Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Professor at University of Patras, Greece

Professor Vassilis Kostopoulos is a distinguished Greek academic in Mechanical Engineering, currently serving at the University of Patras. With a PhD in Applied Mechanics, he has built a prolific career specializing in composite materials, aerospace structures, non-destructive evaluation, and nano-engineering. He has published over 260 peer-reviewed journal papers, authored several books, and amassed more than 8,800 citations with an h-index of 48. As principal investigator in 85 international research projects funded by bodies like the EU, ESA, and NSF, he has made significant contributions to advanced materials and aerospace research. He has served on multiple European advisory bodies (ACARE, Clean Sky), editorial boards, and has supervised 34 PhD and 185 MSc theses. His work has earned international recognition through patents and awards, including the TRA VISIONS Senior Scientist Award. Widely respected for his innovation, mentorship, and research leadership, he exemplifies excellence in academic and applied engineering research.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile 

Education

Professor Vassilis Kostopoulos received his Diploma in Mechanical Engineering from the National Technical University of Athens in 1980. He later pursued a Ph.D. in Applied Mechanics at the University of Patras, completed in 1987, with a focus on wave propagation, scattering, and non-destructive testing of composite materials. His academic formation established a robust foundation in mechanics, materials science, and engineering physics. Over the years, he expanded his expertise through advanced training, collaborations, and international academic exposure. His educational background underpins his deep theoretical and applied understanding of composite materials and aerospace engineering. In addition to his own education, he has contributed extensively to the academic growth of students through comprehensive undergraduate and graduate-level teaching in subjects such as dynamics, elasticity, and thermomechanical behavior of advanced materials. His educational journey has continuously evolved in parallel with his research and teaching responsibilities, ensuring a solid, interdisciplinary academic foundation.

Professional Experience

Professor Kostopoulos holds a long-standing faculty position at the University of Patras, where he previously served as Director of the Applied Mechanics and Vibrations Laboratory. He has also held visiting positions at prestigious institutions, including JRC Petten in the Netherlands and, more recently, the University of Delaware and George Emil Palade University in Romania. Beyond academia, he has actively contributed to European aviation and aerospace research policy through roles with ACARE, Clean Sky, and Clean Aviation Joint Undertakings. He has been a national delegate and evaluator for several EU framework programs (FP6, FP7) and other international research agencies. His editorial and peer review responsibilities span over 60 international journals. These roles highlight his influence across both academic and policy-making spheres. As a mentor, advisor, evaluator, and leader in multi-institutional projects, Professor Kostopoulos has consistently demonstrated professional excellence and leadership, further reinforcing his global academic reputation in the field of mechanical and aerospace engineering.

Research Interest

Professor Kostopoulos’s research spans a wide array of cutting-edge engineering topics, primarily centered on composite materials and aerospace structures. His key interests include the design, optimization, and damage assessment of lightweight composite structures, with particular attention to fatigue, fracture, and high strain rate behavior. He is also deeply involved in non-destructive inspection and structural health monitoring, nano-augmentation of materials, anisotropic elasticity, and additive manufacturing. His work extends into space technologies, such as microsatellites, as well as UAVs and aeronautic applications. In recent years, he has ventured into biomechanics and bioengineering, focusing on implant design and fatigue in biomedical components. His interdisciplinary approach links advanced mechanics with real-world applications in aerospace, defense, and biomedical engineering. Notably, his integration of life cycle and cost analysis into material design reflects a forward-thinking approach. His comprehensive, problem-solving research focus continues to shape innovations in engineering science across multiple domains.

Award and Honor

Professor Kostopoulos has received numerous prestigious awards recognizing his innovation, mentorship, and scientific impact. Notably, he was honored with the 1st Senior Scientist Award at the TRA VISIONS 2020 Researcher Competition, a major European recognition in transport and aerospace research. In 2024, under his supervision, the UPOGEE student team won the Special Award in the ESA Student Aerospace Challenge. Other honors include the Communication Award and Innovation Award at ESA educational events and UK competitions, as well as high placements in international contests such as iGEM and the CubeSat Mission Contest in China. His influence in mentoring award-winning student teams underscores his commitment to academic development. Additionally, he holds 3 European, 1 U.S., and 7 national patents, further highlighting his innovative contributions. These accolades reflect his leadership in research, education, and industry collaboration, establishing him as a prominent figure in European and global engineering research communities.

Conclusion

In conclusion, Professor Vassilis Kostopoulos is an exemplary academic and researcher whose career embodies excellence in education, professional service, and scientific innovation. With over four decades of impactful research in composite materials and aerospace engineering, he has significantly advanced both the theoretical and applied aspects of the field. His extensive publication record, international collaborations, high-level policy engagement, and commitment to student mentorship make him a model of academic leadership. His work not only contributes to cutting-edge technologies in space, defense, and aviation but also addresses sustainability, cost-effectiveness, and health applications. Recognized globally through awards, patents, and editorial roles, he maintains a dynamic presence in the research community. As a result, he is not only a deserving candidate for high-level research awards but also a vital contributor to the future of engineering science. His legacy continues to inspire innovation, education, and international collaboration in multiple scientific domains.

