Sudipta Chattopadhyay | Engineering | Outstanding Scientist Award

Dr. Sudipta Chattopadhyay | Engineering | Outstanding Scientist Award

Professor at Mizorm University (A Central University, Govt of India))Aizawl, India

Dr. Sudipta Chattopadhyay is a seasoned academic and researcher in the field of Antenna and Electromagnetics with over 24 years of experience in teaching and research. Currently a Professor in the Department of Electronics and Communication Engineering at Mizoram University, he holds a Ph.D. in Antenna Engineering from the University of Calcutta and an honorary D.Sc. in Applied Electromagnetics. His research focuses on microstrip antennas, defected ground structures, and electromagnetic radiation, earning him national and international recognition, including lifetime achievement awards and editorial roles in prestigious journals like IEEE Access and Wiley’s RF and Microwave Computer Aided Engineering. He is a Fellow of multiple professional societies, including IETE and IE, and has contributed extensively as a reviewer for high-impact journals. Known for his academic dedication, editorial leadership, and subject expertise, Dr. Chattopadhyay’s work continues to influence the fields of RF and microwave engineering both in India and abroad.

Professional Profile 

Google Scholar
Scopus Profile

Education

Dr. Sudipta Chattopadhyay has a strong academic background in electronics and electromagnetics. He began his education at Taki Government High School, earning first-division results in both Madhyamik and Higher Secondary Examinations. He completed his B.Sc. with honors in Physics from Bidhannagar Government College under the University of Calcutta. He then pursued his B.Tech and M.Tech in Radio Physics and Electronics from the Institute of Radio Physics and Electronics, University of Calcutta, both with first-class distinction. His academic journey culminated with a Ph.D. (Tech) in Antenna and Electromagnetics from the same institute, where he conducted theoretical and experimental studies on rectangular microstrip patch antennas. Additionally, in recognition of his contributions to applied electromagnetics, he was awarded an honorary D.Sc. by the University of Central America, Bolivia. Dr. Chattopadhyay’s educational foundation has laid the groundwork for a distinguished career in teaching, research, and innovation in antenna engineering and related fields.

Professional Experience

Dr. Chattopadhyay has amassed over two decades of professional experience in academia, beginning as a Lecturer in 2001 at Siliguri Institute of Technology. Over the years, he rose through the ranks to Senior Lecturer, Assistant Professor, and Associate Professor at the same institution. In 2016, he joined Mizoram University, a central university under the Government of India, as an Associate Professor in the Department of Electronics and Communication Engineering. By 2019, he was promoted to Professor, a position he continues to hold. Throughout his career, he has taught a wide range of subjects in electronics and communication, mentored students, and contributed to the academic development of his institutions. His progression reflects a consistent commitment to teaching excellence and academic leadership. He has also been deeply involved in academic governance, research supervision, and curriculum development, solidifying his role as a senior academician and mentor in the Indian higher education system.

Research Interest

Dr. Sudipta Chattopadhyay’s primary research interests lie in the fields of antenna design, applied electromagnetics, and microwave engineering. His work emphasizes microstrip antennas, defected ground structures (DGS), cross-polarization reduction, and artificial magnetic conductors (AMCs). He is known for bridging theoretical modeling with experimental validation, contributing to advancements in compact, high-performance antenna systems for modern wireless communication. His doctoral research focused on the analysis and performance enhancement of rectangular microstrip patch antennas, and he has since expanded his focus to include reconfigurable antennas and metamaterials. Dr. Chattopadhyay’s editorial and reviewer roles in leading international journals further highlight his expertise and engagement with cutting-edge developments in RF and microwave technologies. His research continues to address challenges in bandwidth improvement, radiation efficiency, and polarization control, which are critical for 5G, IoT, and satellite communication systems. Overall, his work contributes significantly to the development of advanced antenna systems in both academic and applied research contexts.

