurocodes, and modern structural analysis techniques. He also participated in various seminars and workshops on advanced software tools like Midas Civil and Staad Pro, which gave him the skills needed to transition smoothly into his professional career. Arvind’s educational background not only provided him with a solid technical base but also instilled in him a passion for lifelong learning, driving him to continuously explore new technologies and approaches in structural design.

Professional Experience

Arvind’s professional experience includes working on several high-profile international projects that have honed his skills in structural design and analysis. Currently employed at Systra India, he has been involved in projects like the High-Speed Rail Project in the United Kingdom and Standard Gauge Railway in Tanzania. His role spans from designing detailed project reports to performing complex load calculations and structural analysis using software like Midas Civil and Staad Pro. Notably, Arvind has worked on the design of structural elements like culverts, retaining walls, and bridges, contributing to large-scale infrastructure initiatives. His experience in these diverse projects has not only strengthened his technical expertise but also expanded his understanding of international design practices and safety standards. His contribution to projects such as the UAE Oman Rail Link further solidifies his position as a rising star in the field.

Research Interests

Arvind’s primary research interest lies in improving the efficiency and sustainability of structural designs. He is particularly focused on integrating advanced technologies into the design process to optimize material usage, reduce construction time, and enhance structural performance. Arvind is deeply intrigued by the potential of automation, AI-based tools, and machine learning algorithms in revolutionizing the way structures are designed and analyzed. His goal is to explore innovative ways of designing energy-efficient, eco-friendly, and cost-effective infrastructure systems that align with the growing emphasis on sustainable development. Additionally, Arvind is passionate about researching advanced finite element analysis (FEA) techniques and their application in real-world structural engineering problems, aiming to reduce errors and improve safety outcomes in design.

Awards and Honors

Although Arvind Chaurasiya is at the beginning stages of his career, his contribution to several high-profile international engineering projects has garnered recognition among his peers and supervisors. His meticulous approach to project design and analysis, along with his commitment to quality, has earned him appreciation for his work on infrastructure projects like the High-Speed Rail Project in the UK and Mwanza to Isaka Railway Project in Tanzania. Though still early in his career, Arvind’s ongoing focus on developing innovative structural designs and utilizing cutting-edge technologies has positioned him as a promising candidate for future awards and honors. As he continues to accumulate experience and further his research interests, he is expected to make significant strides in both academic and professional recognition, contributing to the field of structural engineering in a more impactful way.

Conclusion

Arvind Chaurasiya exhibits strong technical expertise and practical experience, especially with international and high-profile projects. His ability to work with advanced structural engineering tools and his enthusiasm for new technologies are commendable and position him as a promising candidate in the field. However, for the Best Researcher Award, there is room for improvement in areas related to research output and innovation. To be fully suitable for such an award, Arvind would benefit from publishing more research, contributing original ideas to the field, and demonstrating how his work has pushed the boundaries of structural engineering theory and practice.

Publications Top Noted

1. Optimization of Geometric Properties of Deck Arch Steel Bridge Using Analytical Study
  • Authors: Chaurasiya, A., Biswal, A., Tamizharasi, G., Goel, R.
  • Year: 2025
  • Publication: Lecture Notes in Civil Engineering, Volume 550, pp. 173–180.
  • Citations: 0
2. Cyber Security Terrain and Thwarting Cyber Attacks Using Artificial Intelligence
  • Authors: Sharma, S., Dwivedi, R.K., Upadhyay, N., Kashyap, P., Chaurasiya, A.K.
  • Year: 2024
  • Publication: Lecture Notes in Electrical Engineering, Volume 1191, pp. 679–685.
  • Citations: 0

 

Nasimuddin | Engineering | Best Researcher Award

Dr. Nasimuddin | Engineering | Best Researcher Award

Principal Scientist I2R ASTAR  Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I²R), part of A*STAR in Singapore. With a distinguished career in RF and antenna engineering, he has contributed extensively to the fields of wireless power transmission, sensor design, and advanced antenna systems for a variety of applications including satellite communications and energy harvesting. Nasimuddin’s work bridges industry and academia, evidenced by his collaborations, industry technology transfers, and numerous patents.

profile

Google scholar.com

Education 🎓

  • Ph.D. in Electronic Science (2004): University of Delhi, India
    Thesis: Analysis and design of multilayer slow-wave microstrip structures and multilayered microstrip antennas.
  • M.Tech. in Microwave Electronics (1998): University of Delhi, India
  • M.Sc. in Electronics (1996): Jamia Millia Islamia, India
  • B.Sc. in Physics, Mathematics, Chemistry (1994): Jamia Millia Islamia, India

Experience 🏢

Nasimuddin has held various research and teaching roles. Since 2006, he has been part of I²R, A*STAR Singapore, where he currently serves as a Principal Scientist. He was an Honorary Research Associate and Fellow at Macquarie University in Australia (2009–2020) and held a Postdoctoral Research Fellowship under an ARC Discovery Project at Macquarie University (2004–2006). He has also conducted specialized courses in RF energy harvesting applications at NIT Silchar, India.