Publications Top Notes

  • Title: Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe
    Authors: S. Attia, P. Eleftheriou, F. Xeni, R. Morlot, C. Ménézo, V. Kostopoulos, M. Betsi, …
    Year: 2017
    Citations: 378

  • Title: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes
    Authors: V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, A. Paipetis
    Year: 2010
    Citations: 361

  • Title: The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery
    Authors: T.H. Loutas, D. Roulias, E. Pauly, V. Kostopoulos
    Year: 2011
    Citations: 283

  • Title: Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes
    Authors: P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Paipetis
    Year: 2009
    Citations: 271

  • Title: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements
    Authors: T.H. Loutas, G. Sotiriades, I. Kalaitzoglou, V. Kostopoulos
    Year: 2009
    Citations: 230

  • Title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    Authors: G. Georgoulas, T. Loutas, C.D. Stylios, V. Kostopoulos
    Year: 2013
    Citations: 187

  • Title: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission
    Authors: V. Kostopoulos, T.H. Loutas, A. Kontsos, G. Sotiriadis, Y.Z. Pappas
    Year: 2003
    Citations: 161

  • Title: On the fatigue life prediction of CFRP laminates using the electrical resistance change method
    Authors: A. Vavouliotis, A. Paipetis, V. Kostopoulos
    Year: 2011
    Citations: 157

  • Title: Finite element analysis of impact damage response of composite motorcycle safety helmets
    Authors: V. Kostopoulos, Y.P. Markopoulos, G. Giannopoulos, D.E. Vlachos
    Year: 2002
    Citations: 151

  • Title: Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Health monitoring of carbon/carbon, woven reinforced composites: Damage assessment by using advanced signal processing techniques. Part II: Acousto-ultrasonics monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures
    Authors: A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, V. Kostopoulos
    Year: 2011
    Citations: 140

  • Title: Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms
    Authors: T.H. Loutas, V. Kostopoulos, C. Ramirez-Jimenez, M. Pharaoh
    Year: 2006
    Citations: 140

  • Title: Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements
    Authors: T.H. Loutas, A. Panopoulou, D. Roulias, V. Kostopoulos
    Year: 2012
    Citations: 135

  • Title: On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species
    Authors: C. Kostagiannakopoulou, T.H. Loutas, G. Sotiriadis, A. Markou, …
    Year: 2015
    Citations: 125

Carlo Pettorruso | Engineering | Excellence in Innovation Award

Dr. Carlo Pettorruso | Engineering | Excellence in Innovation Award

Research fellow at Politecnico di milano, Italy

Carlo Pettorruso is a civil engineer and research fellow at Politecnico di Milano, specializing in the evaluation and seismic safety of existing infrastructure, particularly bridges. Currently pursuing a PhD in Architecture, Built Environment, and Construction Engineering, his research focuses on innovative strategies for the seismic retrofit of bridges and non-destructive inspection methods for prestressed concrete structures. He has actively contributed to national research projects funded by organizations such as FABRE, ANAS, and INAF, playing a key role in developing technical guidelines adopted by Italy’s Ministry of Infrastructure. His work bridges the gap between academic research and practical application, aiming to enhance the resilience and safety of critical infrastructure. With a strong academic background and hands-on experience in field assessments and structural analysis, Pettorruso demonstrates a commitment to innovation and public safety in civil engineering. His contributions reflect a deep integration of advanced research with national infrastructure priorities.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Carlo Pettorruso has a robust academic background in civil engineering, having completed all his higher education at Politecnico di Milano. He earned a Bachelor’s degree in Civil Engineering in 2015, followed by a Master’s degree in Civil Engineering with a focus on Advanced Structural Analysis in 2018, graduating with top marks (110/110). Currently, he is pursuing a PhD in Architecture, Built Environment, and Construction Engineering, with his research centered on seismic retrofit strategies for existing bridges. His PhD candidacy spans from 2019 to 2024 and has already produced impactful contributions in structural safety. The continuity of his education within one of Italy’s most prestigious technical universities has provided him with a solid theoretical foundation, practical research exposure, and long-term mentorship under leading experts in structural engineering and infrastructure resilience.

Professional Experience

Carlo Pettorruso has gathered significant professional experience through research fellowships and project participation primarily at Politecnico di Milano. Since 2023, he has served as a research fellow specializing in non-destructive evaluation of prestressed reinforced concrete bridges. He has been actively involved in multiple infrastructure assessment projects funded by the FABRE Consortium and other national organizations. His responsibilities include conducting field inspections, evaluating structural safety, and developing technical guidelines in line with governmental regulations. Additionally, he contributed to the seismic evaluation of high-precision structures such as the Large-Scale Telescope at CTAO-South, reflecting his adaptability across complex engineering contexts. Carlo has worked under prominent professors and collaborated with public institutions, ensuring that his work translates into practical policy and engineering standards. His professional journey reflects a consistent focus on improving structural diagnostics, seismic resilience, and bridge safety, bridging academic research and real-world engineering applications.

Research Interest

Carlo Pettorruso’s research interests lie at the intersection of structural engineering, seismic safety, and infrastructure diagnostics. He is particularly focused on non-destructive techniques for evaluating the condition of prestressed concrete bridges and on seismic isolation strategies to enhance the resilience of existing transportation infrastructure. His work spans both theoretical modeling and practical implementation, with strong involvement in the creation and refinement of technical guidelines for infrastructure monitoring and risk classification. He is also engaged in research related to the behavior of special structures, such as astronomical telescopes, under high seismic loads. His projects often involve the development of new methodologies for bridge inspection, retrofitting strategies, and policy-oriented safety frameworks. Overall, his interests reflect a strong commitment to innovation, public safety, and the sustainable management of civil infrastructure, especially in the face of seismic hazards and aging structural systems.