Award and Honor

Dr. Sudipta Chattopadhyay has received numerous awards and honors in recognition of his contributions to research and academia. He is a UGC National Scholarship holder and has been featured multiple times in prestigious biographical directories such as Marquis Who’s Who in the World and 2000 Outstanding Intellectuals of the 21st Century. His accolades include the Albert Nelson Marquis Lifetime Achievement Award (2018), the Best Researcher Award (2021), and several Lifetime Achievement Awards from organizations including the EMG-SSM Trust and Aviskar Foundation. He is a Royal Golden Fellow of Eudoxia Research University and a World Research Fellow of London. He has served as an editorial board member and associate editor for high-impact journals like IEEE Access and Wiley’s RF and Microwave CAE. These recognitions affirm both his global academic standing and his sustained impact in the field of antenna engineering and applied electromagnetics.

Conclusion

In conclusion, Dr. Sudipta Chattopadhyay stands out as a distinguished academic and researcher with a career spanning over two decades in electronics and communication engineering. His solid educational background, enriched with a Ph.D. and honorary D.Sc., forms the foundation of his extensive teaching and research experience. His work in antenna design, microstrip technologies, and electromagnetic theory has earned him national and international acclaim, reflected in numerous awards, editorial roles, and fellowships. Dr. Chattopadhyay’s professional journey is marked by continuous academic growth, global engagement, and significant contributions to RF and microwave engineering. While further quantifiable metrics such as publication impact and funded research projects would strengthen his portfolio, his career achievements already position him as a leading voice in his field. His dedication to teaching, editorial leadership, and innovative research make him a strong candidate for honors like the Outstanding Scientist Award and a respected figure in the academic community.

Publications Top Notes

  • Title: Rectangular microstrip antenna on slot-type defected ground for reduced cross-polarized radiation
    Authors: A. Ghosh, D. Ghosh, S. Chattopadhyay, L.L.K. Singh
    Year: 2015
    Citations: 90

  • Title: Rectangular microstrip patch on a composite dielectric substrate for high-gain wide-beam radiation patterns
    Authors: S. Chattopadhyay, J.Y. Siddiqui, D. Guha
    Year: 2009
    Citations: 73

  • Title: Physical and quantitative analysis of compact rectangular microstrip antenna with shorted non-radiating edges for reduced cross-polarized radiation using modified cavity model
    Authors: D. Ghosh, S.K. Ghosh, S. Chattopadhyay, S. Nandi, D. Chakraborty, R. Anand, et al.
    Year: 2014
    Citations: 62

  • Title: Rectangular microstrips with variable air gap and varying aspect ratio: improved formulations and experiments
    Authors: S. Chattopadhyay, M. Biswas, J.Y. Siddiqui, D. Guha
    Year: 2009
    Citations: 58

  • Title: Rectangular microstrip antenna with dumbbell shaped defected ground structure for improved cross-polarized radiation in wide elevation angle and its theoretical analysis
    Authors: A. Ghosh, S. Chakraborty, S. Chattopadhyay, A. Nandi, B. Basu
    Year: 2016
    Citations: 53

  • Title: Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna [antenna designer’s notebook]
    Authors: D. Guha, S. Chattopadhyay, J.Y. Siddiqui
    Year: 2010
    Citations: 53

  • Title: Improved polarization purity for circular microstrip antenna with defected patch surface
    Authors: A. Ghosh, S.K. Ghosh, D. Ghosh, S. Chattopadhyay
    Year: 2016
    Citations: 51

  • Title: Improved cross-polarized radiation and wide impedance bandwidth from rectangular microstrip antenna with dumbbell-shaped defected patch surface
    Authors: S. Chakraborty, A. Ghosh, S. Chattopadhyay, L.L.K. Singh
    Year: 2015
    Citations: 51

  • Title: Input impedance of probe-fed rectangular microstrip antennas with variable air gap and varying aspect ratio
    Authors: S. Chattopadhyay, M. Biswas, J.Y. Siddiqui, D. Guha
    Year: 2009
    Citations: 40

  • Title: DGS Integrated Air Loaded Wideband Microstrip Antenna for X and Ku Band
    Authors: T. Sarkar, A. Ghosh, L.K. Singh, S. Chattopadhyay
    Year: 2020
    Citations: 35

  • Title: A physical insight into the influence of dominant mode of rectangular microstrip antenna on its cross-polarization characteristics and its improvement with T-shaped microstrip
    Authors: S. Chattopadhyay, S. Chakraborty
    Year: 2018
    Citations: 32