Research Interests 🔬

Nasimuddin’s research interests include:

  • Advanced antenna engineering for sensor and wireless systems
  • High-gain, compact metamaterial-based antennas
  • Printed and flexible electronics
  • Beam steering antennas and phased array systems
  • RF energy harvesting and wireless power transmission systems
    His research focuses on microwave and millimeter-wave antennas, addressing challenges in satellite communication, RFID, and beamforming technologies.

Awards 🏆

  • Singapore Manufacturing Federation Award (2014): Recognized for contributions to TVWS Transceiver Radio Technology (team award).
  • Dedicated Service Award (2022): Honored for 15 years at I²R, Singapore.
  • Long Service Awards (2012, 2017): For 5 and 10 years at I²R, Singapore.
  • Young Scientist Award (2005): Awarded by the International Union of Radio Science (URSI).
  • M.Tech. Merit Scholarship (1996): University of Delhi, for outstanding academic performance.

Publications Top Notes📚:

Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A State-of-the-Art Review – IEEE Antennas and Propagation Magazine, 2024. Cited by 12 articles.

Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions – IEEE Microwave Magazine, 2023. Cited by 18 articles.

5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting/Wireless Power Transmission Applications: An Overview – IEEE Antennas and Propagation Magazine, 2023. Cited by 25 articles.

A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique with a Thin Metasurface – IEEE Access, 2022. Cited by 10 articles.

Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems – IEEE Transactions on Instrumentation and Measurement, 2022. Cited by 8 articles.

Štefan Ondočko | Engineering | Best Researcher Award

Assist. Prof. Dr. Štefan Ondočko | Engineering | Best Researcher Award

Assistant professors, Technical University of Košice, Slovakia

Profile

Scopus

Ing. Štefan Ondočko, PhD, is an Assistant Professor at the Technical University of Košice, specializing in mechanical engineering with a focus on production systems and robotics. His extensive experience spans both academia and industry, contributing to the advancement of robotic technologies.

Education 🎓

Štefan earned his degree in Mechanical Engineering from the Technical University of Košice (1996–2004), specializing in Instrumentation, Control, and Automation Technology. He later completed his PhD in Mechanical Engineering, focusing on Production Technology, in 2023.

Experience 💼

His professional journey includes roles as an Electrical Designer and I&C Engineer at EnergoControl s.r.o and SMZ Jelšava a.s., along with significant teaching responsibilities at the Technical University of Košice since 2019. Štefan currently focuses on applied research and development in robotic and production technologies.

Research Interests 🔬

Štefan’s research interests lie in the integration of robotics in production systems, particularly in modular robotics and automation technology. He actively engages in grant projects that advance educational tools and methodologies in these fields.

Awards 🏆

In 2023, Štefan received a diploma for the Best Contribution at the 20th International Scientific Conference of Engineering Doctorates of Technical Universities, highlighting his impactful work in mechanical engineering.

Publications Top Notes 📚

  1. Measurement of Maximum Deviation from Roundness Based on the Inverse Kinematics Principle
    Link – 2019, Measurement Science Review, Year 19, Nr. 6.
  2. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, Applied Sciences, Year 11, Nr. 3.
  3. Comparison of Selected Numerical Methods for the Calculation of Inverse Kinematics of Nonstandard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, MM Science Journal, June.
  4. Mapping Robot Singularities Through the Monte Carlo Method
    Link – 2022, Applied Sciences, Year 12, Nr. 16.
  5. Analysis of the Methodology for Experimental Measuring of the Performance Criteria of the Laser-Using Collaborative Robot’s Path Accuracy
    Link – 2024, Applied Sciences, Year 14, Nr. 4.

Washington Peres Núñez | Engineering | Brazil

Prof. Washington Peres Núñez | Engineering | Brazil

Doctor at UFRGS, Brazil

Washington Peres Núñez is a distinguished Civil Engineer with a Bachelor’s degree (1981), a Master’s (1991), and a Ph.D. (1997) from the Federal University of Rio Grande do Sul (UFRGS), where he is a Full Professor in the Civil Engineering Department. He specializes in geotechnics with a focus on pavement engineering, particularly in the design, evaluation, and stabilization of flexible and rigid pavements. Washington has authored over 200 technical and scientific articles, received multiple awards for his research, and has been an active mentor for numerous graduate students. His extensive experience includes consulting on significant highway projects in Brazil and collaborating with various international institutions. Additionally, he has served as the coordinator of UFRGS’s Pavement Laboratory and has participated in various academic and professional committees, contributing to the advancement of civil engineering both in Brazil and globally.