Award and Honor

While specific named awards are not listed in the provided CV, Carlo Pettorruso has consistently demonstrated academic excellence and professional recognition through top honors in education and participation in nationally significant research programs. His Master’s degree was awarded with full marks (110/110), and his ongoing PhD research has been conducted with distinction (noted as “Lode” – high praise). He has been selected to contribute to multiple high-impact, government-funded projects led by the Ministry of Infrastructure, ANAS, and the FABRE Consortium—an acknowledgment of his technical competence and innovative approach. His involvement in regulatory framework development for infrastructure safety suggests he is trusted within national expert networks. While formal individual honors may not be documented, his research roles, funding affiliations, and academic accolades collectively speak to his reputation as an emerging leader in infrastructure innovation and safety assessment.

Conclusion

Carlo Pettorruso is a highly dedicated and technically skilled civil engineering researcher whose work combines academic rigor with real-world impact. With a solid educational foundation and active participation in nationally important research projects, he has built a career focused on structural diagnostics, seismic safety, and innovative approaches to infrastructure management. His contribution to the development of national guidelines for bridge safety, his commitment to non-destructive evaluation techniques, and his role in applied research underline a strong potential for continued innovation in the field. While still in the early stages of his career, his achievements demonstrate a deep understanding of the engineering challenges facing modern infrastructure and a proactive approach to solving them. Carlo Pettorruso exemplifies the qualities of a forward-thinking researcher whose work directly supports public safety and sustainable development in civil engineering, making him a strong candidate for recognition through research and innovation awards.

Publications Top Notes

  • Design and experimental assessment of a prestressed lead damper with straight shaft for seismic protection of structures

    • Authors: V Quaglini, C Pettorruso, E Bruschi

    • Year: 2022

    • Citations: 30

  • Experimental and numerical assessment of prestressed lead extrusion dampers

    • Authors: V Quaglini, C Pettorruso, E Bruschi

    • Year: 2021

    • Citations: 26

  • Cold bending of vertical glass plates: Wind loads and geometrical instabilities

    • Authors: V Quaglini, S Cattaneo, C Pettorruso, L Biolzi

    • Year: 2020

    • Citations: 19

  • Supplemental energy dissipation with prestressed Lead Extrusion Dampers (P-LED): Experiments and modeling

    • Authors: C Pettorruso, E Bruschi, V Quaglini

    • Year: 2021

    • Citations: 12

  • Experimental and numerical investigation of a dissipative connection for the seismic retrofit of precast RC industrial sheds

    • Authors: V Quaglini, C Pettorruso, E Bruschi, L Mari

    • Year: 2022

    • Citations: 7

  • Design and experimental assessment of a novel damper with high endurance to seismic loads

    • Authors: V Quaglini, E Bruschi, C Pettorruso, M Sartori

    • Year: 2023

    • Citations: 6

  • Dimensionamento di dispositivi dissipativi per la riabilitazione sismica di strutture intelaiate

    • Authors: V Quaglini, E Bruschi, C Pettorruso

    • Year: 2022

    • Citations: 6

  • Characterization and numerical assessment of Lead Extrusion Damper with adaptive behavior

    • Authors: E Bruschi, F Macobatti, C Pettorruso, V Quaglini

    • Year: 2020

    • Citations: 6

  • Comparison of linear and nonlinear procedures for the analysis of the seismic performance of straight multi-span RC bridges

    • Authors: C Pettorruso, V Quaglini

    • Year: 2024

    • Citations: 3

  • Assessment of bridge Post‐Tensioning systems using non‐destructive (ND) inspection methods

    • Authors: V Quaglini, C Pettorruso, S Cattaneo, D Rossi

    • Year: 2023

    • Citations: 3

  • Strategies for the rehabilitation of existing bridges by seismic isolation

    • Author: C Pettorruso

    • Year: 2023

    • Citations: 2

  • Experimental and numerical assessment of isolation seismic device for retrofit of industrial shed

    • Authors: L Mari, V Quaglini, C Pettorruso, E Bruschi

    • Year: 2021

    • Citations: 2

  • Conceptual Design of Seismic Retrofit of Existing Bridges by Deck Isolation: Assessment of Effectiveness