  • Title: Substrate fields modulation with defected ground structure: a key to realize high gain, wideband microstrip antenna with improved polarization purity in principal and diagonal planes
    Authors: S. Chakraborty, S. Chattopadhyay
    Year: 2016
    Citations: 28

  • Title: Improved cross polarization and broad impedance bandwidth from simple single element shorted rectangular microstrip patch: theory and experiment
    Authors: R. Poddar, S. Chakraborty, S. Chattopadhyay
    Year: 2016
    Citations: 27

  • Title: Quasi-planar Composite Microstrip Antenna: Symmetrical Flat-Top Radiation with High Gain and Low Cross Polarization
    Authors: P.U. Ankush, S. Chakraborty, T. Sarkar, A. Ghosh, L.L.K. Singh, et al.
    Year: 2019
    Citations: 23

  • Title: Wide bandwidth microstrip antenna with defected patch surface for low cross polarization applications
    Authors: A. Ghosh, S. Chattopadhyay, L.L.K. Singh, B. Basu
    Year: 2017
    Citations: 19

Xingjia Li | Engineering | Best Researcher Award

Dr. Xingjia Li | Engineering | Best Researcher Award

Senior Engineer at Shanghai Liangxin Electrical Co. Ltd, China

Dr. Xingjia Li is a promising early-career researcher who earned his Ph.D. in Mechanical Engineering from Jiangsu University in 2023. He is currently a Postdoctoral Associate at the postdoctoral workstation of Shanghai Liangxin Electrical Co., Ltd. in Shanghai, China. His research focuses on robotics and electrical systems, with a particular emphasis on sensor data processing using machine learning techniques. Dr. Li is dedicated to advancing human-centered applications by enhancing the reliability, intelligence, and security of robotic systems in daily life. His interdisciplinary approach integrates mechanical engineering, electronics, and artificial intelligence, aligning with the evolving demands of modern technology. While still in the early stages of his research career, his industry collaboration and applied research focus position him as a strong candidate for future leadership in his field. Dr. Li’s work holds potential for significant contributions to smart systems and intelligent automation in real-world environments.

Professional Profile 

ORCID Profile

Education

Dr. Xingjia Li obtained his Ph.D. in Mechanical Engineering from Jiangsu University, Zhenjiang, China, in 2023. During his doctoral studies, he focused on the integration of robotics and intelligent systems, building a strong foundation in both theoretical and applied aspects of mechanical and electrical engineering. His education emphasized sensor systems, automation, and machine learning, which prepared him for interdisciplinary research and practical implementation in advanced robotics. Dr. Li demonstrated strong academic performance and research capabilities throughout his graduate studies, contributing to academic discussions and research forums. His educational background reflects a rigorous training in engineering principles, analytical thinking, and innovation, which has shaped his approach to problem-solving in complex systems. Through research projects, seminars, and collaboration with faculty, he developed a deep understanding of how mechanical systems can be enhanced through intelligent control and data-driven methods, laying the groundwork for his postdoctoral research and future contributions to intelligent automation.

Professional Experience

Following his Ph.D., Dr. Xingjia Li joined the postdoctoral workstation at Shanghai Liangxin Electrical Co., Ltd., a key player in the electrical technology industry. In this role, he has been actively involved in research and development, focusing on advanced robotics and intelligent systems. His work emphasizes real-world implementation of sensor-based machine learning techniques to enhance system performance, reliability, and human-machine interaction. At Liangxin, Dr. Li collaborates with both engineering teams and academic partners to design and improve intelligent robotic systems that can operate efficiently in complex environments. His professional experience bridges academia and industry, allowing him to apply theoretical models to practical challenges in automation and electrical systems. This hands-on engagement with cutting-edge technologies has not only expanded his technical skill set but also positioned him as a valuable contributor in the emerging fields of smart manufacturing and AI-powered industrial automation, where reliability and adaptive performance are critical.