Profile

Google Scholar

Education

Washington Peres Núñez has a solid educational background in civil engineering, beginning with a Bachelor’s degree in Civil Engineering obtained in 1981. He further pursued advanced studies, earning a Master’s degree in Civil Engineering in 1991, followed by a Ph.D. in Civil Engineering in 1997, all from the Federal University of Rio Grande do Sul (UFRGS). His academic journey has equipped him with a comprehensive understanding of geotechnics, particularly in pavement engineering, and has laid the foundation for his subsequent contributions to research and teaching as a tenured professor in the Civil Engineering Department at UFRGS.

Professional Experience

Washington Peres Núñez is a highly accomplished Civil Engineer with extensive professional experience in academia and industry. He serves as a Professor at the Federal University of Rio Grande do Sul, where he has authored over 200 technical and scientific articles, mentored numerous graduate students, and received multiple awards for his research contributions. His expertise lies in geotechnics, particularly in pavement design, soil stabilization, and the recycling of pavements. Washington has played a crucial role as a consultant for major highway projects across Brazil, including significant duplications and expansions of national roads and airports. He has also engaged in international collaborations, providing lectures and consulting services in various countries across Europe and Latin America. His leadership in the Pavement Laboratory at UFRGS further underscores his commitment to advancing research and practice in civil engineering.

Research Interests

Washington Peres Núñez’s research interests primarily focus on geotechnics and pavement engineering, encompassing the design, evaluation, and stabilization of flexible and rigid pavements. He explores critical themes such as soil and aggregate stabilization and the recycling of pavements, aiming to enhance infrastructure sustainability and performance. His work is characterized by a blend of theoretical analysis and practical applications, as demonstrated through his extensive publication record and consulting experience on major highway projects. Washington’s commitment to advancing knowledge in civil engineering is further reflected in his role as a mentor to numerous graduate students, fostering the next generation of engineers while contributing to significant advancements in the field.

Publications

  • Seasonal variations of a subgrade soil resilient modulus in southern Brazil
    • Authors: AJ Ceratti, WYY Gehling, WP Núñez
    • Year: 2004
    • Citations: 70
  • Electric arc furnace steel slag: base material for low-volume roads
    • Authors: L Rohde, W Peres Núñez, J Augusto Pereira Ceratti
    • Year: 2003
    • Citations: 70
  • A study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural tests
    • Authors: W Fedrigo, WP Núñez, MAC López, TR Kleinert, JAP Ceratti
    • Year: 2018
    • Citations: 69
  • Performance evaluation of pervious concrete pavements with recycled concrete aggregate
    • Authors: HL Strieder, VFP Dutra, ÂG Graeff, WP Núñez, FRM Merten
    • Year: 2022
    • Citations: 57
  • Construction and demolition waste parameters for rational pavement design
    • Authors: L Delongui, M Matuella, WP Núñez, W Fedrigo, LCP da Silva Filho, …
    • Year: 2018
    • Citations: 54

Conclusion

Washington Peres Núñez is a distinguished researcher with a remarkable track record in civil engineering, particularly in geotechnics and pavement engineering. His extensive publications, international collaborations, and mentorship demonstrate his commitment to advancing knowledge in his field. While there are areas where he can expand his research scope and enhance community engagement, his contributions to academia and practical applications of his work make him a strong candidate for the Best Researcher Award. His achievements not only reflect individual excellence but also positively impact civil engineering and infrastructure development in Brazil and beyond.

Akash Sood | Engineering | Best Researcher Award

Mr. Akash Sood | Engineering | Best Researcher Award

Research Scholar at Sant Longowal Institute of Engineering and Technology, India

Akash Sood is a dedicated Ph.D. research scholar specializing in carbon dioxide capture and sequestration at the Sant Longowal Institute of Engineering and Technology, Punjab. He has a remarkable academic record, including an M.Tech. in Energy Technology with a CGPA of 8.71, where he ranked second in his university, and a B.E. in Mechanical Engineering, where he was the college topper. Akash has authored several impactful research papers and holds seven patents, showcasing his innovative approach to engineering challenges. His accolades include the Bharat Vikas Award for contributions to the energy and environment sector and recognition for his research on steering system design. With proficiency in various engineering software and training in reputable organizations, he has practical experience in manufacturing and power generation. Fluent in English, Hindi, and Punjabi, Akash is poised to make significant contributions to environmental sustainability through his ongoing research and future innovations.