    • Authors: C Pettorruso, V Quaglini

    • Year: 2024

    • Citations: 1

  • Fluid Viscous Dampers for seismic protection of bridges: a State of the Art

    • Authors: L Zoccolini, E Bruschi, C Pettorruso, D Rossi, V Quaglini

    • Year: 2024

    • Citations: 1

Velislava Lyubenova | Engineering | Best Researcher Award

Prof. Velislava Lyubenova | Engineering | Best Researcher Award

Academician at Bulgarian Academy of Science, Institute of Robotics, Bulgaria

Velislava Lyubenova is a distinguished Bulgarian researcher and professor with over 30 years of experience in biotechnological process control, mechatronics, and adaptive systems. She currently serves as the Head of the Mechatronic Bio/technological Systems Section at the Institute of Robotics, Bulgarian Academy of Sciences (BAS), and has held various academic and leadership roles across BAS institutions. She has led more than 10 national and international research projects, participated in numerous European programs, and supervised several PhD students. With over 200 scientific publications, many in high-impact journals, and invited lectures delivered at leading international institutions, she is widely recognized for her scientific contributions. Her expertise includes the development of innovative monitoring and control systems using tools like MATLAB and LABVIEW. An awardee of the “Marin Drinov” prize for young scientists, Lyubenova is also actively involved in academic governance, expert committees, and editorial boards, reflecting her deep commitment to scientific advancement and education.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Velislava Lyubenova holds a strong academic background in technical sciences and engineering. She earned her engineering degree in Radio Electronics from the Technical University of Sofia, followed by a Ph.D. in Automation with a dissertation focused on parameter estimation and biotechnological process monitoring. Her academic journey culminated with a Doctor of Technical Sciences degree from the Institute of System Engineering and Robotics (ISIR) at the Bulgarian Academy of Sciences (BAS), specializing in adaptive control and modeling of complex biotechnological systems. Her education blends deep technical knowledge with applied research capabilities, laying the foundation for a career in both theoretical and experimental domains. Her academic formation reflects a continuous pursuit of knowledge and specialization in interdisciplinary areas, preparing her to work across the fields of electronics, biotechnology, and control systems. This educational path has also enabled her to contribute to curriculum development and mentor future generations of researchers in her field.

Professional Experience

Professor Velislava Lyubenova has built a prolific career at the Bulgarian Academy of Sciences, progressing from a research fellow to a professor and head of department at the Institute of Robotics. Her early work in adaptive and robust control systems evolved into specialized research in bioengineering and mechatronic systems for biotechnology. She has served as Scientific Secretary at IR-BAS and has been a key figure in national expert commissions and scientific councils. Over her career, she has led and coordinated numerous national and international research projects, many involving cross-disciplinary collaboration. Her leadership roles include project management, supervision of PhD students, and delivery of advanced lecture courses. She also coordinates Erasmus programs and plays a pivotal role in academic exchange and cooperation. Her professional trajectory showcases a blend of scientific innovation, team leadership, and academic mentorship, making her a respected figure in both the Bulgarian and broader European research communities.

Research Interest

Velislava Lyubenova’s research is deeply rooted in the interdisciplinary fields of bioengineering, automation, and mechatronics. Her primary interest lies in the modeling, monitoring, and adaptive control of biotechnological processes, where she develops innovative methodologies to improve efficiency and reliability. She integrates control theory with practical applications using environments like MATLAB and LABVIEW, creating real-time monitoring systems that bridge theoretical concepts with industrial needs. Her work often addresses complex system dynamics in bioprocesses and seeks to optimize process performance through intelligent control algorithms. Additionally, she explores knowledge-based and adaptive systems that contribute to the advancement of next-generation biotechnological platforms. Her collaborative research also extends into European Union projects, educational initiatives, and technology transfer programs, reflecting a holistic approach to scientific inquiry. With a strong focus on experimental validation, her research continues to influence the development of advanced technologies in the fields of bioprocess engineering and industrial automation.

Award and Honor

Throughout her distinguished career, Velislava Lyubenova has received notable recognition for her contributions to science and research. A significant early milestone was her receipt of the “Marin Drinov” Young Scientist Award from the General Assembly of the Bulgarian Academy of Sciences in 1998—an honor bestowed upon promising researchers demonstrating exceptional scientific potential. She has also been invited to deliver over 15 specialized lectures at prestigious institutions abroad and six within Bulgaria, signifying her international recognition as a subject-matter expert. Her active involvement in over 30 international and national conferences further underscores her scientific engagement. Beyond individual accolades, her roles as a reviewer, jury member, editorial board member, and lecturer reflect a broader institutional and peer recognition of her expertise. These honors represent both her academic excellence and leadership in advancing science and education, and they demonstrate her lasting impact on the Bulgarian and global research landscape.

Conclusion

Velislava Lyubenova stands out as an accomplished and influential researcher in the fields of biotechnological systems and automation. Her extensive education, progressive professional experience, and leadership in multidisciplinary research projects position her as a key contributor to both national and international scientific advancement. Her ability to combine theoretical models with practical applications, mentor young scientists, and contribute to global academic forums speaks to her depth of expertise and dedication. She has earned peer and institutional recognition for her scientific work, making her a respected leader in her field. Her over 200 publications, contributions to prestigious journals, and active engagement in scientific committees demonstrate both productivity and academic integrity. With a strong foundation in research and innovation, and an enduring commitment to education and collaboration, Velislava Lyubenova is exceptionally well-qualified for honors such as the Best Researcher Award. Her career reflects a lifelong dedication to the pursuit of scientific excellence and societal impact.

Publications Top Notes

  • Title: Indirect adaptive linearizing control of a class of bioprocesses–Estimator tuning procedure
    Authors: MN Ignatova, VN Lyubenova, MR García, C Vilas, AA Alonso
    Year: 2008
    Citations: 31

  • Title: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process
    Authors: V Shopska, R Denkova, V Lyubenova, G Kostov
    Year: 2019
    Citations: 21

  • Title: Adaptive control of fed-batch process for poly-beta-hydroxybutyrate production by mixed culture
    Authors: M Ignatova, V Lyubenova
    Year: 2007
    Citations: 16

  • Title: Control of biotechnological processes-new formalization of kinetics: Theoretical aspects and applications
    Authors: M Ignatova, V Lyubenova
    Year: 2011
    Citations: 15

  • Title: Model-based monitoring of biotechnological processes—a review
    Authors: V Lyubenova, G Kostov, R Denkova-Kostova
    Year: 2021
    Citations: 12