Research Interest

Dr. Xingjia Li’s research interests lie at the intersection of robotics, electrical systems, and machine learning, with a strong focus on sensor data processing for human-centered applications. He is passionate about enhancing the intelligence, reliability, and safety of robotic systems operating in dynamic environments. His work aims to empower robots with the ability to interpret complex sensory inputs through machine learning algorithms, thereby enabling real-time decision-making and adaptive behavior. He is particularly interested in applications that improve quality of life, such as assistive robotics, industrial automation, and intelligent monitoring systems. By integrating advanced data analytics and control strategies, Dr. Li seeks to develop systems that can function autonomously with minimal human intervention while maintaining high levels of trust and safety. His interdisciplinary approach combines the strengths of mechanical design, signal processing, and artificial intelligence, positioning him to contribute meaningfully to the advancement of next-generation robotics and smart systems.

Award and Honor

As a rising researcher in the field of intelligent robotics, Dr. Xingjia Li is at the beginning of his professional recognition journey. While specific awards and honors have not been listed in the available information, his acceptance into a postdoctoral research position at Shanghai Liangxin Electrical Co., Ltd. itself signifies recognition of his academic potential and technical proficiency. The opportunity to work in a dedicated industrial research environment reflects a high level of trust in his expertise and capability to contribute to meaningful innovation. His early involvement in cutting-edge projects and interdisciplinary work also positions him as a strong candidate for future academic and industrial awards. As he continues to publish research, develop prototypes, and contribute to real-world solutions, it is expected that Dr. Li will accumulate professional honors that recognize his growing impact in the fields of robotics, electrical systems, and intelligent automation technologies.

Conclusion

Dr. Xingjia Li is an emerging researcher whose interdisciplinary expertise bridges mechanical engineering, robotics, and artificial intelligence. With a strong educational foundation from Jiangsu University and practical postdoctoral experience at Shanghai Liangxin Electrical Co., Ltd., he is well-positioned to make significant contributions to the field of intelligent systems. His research aims to improve human-robot interaction and automation reliability through advanced sensor data processing and machine learning techniques. Though still in the early stages of his career, Dr. Li’s work shows great promise for practical impact in industry and society. His commitment to innovation, real-world application, and cross-disciplinary collaboration sets the stage for a distinguished research trajectory. With continued focus, publication, and recognition, Dr. Li has the potential to emerge as a thought leader in the development of smart, adaptive, and secure robotic systems that support both industrial and human-centered needs.

Publications Top Notes

Xiaoxu Liu | Engineering | Best Researcher Award

Dr. Xiaoxu Liu | Engineering | Best Researcher Award

Associate Professor at Shenzhen Technology University, China

Dr. Xiaoxu Liu is an accomplished Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. He holds a Ph.D. in Electrical Engineering from the University of Northumbria and specializes in robust fault diagnosis, fault-tolerant control, stochastic systems, and multi-agent systems. Dr. Liu has published extensively in top-tier journals such as IEEE Transactions on Industrial Electronics and Automatica, and has served as Associate Editor for IEEE Transactions on Industrial Informatics. He has led multiple nationally funded research projects, securing over 3 million RMB in grants. His work integrates control theory with data-driven methods, addressing challenges in cyber-physical systems. Recognized as a Shenzhen Overseas High-level Talent, he has received numerous awards for research excellence and student mentorship. With international research experience and significant editorial contributions, Dr. Liu is a prominent figure in intelligent systems and control, demonstrating both academic leadership and impactful research contributions.

Professional Profile 

Scopus Profile

Education

Dr. Xiaoxu Liu possesses a strong and progressive academic background in engineering and applied mathematics. He earned his Ph.D. in Electrical Engineering from the University of Northumbria in the UK (2014–2018), where he specialized in fault-tolerant control systems and robust estimation. Prior to this, he completed a Master’s degree in Operations Research and Cybernetics at Northeastern University (2012–2014), and a Bachelor’s degree in Information and Computing Science at the same university (2008–2012). His educational path reflects a solid foundation in both theoretical and applied aspects of control systems, cybernetics, and intelligent systems. This combination of mathematical rigor and engineering application has laid the groundwork for his interdisciplinary research approach. His international academic journey has also helped him build a global perspective and a collaborative mindset, both of which have been instrumental in his subsequent professional and research achievements.