Publication Profile

Scopus

Strengths for the Award:

  1. Academic Excellence:
    • Currently pursuing a Ph.D. in Carbon Dioxide Capture and Sequestration, showing a commitment to advancing knowledge in a critical area.
    • Achieved high academic standing throughout his educational career, including second rank in M.Tech. and college topper in B.E.
  2. Research Contributions:
    • Authored several papers on carbon capture technologies, indicating deep knowledge and contribution to the field.
    • Holds 7 patents which demonstrate innovative thinking and the ability to translate research into practical applications.
  3. Awards and Recognition:
    • Received the Bharat Vikas Award (2018) for contributions in energy and environment, showcasing recognition from credible organizations.
    • Awarded for best paper for developing new mathematical models, indicating strong research capabilities.
  4. Practical Experience:
    • Completed multiple training sessions in reputed organizations, gaining practical experience in manufacturing and power generation processes.
    • Actively participated in a national-level competition, serving as vice-captain, which reflects leadership and teamwork skills.
  5. Technical Skills:
    • Proficient in a wide range of engineering and design software (e.g., AutoCAD, SolidWorks, MATLAB), which is essential for conducting modern engineering research.
  6. Multilingual Communication:
    • Fluent in English, Hindi, and Punjabi, which facilitates effective communication in diverse research environments.

Areas for Improvement:

  1. Public Speaking and Presentation Skills:
    • While he has published papers and patents, enhancing his public speaking skills could help him effectively share his findings at conferences and seminars, thereby broadening his impact.
  2. Networking and Collaboration:
    • Although he has a solid foundation in research, seeking collaboration with more established researchers or institutions could enhance the visibility and reach of his work.
  3. Project Management:
    • Gaining more experience in managing large-scale research projects could help in the successful execution of complex projects, particularly in interdisciplinary settings.
  4. Outreach and Community Engagement:
    • Engaging more with the community and industry to demonstrate the practical applications of his research could increase awareness and foster support for carbon capture initiatives.

Education:

Akash Sood has an impressive educational background, currently pursuing a Ph.D. in Carbon Dioxide Capture and Sequestration at the Sant Longowal Institute of Engineering and Technology in Punjab, which he commenced in 2018. He earned his M.Tech. in Energy Technology with a commendable CGPA of 8.71, securing the second rank in his university during his studies from 2014 to 2017 at the School of Energy and Environment Management, Rajiv Gandhi Proudyogiki Vishwavidyalaya in Bhopal. Prior to that, he completed his Bachelor of Engineering in Mechanical Engineering from the Malwa Institute of Technology and Management, also part of Rajiv Gandhi Proudyogiki Vishwavidyalaya, where he was the college topper with a CGPA of 7.57. Notably, he performed exceptionally well in the GATE 2014 examination, achieving a percentile above 92. Akash’s academic achievements reflect his dedication and excellence in his field, laying a strong foundation for his research and professional endeavors.

Experience:

Akash Sood has garnered valuable practical experience through various training programs and projects that complement his academic pursuits. He completed a 15-day training at the Railway Wagon Workshop in Jhansi, where he learned about manufacturing processes and periodic overhauling of railway wagons. He further enhanced his understanding of power generation through a one-month training at Indraprastha Power Generation Corporation Limited in Delhi, focusing on workflow in coal and gas-based power plants. Additionally, he participated in a two-day training at the Maruti Center for Excellence in Gurugram, where he gained insights into new product development processes, including Failure Mode and Effects Analysis (FMEA), Advanced Product Quality Planning (APQP), and Production Part Approval Process (PPAP). Moreover, as the vice-captain and technical head of a 25-member team for the Mahindra BAJA SAE India 2014 competition, Akash played a key role in designing and developing an All-Terrain Vehicle, showcasing his leadership and teamwork abilities in a competitive environment. This diverse experience equips him with a practical understanding of engineering applications and reinforces his commitment to addressing contemporary technological challenges.

Research Focus:

Akash Sood’s research focuses on carbon dioxide capture and sequestration (CCS), a critical area in addressing climate change and reducing greenhouse gas emissions. His work involves developing and testing innovative methods for capturing CO2 using various amine-based solvents, as well as creating a pilot-scale CCS unit to evaluate the effectiveness of these solvents in industrial applications. He has authored several scholarly articles on advancements in membrane-based and ionic liquid technologies for carbon capture, contributing to the body of knowledge in this field. In addition to his academic research, Akash has secured multiple patents, showcasing his ability to translate theoretical concepts into practical solutions. His commitment to sustainable engineering solutions is further reflected in his aim to launch active CCS environments that can mitigate CO2 emissions on a larger scale.

Awards and Honors:

Akash Sood has received notable recognition for his contributions in the field of energy and environment. He was awarded the Bharat Vikas Award in 2018 for his significant work in the energy sector. Additionally, he earned the Best Paper Award for developing an innovative mathematical model for steering system design. His achievements include participation as vice-captain and technical head in the Mahindra BAJA SAE INDIA 2014 competition, where he led a team to design and develop an All-Terrain Vehicle for a national-level event. Throughout his academic journey, he has authored multiple publications and holds seven patents, showcasing his innovative approach and commitment to advancing technology in carbon dioxide capture and sequestration.