  • Title: Adaptive control of the Simultaneous Saccharification—Fermentation Process from Starch to Ethanol
    Authors: S Ochoa, V Lyubenova, JU Repke, M Ignatova, G Wozny
    Year: 2008
    Citations: 12

  • Title: An efficient hybrid of an ant lion optimizer and genetic algorithm for a model parameter identification problem
    Authors: O Roeva, D Zoteva, G Roeva, V Lyubenova
    Year: 2023
    Citations: 11

  • Title: Control of one stage bio ethanol production by recombinant strain
    Authors: V Lyubenova, S Ochoa, J Repke, M Ignatova, G Wozny
    Year: 2007
    Citations: 11

  • Title: Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm
    Authors: O Roeva, D Zoteva, V Lyubenova
    Year: 2021
    Citations: 10

  • Title: Reaction rate estimators of fed-batch process for poly-β-hydroxybutyrate (PHB) production by mixed culture
    Authors: V Lyubenova, M Ignatova, M Novak, T Patarinska
    Year: 2007
    Citations: 10

  • Title: Dynamics Monitoring of Fed-batch E. coli Fermentation
    Authors: A Zlatkova, V Lyubenova
    Year: 2017
    Citations: 8

  • Title: Encapsulation of brewing yeast in alginate/chitosan matrix: Kinetic characteristics of the fermentation process at a constant fermentation temperature
    Authors: I Petelkov, V Lyubenova, A Zlatkova, V Shopska, R Denkova, M Kaneva, …
    Year: 2016
    Citations: 8

  • Title: On-line estimation in a distributed parameter bioreactor: Application to the Gluconic Acid production
    Authors: MR García, C Vilas, E Balsa-Canto, VN Lyubenova, MN Ignatova, …
    Year: 2011
    Citations: 8

  • Title: Metaheuristic algorithms: theory and applications
    Authors: S Ribagin, V Lyubenova
    Year: 2021
    Citations: 7

  • Title: CASCADE SENSOR FOR MONITORING OF DENITRIFICATION IN ACTIVATED SLUDGE WASTEWATER TREATMENT PROCESS
    Authors: V Lyubenova, M Ignatova
    Year: 2011
    Citations: 7

Rajani Alugonda | Engineering | Best Researcher Award

Mrs. Rajani Alugonda | Engineering | Best Researcher Award

Assistant Professor at JNTUK Kakinda, India

Smt. Rajani Alugonda is an accomplished academician and researcher in the field of Electronics and Communication Engineering. With over 14 years of teaching experience, she has significantly contributed to the academic and research landscape. She is currently serving as an Assistant Professor in the Department of ECE at JNTU College of Engineering, Kakinada. Throughout her career, she has actively participated in various academic and administrative roles, reflecting her commitment to institutional development and student mentorship. Her research contributions in signal processing and communication are well-recognized in national and international journals. She has been involved in organizing and attending faculty development programs, conferences, and workshops, fostering a strong academic network. Beyond academics, she has played key roles in hostel administration, examination management, and extracurricular activities, highlighting her leadership skills.

Professional Profile

Google Scholar

Education

Smt. Rajani Alugonda holds a B.Tech degree in Electronics and Communication Engineering from KITS, Singapur, obtained in 2005. She pursued her M.Tech in Control Systems at JNTU College of Engineering, Anantapur, where she graduated with First Class with Distinction in 2011. Currently, she is pursuing her Ph.D. in Signal Processing and Communication from Jawaharlal Nehru Technological University, Kakinada. Her educational background provides her with a strong foundation in advanced communication systems and signal processing, equipping her with the knowledge to conduct high-quality research. Her academic journey demonstrates her commitment to continuous learning and professional growth.

Professional Experience

With over 14 years and 6 months of teaching experience, Smt. Rajani Alugonda has mentored numerous students and guided multiple postgraduate research projects. She has successfully supervised 24 M.Tech theses and is currently guiding three ongoing projects. Apart from her teaching responsibilities, she has held key administrative positions such as Deputy Warden for the Girls Hostel, Officer In-Charge of Examinations, and Coordinator for various institutional initiatives, including the Startup Cell and IQAC. These responsibilities have helped her develop a well-rounded professional profile, balancing academic rigor with institutional development. Her involvement in student mentorship and academic leadership showcases her dedication to education and research.

Research Interest

Her research interests lie in the areas of signal processing and communication, focusing on developing innovative solutions for communication technologies. She has authored 26 international journal articles and presented her research in 24 international conferences, showcasing her active engagement in the research community. Her work aims to advance knowledge in digital signal processing, wireless communication, and emerging communication technologies. By continuously updating her research methodologies and exploring new frontiers, she contributes to the evolution of the field. She actively participates in faculty development programs, research collaborations, and industry interactions to stay updated with the latest advancements.

Awards and Honors

Throughout her career, Smt. Rajani Alugonda has demonstrated academic excellence and leadership, earning recognition in various capacities. She is a member of prestigious professional bodies such as MIETE and LISTE, which acknowledge her contributions to the field. Her active participation in academic conferences, workshops, and training programs has strengthened her research credibility. While specific awards and honors have not been explicitly mentioned, her extensive research output and institutional contributions highlight her academic standing. Her leadership roles in academia, including her involvement in examination management, extracurricular coordination, and research mentorship, reinforce her eligibility for academic accolades and future awards.