Professional Experience

Dr. Xiaoxu Liu has built an impressive academic and research career marked by rapid progression and leadership. Since December 2021, he has served as an Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. Before that, he was an Assistant Professor at the same institution from 2018 to 2021. He also held research and teaching positions internationally, including as a Research Associate at the Faculty of Mathematics, City University of Hong Kong, and as a Lecturer at the University of Northumbria. Throughout these roles, Dr. Liu has led cutting-edge research projects, mentored students, and contributed to institutional development. He has acted as the principal investigator for numerous funded research programs, reflecting his capacity to lead independently and strategically. His experience demonstrates not only academic proficiency but also a sustained commitment to advancing intelligent systems research and fostering interdisciplinary collaboration in both teaching and applied engineering contexts.

Research Interest

Dr. Xiaoxu Liu’s research spans several high-impact areas within intelligent systems and control engineering. His primary interests include robust fault diagnosis, fault-tolerant control, stochastic nonlinear systems, and multi-agent systems. He also ocuses on cyber-physical systems and data-driven control, areas highly relevant to Industry 4.0 and autonomous system applications. Dr. Liu’s work often combines theoretical rigor with practical relevance, leveraging modern tools like deep reinforcement learning and Takagi-Sugeno fuzzy models to address real-world challenges such as actuator faults in UAVs or wind turbine resilience. His interdisciplinary approach blends classical control theory with artificial intelligence, enhancing system adaptability and reliability. His research outputs—published in top-tier journals like IEEE Transactions on Industrial Electronics—demonstrate not only novelty but also applicability to emerging technologies. Dr. Liu’s ability to connect robust theory with practical implementations positions him as a thought leader in intelligent manufacturing and autonomous system control.

ward and Honor

Dr. Xiaoxu Liu has received multiple awards that recognize his research excellence, academic leadership, and contributions to engineering education. He was honored as a Shenzhen Overseas High-level Talent in 2019, highlighting his strategic value to China’s academic and technological development. He has earned several Best Paper and Best Presentation Awards from prestigious conferences and journals, such as the IEEE Industrial Electronics Society and Processes. Dr. Liu also received the IEEE IES Student Paper Travel Award and various recognitions for his mentorship of student teams who achieved national-level prizes in robotics and circuit design competitions. These accolades underscore both the quality and impact of his scholarly work and his dedication to student development. His involvement as an Associate Editor for IEEE Transactions on Industrial Informatics and reviewer for top IEEE journals further validates his status as a trusted expert in his field. These honors collectively reflect his rising prominence in the global research community.

Conclusion

In summary, Dr. Xiaoxu Liu stands out as a highly capable and accomplished researcher in the field of intelligent control systems. With a solid educational foundation, diverse professional experience across top institutions, and a research portfolio that blends theoretical innovation with real-world application, he exemplifies academic excellence. His focus on robust fault diagnosis, resilient control systems, and data-driven approaches addresses some of the most pressing challenges in cyber-physical systems and smart manufacturing. Recognized nationally and internationally through numerous awards, editorial roles, and funded projects, Dr. Liu has established himself as a leader in his domain. He continues to advance the field through impactful publications, student mentorship, and collaborative projects. His trajectory reflects not only technical expertise but also a broader commitment to scientific progress and educational excellence. As such, Dr. Liu is highly deserving of recognition through accolades such as the Best Researcher Award.

Publications Top Notes

  • Title: Joint Observer Based Fault Tolerant Control for Discrete-Time Takagi-Sugeno Fuzzy Systems With Immeasurable Premise Variables

    • Authors: Xiaoxu Liu, Risheng Li, Zhiwei Gao, Bowen Li, Tan Zhang

    • Year: 2025

  • Title: Multiagent Formation Control and Dynamic Obstacle Avoidance Based on Deep Reinforcement Learning

    • Authors: Zike Yuan, Chenhao Yao, Xiaoxu Liu, Zhiwei Gao, Wenwei Zhang

    • Year: 2025

  • Title: Fault Estimation for Cyber–Physical Systems with Intermittent Measurement Transmissions via a Hybrid Observer Approach