Publication Top Notes:

  • A mini review: Polymer-matrix nanocomposites and its synthesis techniques
    • Authors: Bhatia, P., Pachauri, A., Sood, A., Gaur, M.K.
    • Year: 2019
    • Citations: 3
  • Experimental investigation of physical and tribological properties of engine oil with nano-particles additives
    • Authors: Gaur, M.K., Singh, S.K., Sood, A., Chauhan, D.S.
    • Year: 2019
    • Citations: 1
  • Carbon dioxide capture efficiency determination for post combustion capture through MEA using Aspen HYSYS at low pressure
    • Authors: Sood, A., Vyas, S.
    • Year: 2018
    • Citations: 1
  • Carbon Capture and Sequestration- A Review
    • Authors: Sood, A., Vyas, S.
    • Year: 2017
    • Citations: 26
  • A review: Carbon Capture and Sequestration (CCS) in India
    • Authors: Sood, A., Vyas, S.
    • Year: 2017
    • Citations: 16

Conclusion:

Akash Sood is a promising candidate for the Best Researcher Award. His strong academic background, significant contributions to the field of carbon dioxide capture and sequestration, and innovative mindset reflected through patents highlight his potential. While there are areas where he can improve, such as public speaking and project management, his strengths considerably outweigh them. His ongoing efforts to develop technologies that can reduce CO2 emissions demonstrate a commitment to addressing environmental challenges, making him not only a deserving candidate for the award but also a valuable asset to the field of mechanical engineering and environmental sustainability.

Aakriti | Engineering | Research and Development Achievement Award

Ms. Aakriti | Engineering | Research and Development Achievement Award

PhD student at CSIR-Central Building Research Institute, India

Aakriti Baliyan is a PhD candidate in Chemical Sciences, specializing in the synthesis of chemical additives from FGD gypsum for sustainable building materials. Her research focuses on green materials, contributing to low-carbon construction solutions. Aakriti has a strong publication record and extensive experience in waste utilization, including the development of water-resistant binders and hybrid cementitious materials. She possesses a diverse technical skill set, including Life Cycle Assessment and various analytical techniques. With a background in mentoring and interdisciplinary collaboration, Aakriti is dedicated to advancing sustainable practices in her field.

Profile:

Google scholar

Strengths for the Award:

  1. Innovative Research Focus:
    • Aakriti’s PhD research on utilizing FGD gypsum for developing chemical additives and composite binders represents a significant contribution to sustainable building materials. This aligns well with current environmental priorities.
  2. Strong Publication Record:
    • Aakriti has a notable number of publications in reputable journals, demonstrating her ability to conduct impactful research. Her articles address critical issues in low-carbon construction, showcasing her expertise and commitment to advancing the field.
  3. Interdisciplinary Collaboration:
    • Her collaborative work with NTPC and involvement in various interdisciplinary projects highlight her ability to work effectively in team settings, enhancing the practical applicability of her research.
  4. Technical Proficiency:
    • Aakriti possesses extensive technical skills and research methodologies, such as Life Cycle Assessment (LCA) and various analytical techniques. This versatility enables her to tackle complex research problems effectively.
  5. Mentorship and Outreach:
    • She has mentored graduate students and engaged in workshops, which reflects her commitment to knowledge sharing and capacity building in her field.

Areas for Improvement:

  1. Broader Research Impact:
    • While Aakriti has made significant strides in her niche area, expanding her research to include more diverse applications or collaborating with industries outside the construction sector could enhance her overall impact.
  2. Increased Visibility:
    • Engaging more actively in international conferences and networking opportunities could improve her visibility and foster collaborations that enhance her research profile.
  3. Grant Acquisition:
    • Focusing on obtaining research grants can support her projects and facilitate the scaling of her innovative solutions, thus increasing her research’s reach and impact.
  4. Public Engagement:
    • Strengthening efforts in public outreach and education about the benefits of green materials can help raise awareness and promote sustainable practices in construction.

Education:

Aakriti Baliyan holds a Ph.D. in Chemical Sciences from the Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Building Research Institute, Roorkee, where her research focuses on utilizing FGD gypsum for developing chemical additives and composite binders in sustainable construction. Prior to her doctoral studies, she completed an M.Sc. in Applied Chemistry from Amity University Noida, where she worked on polymeric transdermal patches for topical applications. She also earned a B.Ed. in Physical and Biological Sciences from Chaudhary Charan Singh University and a B.Sc. in Life Sciences from the University of Delhi. This diverse educational background has equipped her with strong interdisciplinary knowledge across chemical sciences, education, and applied life sciences.