Conclusion

Smt. Rajani Alugonda exhibits notable strengths in teaching, research, and academic leadership. Finalizing her Ph.D. and enhancing the impact of her research publications would further solidify her candidacy for the Best Researcher Award.

Publications Top Noted

  • Modeling and simulation of lithium-ion battery with hysteresis for industrial applications

    • Author: S Bangaru, R Alugonda, P Palacharla
    • Year: 2013
    • Citations: 14
  • A Review on Various Speech Enhancement Techniques

    • Author: SSVS A. Rajani
    • Year: 2016
    • Citations: 4
  • Speed Control of Induction Motor Using Fuzzy Logic Approach

    • Author: AR M. Nageswara Rao
    • Year: 2013
    • Citations: 4*
  • Denoising of ECG Signal Using UFIR Smoothing With Notch Filter

    • Author: NP A. Rajani
    • Year: 2021
    • Citations: 1
  • ECG Signal Denoising Using EMD with Notch Filter and Morphology Filter

    • Author: MSAIV A. Rajani
    • Year: 2021
    • Citations: 1
  • Hysteresis Characterization Check of Lithium-Ion Battery Model under Dynamic Simulation Runs

    • Author: S Bangaru, R Alugonda
    • Year: 2013
    • Citations: 1
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • Diagnosis of Bradycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Diagnosis of Tachycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • A Novel Method of QRS Detection Using Adaptive Multilevel Thresholding With Statistical False Peak Elimination

    • Author: VS A. Rajani
    • Year: 2022
    • Citations:

 

Nasimuddin | Engineering | Best Researcher Award

Dr. Nasimuddin | Engineering | Best Researcher Award

Principal Scientist I2R ASTAR  Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I²R), part of A*STAR in Singapore. With a distinguished career in RF and antenna engineering, he has contributed extensively to the fields of wireless power transmission, sensor design, and advanced antenna systems for a variety of applications including satellite communications and energy harvesting. Nasimuddin’s work bridges industry and academia, evidenced by his collaborations, industry technology transfers, and numerous patents.

profile

Google scholar.com

Education 🎓

  • Ph.D. in Electronic Science (2004): University of Delhi, India
    Thesis: Analysis and design of multilayer slow-wave microstrip structures and multilayered microstrip antennas.
  • M.Tech. in Microwave Electronics (1998): University of Delhi, India
  • M.Sc. in Electronics (1996): Jamia Millia Islamia, India
  • B.Sc. in Physics, Mathematics, Chemistry (1994): Jamia Millia Islamia, India

Experience 🏢

Nasimuddin has held various research and teaching roles. Since 2006, he has been part of I²R, A*STAR Singapore, where he currently serves as a Principal Scientist. He was an Honorary Research Associate and Fellow at Macquarie University in Australia (2009–2020) and held a Postdoctoral Research Fellowship under an ARC Discovery Project at Macquarie University (2004–2006). He has also conducted specialized courses in RF energy harvesting applications at NIT Silchar, India.

Research Interests 🔬

Nasimuddin’s research interests include:

  • Advanced antenna engineering for sensor and wireless systems
  • High-gain, compact metamaterial-based antennas
  • Printed and flexible electronics
  • Beam steering antennas and phased array systems
  • RF energy harvesting and wireless power transmission systems
    His research focuses on microwave and millimeter-wave antennas, addressing challenges in satellite communication, RFID, and beamforming technologies.

Awards 🏆

  • Singapore Manufacturing Federation Award (2014): Recognized for contributions to TVWS Transceiver Radio Technology (team award).
  • Dedicated Service Award (2022): Honored for 15 years at I²R, Singapore.
  • Long Service Awards (2012, 2017): For 5 and 10 years at I²R, Singapore.
  • Young Scientist Award (2005): Awarded by the International Union of Radio Science (URSI).
  • M.Tech. Merit Scholarship (1996): University of Delhi, for outstanding academic performance.

Publications Top Notes📚:

Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A State-of-the-Art Review – IEEE Antennas and Propagation Magazine, 2024. Cited by 12 articles.

Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions – IEEE Microwave Magazine, 2023. Cited by 18 articles.

5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting/Wireless Power Transmission Applications: An Overview – IEEE Antennas and Propagation Magazine, 2023. Cited by 25 articles.

A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique with a Thin Metasurface – IEEE Access, 2022. Cited by 10 articles.

Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems – IEEE Transactions on Instrumentation and Measurement, 2022. Cited by 8 articles.

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee, Pusan national university, South Korea

Dr. Lee Min Sik is a prominent researcher in the field of Mechanical Engineering at Pusan National University, specializing in hybrid composite materials and advanced manufacturing techniques. With a focus on both theoretical and experimental studies, he has significantly contributed to the understanding of sheet metal forming processes and material properties.

Profile

Orcid

Education 🎓

Dr. Lee completed his Ph.D. in Mechanical Engineering at Pusan National University in September 2017, following his Master’s degree in the same field in February 2013. He also obtained his Bachelor’s degree from the same institution in February 2011, demonstrating a strong foundation in mechanical engineering from an early stage.

Experience 🛠️

Since completing his Ph.D., Dr. Lee has engaged in various research projects funded by national and international organizations. His work includes significant contributions to the National Research Laboratory and the Technological Innovation R&D Program, focusing on fuel cell technology and hybrid composite materials.

Research Interests 🔬

Dr. Lee’s research interests encompass hybrid composite materials, sheet metal forming processes (both cold and hot press), and simulations related to sheet metal and composites. He aims to innovate manufacturing techniques that enhance material performance and process efficiency.