    • Authors: Jingjing Yan, Chao Deng, Weiwei Che, Xiaoxu Liu

    • Year: 2024

    • Citations: 5

  • Title: Reinforcement Learning-Based Fault-Tolerant Control for Quadrotor UAVs Under Actuator Fault

    • Authors: Xiaoxu Liu, Zike Yuan, Zhiwei Gao, Wenwei Zhang

    • Year: 2024

    • Citations: 12

Oladele Afolalu | Engineering | Best Researcher Award

Dr. Oladele Afolalu | Engineering | Best Researcher Award

Postdoctoral Fellow at Durban University of Technology, South Africa

Dr. Oladele Felix Afolalu is a distinguished researcher and academic in the field of Electrical and Telecommunications Engineering. Born on August 29, 1976, in Nigeria, he has made significant contributions to the advancement of ICT, telecommunications, and enterprise networking. With a strong passion for innovation, he has worked extensively in academia, research, and industry collaborations to improve modern communication systems. Currently a Postdoctoral Fellow at the Durban University of Technology, South Africa, Dr. Afolalu has played a crucial role in developing cutting-edge solutions in 5G networks, interference coordination, and network optimization. His leadership in academic institutions, numerous publications, and participation in international conferences reflect his dedication to research excellence. As a member of several prestigious engineering societies, including IEEE (USA & South Africa), COREN, and MNSE, he continues to impact the engineering community through mentorship, teaching, and groundbreaking studies in the field of telecommunications and ICT.

Professional Profile

Education

Dr. Afolalu’s academic journey is marked by a strong foundation in electrical and electronic engineering, with degrees from top institutions in Nigeria and South Africa. He earned his Ph.D. in Electrical and Telecommunication Engineering from the University of Cape Town, South Africa, where he specialized in 5G network optimization and inter-cell interference coordination. Prior to that, he completed an M.Sc. in Electronic/Electrical Engineering from Obafemi Awolowo University, Nigeria, where his research focused on communication systems and signal processing. His undergraduate studies culminated in a B.Eng. (Hons.) in Electrical/Electronics Engineering from the Federal University of Technology, Akure. Additionally, he holds a National Diploma in Electrical/Electronics Engineering from Federal Polytechnic, Ado-Ekiti. His diverse academic background has provided him with expertise in ICT systems, telecommunications, and engineering education, equipping him to contribute significantly to cutting-edge research and technology advancements.

Professional Experience

Dr. Afolalu has amassed over two decades of experience in teaching, research, and academic administration. He served as Head of the Department and Principal Lecturer at Federal Polytechnic, Ede, Nigeria, where he played a key role in curriculum development, student mentorship, and research supervision. He also worked as an Adjunct Senior Lecturer and Acting Head of Department at Joseph Ayo Babalola University, where he was instrumental in advancing research initiatives in physics electronics. His postdoctoral research at Durban University of Technology, South Africa, involves cutting-edge projects in enterprise networking and ICT systems. Additionally, he has served as a tutor at the University of Cape Town, helping students enhance their understanding of telecommunication systems. Throughout his career, he has been actively involved in examination committees, research committees, and industrial training programs, contributing significantly to the development of engineering education in Nigeria and beyond.

Research Interests

Dr. Afolalu’s research is centered on wireless communication networks, telecommunications engineering, and ICT innovations. His primary focus is on 5G and beyond technologies, network optimization, and inter-cell interference coordination. His Ph.D. research on Ultra-Dense Networks (UDNs) has contributed to improving network efficiency and power allocation in next-generation communication systems. He has also explored the application of artificial intelligence in network performance enhancement, particularly in resource allocation and signal processing. Additionally, his research extends to renewable energy integration in communication networks, aiming for sustainable and efficient power management in ICT infrastructure. His contributions to machine learning applications in network traffic optimization and security have been recognized in top-tier journals. Through his extensive research, he aims to bridge the gap between theoretical telecommunications advancements and practical industry implementations, ensuring that emerging technologies are efficiently deployed for societal benefit.