Experience:

Aakriti Baliyan has extensive research experience in the field of chemical sciences, with a focus on the utilization of industrial byproducts like FGD gypsum for developing sustainable construction materials. Her work includes the synthesis of chemical additives, water-resistant binders, and lightweight plasters, contributing to low-carbon and eco-friendly building solutions. She has collaborated with major national organizations like NTPC and the Department of Science and Technology, working on projects related to both modern construction materials and heritage conservation. Aakriti’s technical expertise spans advanced analytical techniques (SEM, FTIR, LCA) and various scientific software, while her contributions are backed by a strong publication record in peer-reviewed journals. Additionally, she has mentored students and presented her research at international conferences, demonstrating her capability to lead and innovate within her field.

Research Focus:

Aakriti Baliyan’s research primarily focuses on the utilization of industrial byproducts, specifically FGD gypsum, to develop sustainable construction materials. Her work aims to create eco-friendly, low-carbon solutions such as water-resistant binders, lightweight plasters, and hybrid cementitious binders that can be used in both interior and exterior applications. She addresses critical issues like high porosity and poor water resistance in FGD gypsum by synthesizing chemical additives to improve its properties. Her research also includes a Life Cycle Assessment (LCA) to evaluate the environmental impact of these materials, contributing to the advancement of green construction technologies. Additionally, Aakriti’s work extends to the conservation of heritage structures, where she develops gypsum-based repair materials to preserve historical buildings, showcasing her interdisciplinary approach to sustainable materials science.

Publications Top Notes:

  • A Comprehensive Review of Flue Gas Desulphurized Gypsum: Production, Properties, and Applications
    Authors: S. Maiti, N. Jain, J. Malik
    Year: 2023
    Citation: Construction and Building Materials, 393, 131918.
  • Light Weight Plasters Containing Vermiculite and FGD Gypsum for Sustainable and Energy Efficient Building Construction Materials
    Authors: S. Maiti, N. Jain, J. Malik, A. Baliyan
    Year: 2023
    Citation: Journal of The Institution of Engineers (India): Series A, 1-12.
  • Calcium Sulphate Whiskers (CSW) an Innovative Material for Civil Engineering Applications: A Critical Review of Its Preparation, Characterization, Current Trends, and Prospects
    Authors: A. Bhardwaj, S. Maiti, N. Jain, A. Pathak, R. R. Gupta
    Year: 2024
    Citation: Construction and Building Materials, 420, 135624.
  • Development of Sustainable Water-Resistant Binder with FGD Gypsum & Fly Ash, and Its Environmental Impact Evaluation via Carbon Footprint and Energy Consumption Analysis
    Authors: N. Jain, S. Maiti, J. Malik, D. Sondhi
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 37, 101376.
  • Synthesis of Calcium Sulfate Whiskers via Acidification Exploiting FGD Gypsum for Improved Binder Properties
    Authors: P. P., Aakriti, S. Maiti, N. Jain
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 42, 101745.

Conclusion:

Aakriti Baliyan’s research in the field of chemical additives, sustainable construction materials, and waste utilization demonstrates significant potential for her to be a strong candidate for the Best Researcher Award. Her innovative contributions to the development of eco-friendly building materials, strong publication record, technical expertise, and engagement in interdisciplinary projects highlight her as a promising researcher. With further international collaborations and expansion into diverse areas of waste management, Aakriti’s profile would be even more competitive for major research accolades.

Archana Yadav l Engineering l Women Researcher Award

Dr. Archana Yadav l Engineering l Women Researcher Award

Assistant Professor at Integral University Lucknow, India

Publication Profile

scopus

Strengths for the Award

  1. Extensive Teaching and Research Experience: With over 12 years in academia, Dr. Yadav has a solid foundation in teaching and mentoring students in various engineering subjects, which enhances her role as an educator.
  2. Significant Contributions to Research: Her doctoral research on surface plasmonic resonance sensors for biomedical applications is both innovative and relevant, especially in healthcare. The application of her work in developing wearable devices for continuous glucose monitoring shows a practical approach to her research.
  3. Active in Academic Service: Dr. Yadav has taken on numerous leadership roles within her department, including coordinator positions for examinations, curriculum design, and departmental committees. This indicates her commitment to improving academic standards and contributing to institutional growth.
  4. Strong Publication Record: With five high-impact publications and a patent, Dr. Yadav has made significant contributions to the field, showcasing her capability to conduct meaningful research that advances knowledge.
  5. Reviewer and Editorial Roles: Her involvement as a reviewer for multiple journals and conferences highlights her expertise and respect within the academic community, as well as her commitment to advancing research in her field.
  6. Innovative Teaching Methods: By creating e-learning materials and engaging students through practical workshops, she demonstrates a commitment to educational innovation and technology integration.