Awards 🏆

Dr. Lee has received several prestigious awards, including:

Future Researcher Award 2017, Busan, Korea (Dec 2017)

BK21 Plus Best Researcher Award 2016 (Mar 2017)

A M Strickland Prize (Best Paper), awarded by the U.K. Institution of Mechanical Engineers (Jun 2016)

Publication Top Notes 📚

Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF22MnB5 Steel, 2024.

Experimental and Simulation Studies of Erichsen Cupping Test on Aluminum(7075) Sheet Using Damage Theory, Vol. 20(10), pp. 698-709, 2024.

Assessment of process-induced cracks in hot-working operations using crack susceptibility index based on plastic instability criteria, Vol. 29(10), 2024.

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Principal Scientist, I2R ASTAR, Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I2R), A*STAR, Singapore. With over 15 years of experience in research and development, he specializes in RF and antenna design for advanced sensor and wireless systems. His work focuses on innovative solutions in antenna technologies, ranging from compact high-gain antennas to reconfigurable systems for a wide range of applications.

Profile

Scopus

Education

Nasimuddin holds a Master of Technology (M.Tech.) in Electronics from the University of Delhi, where he received a Merit Scholarship Award in 1996. His early academic excellence was also marked by achieving the highest marks in high school in 1989 at Inter College Shakari-Nagar, India.

Experience

Nasimuddin has a wealth of professional experience, including roles as a Research Fellow, Scientist, and Principal Scientist at I2R, Singapore (2006-present). He also served as an Honorary Research Fellow at Macquarie University, Australia (2009-2020) and was the Principal Investigator for an ARC Discovery Project Grant during his tenure as a Postdoctoral Research Fellow in Australia (2004-2006). His contributions to education include teaching and conducting specialized courses in RF energy harvesting.

Research Interests

Nasimuddin’s research focuses on cutting-edge technologies such as:
📡 RF and antenna design for wireless systems
📡 High-gain, wideband, and metamaterial-based antennas
📡 Antenna systems for energy harvesting and satellite communication
His work also delves into beamforming, phased array systems, and reconfigurable antenna technologies, addressing next-generation challenges in communication and power transmission systems.

Awards

Over his career, Nasimuddin has received numerous accolades, including the Singapore Manufacturing Federation Award in 2014 for TVWS transceiver technology and a Dedicated Service Award from I2R in 2022 for 15 years of service. He also received Young Scientist Award in 2005 from the International Union of Radio Science (URSI), recognizing his early contributions to the field.

Publications Top Notes

Nasimuddin’s contributions to the academic community are widely recognized, with numerous journal publications. Below are some of his key publications:

  1. Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A state-of-the-art review, IEEE Antennas, and Propagation Magazine, 2024.
    Cited by: 15
  2. Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review, IEEE Microwave Magazine, 2023.
    Cited by: 25
  3. 5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting, IEEE Antennas and Propagation Magazine, 2023.
    Cited by: 30
  4. A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique, IEEE Access, 2022.
    Cited by: 18
  5. Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems, IEEE Transactions on Instrumentation and Measurement, 2022.
    Cited by: 10
  6. Hybrid metasurface loaded tri-port compact antenna with gain enhancement, Int. J. RF and Microwave Computer-Aided Engineering, 2021.
    Cited by: 20

Mahmood Abbasi Layegh | Engineering | Best Researcher Award

Assist Prof Dr. Mahmood Abbasi Layegh | Engineering | Best Researcher Award

Assistant professor & Senior researcher, Urmia University, Iran

🎓 Dr. Mahmood Abbasi Layegh is an accomplished researcher and educator in the field of Electrical and Telecommunication Engineering. Currently serving as an Assistant Professor at Urmia University of Technology, he has a wealth of experience in both academia and industry. His expertise spans antenna design, microwave passive devices, and optimization algorithms, where he has made significant contributions to research and innovation.

Publication Profile

Google scholar

Education

📚 Dr. Abbasi Layegh holds a Ph.D. in Telecommunication Engineering from Urmia University (2013-2018), with a dissertation focusing on the application of optimization algorithms in the design of antennas and microwave passive devices. Prior to this, he earned an M.Sc. in Electronic Engineering from the University of Tabriz, where he explored Persian music classification using SVM. His academic journey began with a B.Sc. in Telecommunication Engineering from Urmia University, setting the foundation for his career.

Experience

🏫 Dr. Abbasi Layegh has a diverse teaching and professional background. He has been an Assistant Professor at Urmia University of Technology since 2022 and has held various academic roles, including Senior Lecturer at both Urmia University and Islamic Azad University. In addition to academia, he is also the Board Manager at ADAK PEY Road & Building Construction Company, where he applies his management and engineering skills.

Research Focus

🔬 His research interests lie in antenna design, microwave devices, optimization algorithms, and machine learning techniques applied to engineering problems. He has published widely on topics such as compact antennas for MIMO systems, power demand forecasting, and innovative methods for breast cancer detection using finite element methods and SVM.

Awards and Honors

🏅 Dr. Abbasi Layegh has been recognized for his academic excellence with high distinctions throughout his education. He also co-authored a solutions manual for telecommunication systems, and his work has been featured in prestigious international journals.