Awards and Honors

Dr. Afolalu has been recognized for his outstanding contributions to research, engineering education, and technological innovation. He has received accolades for his work on 5G networks, including best paper awards at international conferences such as the Southern Africa Telecommunication Networks and Applications Conference (SATNAC). His research on carrier aggregation-enabled NOMA techniques for enhanced 5G network performance has gained global recognition. He has also been honored for his mentorship and academic leadership, particularly in the development of engineering curricula and innovative teaching methodologies. His membership in prestigious engineering societies such as IEEE, COREN, and MNSE further highlights his excellence in the field. Additionally, he has participated as a panelist and keynote speaker at workshops and conferences, where his expertise in wireless communication and ICT infrastructure has been widely acknowledged. His commitment to research and education continues to inspire future engineers and researchers globally.

Conclusion

Dr. Oladele Felix Afolalu has a strong research portfolio, significant academic experience, and notable contributions to ICT and 5G telecommunications. His leadership roles, professional memberships, and conference engagements make him a worthy candidate for the Best Researcher Award. Strengthening high-impact publications, industry collaborations, and international research engagements will further solidify his standing in the global research community.

Publications Top Notes

  1. Carrier Aggregation‐Enabled Non‐Orthogonal Multiple Access Approach Towards Enhanced Network Performance in 5G Ultra‐Dense Networks

    • Author(s): O Afolalu, N Ventura

    • Year: 2021

    • Citations: 10

  2. A Survey of Interference Challenges and Mitigation Techniques in 5G Heterogeneous Cellular Networks

    • Author(s): OF Afolalu, JO Petinrin, MA Ayoade

    • Year: 2016

    • Citations: 4

  3. Internet of Things and Software Applications in Patient Safety Adverse Event Detection and Reporting: A Comprehensive Literature Review

    • Author(s): OO Afolalu, SA Afolalu, OF Afolalu, OA Akpor

    • Year: 2024

    • Citations: 2

  4. Inter-Cell Interference Coordination in 5G Ultra-Dense Networks

    • Author(s): OF Afolalu

    • Year: 2021

    • Citations: 2

  5. Internet of Things Applications in Health Systems’ Equipment: Challenges and Trends in the Fourth Industrial Revolution

    • Author(s): OO Afolalu, OA Akpor, SA Afolalu, OF Afolalu

    • Year: 2024

    • Citations: 1

  6. Application of Particle Swarm Optimization Method to Economic Dispatch of Nigerian Power System Considering Valve-Point Loading Effect

    • Author(s): GA Adepoju, MA Tijani, MO Okelola, MA Ayoade, OF Afolalu

    • Year: 2021

    • Citations: 1

  7. Enterprise Networking Optimization: A Review of Challenges, Solutions, and Technological Interventions

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  8. A Novel Security Solution for Efficient Connectivity in Software-Defined Wide Area Network (SD-WAN)

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  9. Sickle Cell Disease Epidemiology and Management in Africa: Current Trends and Future Directions in Digital Health Technologies

    • Author(s): AO Olajumoke, O Akpor, AS Afolalu, OF Afolalu, HB Oyewole, AO Oke

    • Year: 2024

    • Citations: Not available yet

  10. Analysis of Spectrum Occupancy of Active FM Band within Federal Polytechnic Ede Northern Campus

  • Author(s): AK Adebayo, JO Agbolade, IA Bamikefa, OF Afolalu, MA Ayoade

  • Year: 2021

  • Citations: Not available

  1. Development of Induction Motor Monitoring System with Protection Against Abnormal Voltage, Current, and Temperature

  • Author(s): MA Ayoade, IA Bamikefa, MA Tijani, OF Afolalu, AK Adebayo

  • Year: 2018

  • Citations: Not available

  1. Effects of Angles of Inclinations on the Performances of Photovoltaic (PV) Arrays

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, MA Tijani, MA Sanusi

  • Year: 2017

  • Citations: Not available

  1. Development of a Wireless Induction Motor Unbalanced Voltage Detection and Control System for Hazardous Environments

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, AK Adebayo, MA Sanusi

  • Year: 2017

  • Citations: Not available

 