Areas for Improvement

  1. Broaden Research Collaboration: While Dr. Yadav has a strong individual research background, collaborating with other researchers or institutions could lead to more interdisciplinary projects and broaden the impact of her work.
  2. Increase Visibility in Conferences: Although she has presented at some international conferences, attending more such events could enhance her networking and provide greater exposure for her research.
  3. Expand Research Interests: Exploring additional areas within biosensors or healthcare applications could diversify her research portfolio and attract more funding opportunities.
  4. Mentorship and Guidance: While she has successfully guided several students, formalizing a mentorship program could further enhance the development of her students and the overall academic environment.
  5. Public Engagement: Increasing outreach efforts, such as community workshops or public lectures, could help disseminate her research findings more widely and engage with non-academic audiences.

Education

Dr. Archana Yadav holds a Ph.D. in Analysis and Design of Surface Plasmonic Resonance Sensors for Biomedical Applications from Amity University, where she conducted significant research utilizing COMSOL and MATLAB for simulating sensor designs. She also earned her M.Tech. in Digital Communication from B.I.E.T. Jhansi, achieving a first division with honors, and completed her B.Tech. in Electronics & Instrumentation Engineering from I.E.T. Lucknow with a commendable score. Her academic journey includes notable dissertation projects focused on sensor technology, emphasizing her strong foundation in engineering and commitment to advancing research in optical biosensors.

Experience

Dr. Archana Yadav has over 12 years of experience in teaching and research, currently serving as an Assistant Professor at Integral University, Lucknow. Her roles include departmental examination coordination, course design for new programs, and guidance for undergraduate and postgraduate projects. Dr. Yadav has actively contributed to institutional growth through various leadership positions, including serving on multiple committees related to accreditation and curriculum design. She has a strong research focus on optical biosensors for healthcare applications, specifically non-invasive glucose monitoring. Her scholarly work includes five high-impact publications and a patent, reflecting her commitment to advancing knowledge in her field. Additionally, she engages in academic service as a reviewer for several prestigious journals, showcasing her expertise and respect in the academic community.

Research Focus

Dr. Archana Yadav’s research focuses on the modeling and simulation of optical biosensors, particularly for healthcare applications. Her work primarily involves the non-invasive detection of glucose levels, utilizing advanced optical techniques such as surface plasmonic resonance. By investigating various nanomaterials and optimizing sensor designs, she aims to enhance sensitivity and accuracy in glucose monitoring. Her research holds promise for the development of wearable devices that can continuously monitor glucose levels, contributing significantly to biomedical applications and potentially improving patient care in diabetes management. Through her innovative approach, Dr. Yadav is advancing the field of biosensors with practical implications for health monitoring.

Awards and Honours

Dr. Archana Yadav has garnered recognition for her contributions to academia and research, evidenced by her involvement in various prestigious roles and accolades. She serves as a reviewer for numerous high-impact journals, including the IEEE Sensors Journal and Microchemical Journal, showcasing her expertise and respect within the scientific community. Additionally, she is an Editorial Board Member for several academic journals, including the Journal of Photonics Materials and Technology. Dr. Yadav has also received commendations for her innovative teaching methods and contributions to course development at Integral University. Her doctoral work has led to multiple publications in high-impact journals and a patent, reflecting her significant contributions to the field of biosensors. Overall, her extensive involvement in academic service and commitment to research excellence underline her distinguished career.

Publication Top Notes

  • Bimetal Thin Film, Semiconductors, and 2D Nanomaterials in SPR Biosensors: An Approach to Enhanced Urine Glucose Sensing
    • Authors: Kumar, S., Yadav, A., Malomed, B.A.
    • Year: 2024
    • Citations: 6
  • Design and Simulation of SPR Sensors by Employing Silicon and Silicon-Nitride With Mono and Bimetal Layers for Sensitivity Enhancement
    • Authors: Kumar, S., Yadav, A., Kumar, S., Malomed, B.A.
    • Year: 2024
    • Citations: 7
  • Improved Surface Plasmon Effect in Ag-based SPR Biosensor with Graphene and WS2: An Approach Towards Low Cost Urine-Glucose Detection
    • Authors: Yadav, A., Mishra, M., Tripathy, S.K., Singh, O.P., Sharan, P.
    • Year: 2023
    • Citations: 25
  • Highly Sensitive Bimetallic-Metal Nitride SPR Biosensor for Urine Glucose Detection
    • Authors: Yadav, A., Kumar, A., Sharan, P., Mishra, M.
    • Year: 2023
    • Citations: 54
  • Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection
    • Authors: Yadav, A., Kumar, S., Kumar, A., Sharan, P.
    • Year: 2023
    • Citations: 33

Conclusion

Dr. Archana Yadav exemplifies the qualities of a deserving candidate for the Best Researcher Award. Her robust academic and research contributions, commitment to teaching, and active engagement in academic service demonstrate her dedication to the field of engineering and education. With a few strategic improvements, particularly in collaboration and outreach, she could further amplify her impact in academia and beyond. Recognizing her with this award would not only honor her achievements but also encourage her continued contributions to research and education.