Publication Highlights

“The Optimization Design of a Novel Slotted Microstrip Patch Antenna with Multi-Bands Using Adaptive Network-Based Fuzzy Inference System,” published in Technologies (2017), has been widely cited for its innovative approach to antenna design. Read here

“Adaptive Neuro-Fuzzy Inference System approach in bandwidth and mutual coupling analyses of a novel UWB MIMO antenna with notch bands applicable for massive MIMOs,” published in AEÜ – International Journal of Electronics and Communications (2018), has influenced future research in MIMO antenna systems. Read here

Using AHP method to evaluate e-payment system factors influencing mobile banking use in Iranian banks

The optimization design of a novel slotted microstrip patch antenna with multi-bands using adaptive network-based fuzzy inference system

Classification of the Radif of Mirza Abdollah a canonic repertoire of Persian music using SVM method

 

Tibor Krenicky | Engineering | Best Researcher Award

Assoc Prof Dr. Tibor Krenicky | Engineering | Best Researcher Award

Assoc. Prof. Technical University of Košice, Slovakia

Tibor Krenicky is an esteemed Associate Professor at the Faculty of Manufacturing Technologies, Technical University of Košice, Slovakia. With a Ph.D. in Physics, he specializes in technical device design and monitoring, contributing significantly to national and international research projects. His dedication to advancing engineering education and research is complemented by his extensive editorial roles in various scientific journals. 🌟

Publication Profile

ORCID

 

Education

Tibor graduated in Physics from the Faculty of Mathematics and Physics of Comenius University in Bratislava in 1999. He earned his Ph.D. in 2005 from the Institute of Experimental Physics at the Slovak Academy of Sciences, specializing in nanotechnology as a member of the Centre of Excellence NANOSMART. 🎓

Experience

Beginning his teaching career in 2005 at the Technical University of Košice, Tibor has served as Deputy Head of his department for 12 years. He has been actively involved in developing innovative solutions for technical systems and materials through multiparametric monitoring and virtual instrumentation. 🛠️

Research Focus

Tibor’s research focuses on the simulation, determination, and evaluation of operating parameters and the operational status of technical materials and systems. He also designs and implements experimental devices for the diagnostics of technical systems, emphasizing knowledge exchange and international collaboration. 🔍

Awards and Honours

He was part of the research team recognized for “The most important result of the Slovak Academy of Sciences scientific work in 2004” for developing new nanocrystalline soft magnetic alloys suitable for high-temperature applications. 🏆

Publication Top Notes

Tibor has an impressive publication record, with significant contributions to various journals. Here are a few highlights of his work:

“Simulation of Operating Parameters in Technical Systems.” Applied Mechanics and Materials, 866, 221-226. Cited by: 15

“Advanced Techniques in Monitoring Technical Devices.” Management Systems in Production Engineering, 25(3), 13-17. Cited by: 10

“Innovations in Virtual Instrumentation for Technical Diagnostics.” MM Science Journal, 2020, 2310-2314. Cited by: 5

Guglielmo Vaccaro | Engineering | Best Researcher Award

Mr. Guglielmo Vaccaro | Engineering | Best Researcher Award

PHD student, Università degli studi di Firenze, Italy

👤 Guglielmo Vaccaro, born on June 18, 1997, in Florence, is a dedicated researcher in the field of mechanical and energy engineering. With a passion for sustainable technologies, he is currently pursuing his PhD in Industrial Engineering, focusing on eco-friendly refrigeration solutions.

Publication Profile

Scopus

Education

🎓 Guglielmo holds a Bachelor’s degree in Mechanical Engineering (110/110 cum laude) and a Master’s degree in Energy Engineering with a specialization in machines (110/110 cum laude), both from the University of Florence. His thesis work centered on optimizing fluid systems for improved efficiency and sustainability. He is currently engaged in a PhD program, researching refrigeration with eco-compatible fluids.

Experience

💼 Guglielmo has gained valuable experience through his studies at the CNAM – Conservatoire National des Arts et Métiers, where he conducted experimental research on a CO2 and DME mixture chiller. His academic journey also includes participation in international conferences and collaborations with industry experts, strengthening his practical and theoretical knowledge.

Research Focus

🔍 Guglielmo’s research focuses on the development of refrigeration systems using eco-friendly fluids. He aims to improve the efficiency of cooling processes through innovative solutions, including the use of CO2-based mixtures, which contribute to reduced environmental impact.

Awards and Honours

🏅 Guglielmo has received recognition for his academic excellence, including honors during his Bachelor’s and Master’s degrees. His contributions to international conferences reflect his commitment to advancing knowledge in his field.

Publication Top Notes

📚 Guglielmo has authored several publications in peer-reviewed journals and international conferences, showcasing his research on energy systems and refrigeration technology. Below are some highlights:

Vaccaro, G., Milazzo, A., & Talluri, L. (2023). Thermodynamic assessment of trans-critical refrigeration systems utilizing CO2-based mixtures. International Journal of Refrigeration, 147, 61-70.

Pasqui, M., Vaccaro, G., Lubello, P., Milazzo, A., & Carcasci, C. (2023). Heat pumps and thermal energy storages centralised management in a Renewable Energy Community. International Journal of Sustainable Energy Planning and Management, 38, 65-82.

Vaccaro, G., Milazzo, A., & Talluri, L. (2024). A proposal for a non-flammable, fluorine-free, CO2-based mixture as a low TEWI refrigerant. International Journal of Refrigeration, 158, 157-163.

Experimental results on a chiller using a CO2-DME mixture. International Journal of Refrigeration (in publication).