Wenjun Bai | Engineering | Best Researcher Award

Dr. Wenjun Bai | Engineering | Best Researcher Award

Engineer, National Key Laboratory of Transient Impact/ No.208 Research Institute of China Ordnance Industries, China

Wenjun Bai is an engineer specializing in impact and protection at the National Key Laboratory of Transient Impact, No. 208 Research Institute of China Ordnance Industries. After obtaining his Ph.D. in Power Machinery and Engineering from Beijing Institute of Technology in June 2023, he has contributed significantly to the field through multiple high-impact publications and patents. His research focuses on enhancing the understanding and development of materials and technologies for defense applications.

Profile

Scopus

Evaluation for “Best Researcher Award” Nomination

Strengths for the Award:

Wenjun Bai demonstrates a strong research background, particularly in the fields of impact protection and the mechanical properties of composites. With a recent Ph.D. from the prestigious Beijing Institute of Technology, Wenjun has quickly made significant contributions to the field, as evidenced by five peer-reviewed publications in reputable journals such as Composites Science and Technology and Mechanics of Advanced Materials and Structures. His work on the critical size determination of the Representative Volume Element (RVE) model, which enhances the evaluation of composite materials, is particularly noteworthy. Furthermore, Wenjun has been granted a national invention patent, showcasing his ability to translate research into practical applications. His involvement in both completed and ongoing national defense projects underlines his research’s relevance and impact in critical areas. These accomplishments position Wenjun as a leading young researcher in his field, making him a strong candidate for the “Best Researcher Award.”

Areas for Improvement:

Despite his impressive achievements, Wenjun could benefit from expanding his research’s visibility and impact through more extensive collaborations and by seeking editorial appointments in his field. Additionally, while his work is highly specialized, broadening his research scope to include interdisciplinary studies could further strengthen his candidacy. Engaging in international collaborations and increasing his presence in global scientific communities would also enhance his research profile. Furthermore, obtaining professional memberships in relevant organizations could provide him with additional platforms for recognition and professional development.

Education 🎓

Wenjun Bai earned his Ph.D. in Power Machinery and Engineering from Beijing Institute of Technology in 2023. His academic journey has been marked by a deep interest in the mechanics of materials, particularly in the context of impact and protection, which he continues to explore in his professional career.

Experience 💼

Wenjun Bai is currently an engineer at the National Key Laboratory of Transient Impact. Since 2023, he has been involved in critical defense-related research projects, including studies on large-diameter technology and intelligent systems. His expertise in mechanical property analysis and failure mechanics of composite materials has led to several noteworthy publications and patents.

Research Interests 🔬

Wenjun Bai’s research primarily revolves around impact and protection, with a focus on mechanical property and failure analysis of advanced composite materials. His work aims to enhance the resilience and efficiency of materials used in defense applications, particularly in the development of metal-toughened ceramics and fiber-reinforced composites.

Awards 🏆

  • National Invention Patent: Granted on April 27, 2021, for a method predicting equivalent mechanical properties of long fiber-reinforced composites.
  • Young Scientist Award Nominee: For contributions to material science and engineering, particularly in the field of defense technology.

PublicationsTop Notes 📚

  1. Determination of the representative volume element model critical size for carbon fiber reinforced polymer composites
    Composites Science and Technology, 2023
    Cited by 10 articles.
  2. Study of the effect of random interfacial debonded on the elastic constants of carbon fiber composites
    Mechanics of Advanced Materials and Structures, 2024
    Cited by 1 article.
  3. A new method for generating the random fiber arrangement of representative volume element for unidirectional fiber reinforced composites
    Mechanics of Advanced Materials and Structures, 2023
    Cited by 1 article.
  4. Study of the effect of void defects on the mechanical properties of fiber reinforced composites
    Mechanics of Advanced Materials and Structures, 2024
  5. Study on the secondary fragment formation characteristic and search reconstruction algorithm
    International Conference on Defence Technology, 2024
    Accepted.

Conclusion:

Wenjun Bai’s rapid progression in his research career, coupled with his contributions to the field of impact protection and composite materials, makes him a strong contender for the “Best Researcher Award.” His work is not only academically rigorous but also has significant practical applications, particularly in national defense. While there are areas for potential growth, such as expanding his research network and increasing his professional visibility, Wenjun’s current achievements and trajectory suggest that he is on a path to becoming a leading figure in his field. His nomination is well-deserved, and he has the potential to make even greater contributions to science and technology in the future.