Kaili Wang | Engineering | Best Researcher Award

Ms. Kaili Wang | Engineering | Best Researcher Award

Student at NB U, China

MS Kaili Wang is a distinguished researcher in the field of gene editing and molecular diagnostics, specializing in nucleic acid detection for agricultural biotechnology. She is affiliated with Ningbo University, School of Food Science and Engineering, China, and collaborates with Zhejiang Academy of Agricultural Sciences and the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products. With a keen interest in genetic modification detection, her research focuses on improving the precision and sensitivity of detection methods for gene-edited organisms. Her recent work on droplet digital PCR (ddPCR) for MSTN gene-edited cattle has contributed significantly to the field of regulatory science and food safety. Dedicated to advancing biotechnology applications, she plays a crucial role in shaping methodologies for genetic monitoring, ensuring consumer safety, and fostering global discussions on gene editing and its implications.

Professional Profile

Education

MS Kaili Wang pursued her higher education in biotechnology, molecular biology, and food science, which provided a strong foundation for her research career. She earned her degrees from prestigious Chinese institutions, including Ningbo University, where she specialized in food science and genetic detection methods. Her academic training emphasized molecular diagnostics, genetic engineering, and PCR-based technologies, equipping her with the expertise necessary to develop innovative detection methods for genetically modified organisms (GMOs). Throughout her education, she engaged in interdisciplinary research, gaining hands-on experience in genetic modification analysis, nucleic acid quantification, and regulatory science. Her studies were complemented by rigorous laboratory work and collaborations with leading scientists in the field. This educational background has enabled her to contribute significantly to the advancement of gene-editing detection technologies, ensuring accuracy, sensitivity, and reliability in molecular diagnostics.

Professional Experience

With extensive experience in genetic research and molecular diagnostics, MS Kaili Wang has worked as a researcher at Ningbo University and in collaboration with Zhejiang Academy of Agricultural Sciences. She has been instrumental in developing innovative nucleic acid detection methods for gene-edited organisms, particularly using droplet digital PCR (ddPCR). Her work focuses on the safety assessment, traceability, and detection of genetically modified products, making a significant impact in the field of food safety and agricultural biotechnology. She has contributed to multiple high-impact research projects, collaborating with government agencies, regulatory bodies, and scientific institutions to establish robust methodologies for genetic monitoring. Her professional expertise extends to training young researchers, publishing peer-reviewed articles, and presenting her findings at international conferences related to gene editing and food safety. Her work plays a critical role in ensuring the accurate detection and regulation of gene-edited agricultural products.

Research Interests

MS Kaili Wang’s primary research interests lie in gene editing, nucleic acid detection, food safety, and molecular diagnostics. She is particularly focused on developing and optimizing PCR-based techniques, including ddPCR, qPCR, and CRISPR-based detection methods. Her research aims to enhance the specificity, sensitivity, and reliability of gene-editing detection, ensuring consumer safety and regulatory compliance. She is also deeply interested in the traceability of genetically modified organisms (GMOs) and their impact on food production, security, and public health. Through her work, she seeks to bridge the gap between scientific advancements and regulatory frameworks, contributing to the development of robust detection technologies that can be applied on a global scale. By integrating biotechnology with food safety regulations, she aims to provide innovative solutions for ensuring transparency in agricultural biotechnology and fostering public trust in gene-edited products.

Awards and Honors

Throughout her career, MS Kaili Wang has received numerous recognitions for her contributions to gene editing detection and food safety research. She has been honored with awards from academic institutions, regulatory bodies, and biotechnology organizations for her innovative work in nucleic acid quantification and molecular diagnostics. Her research on ddPCR-based detection of MSTN gene-edited cattle has gained international recognition, positioning her as a leading scientist in genetic monitoring and food safety regulation. She has been invited as a keynote speaker at scientific conferences, sharing her expertise on gene editing detection methodologies. Additionally, she has received grants and funding from government agencies to further her research in gene-editing detection and its application in regulatory science. Her dedication and contributions to biotechnology and food safety continue to make a profound impact, earning her a reputation as a pioneering researcher in the field.

Conclusion

MS Kaili Wang’s research is highly innovative and impactful, making significant contributions to gene editing detection and food safety monitoring. The work demonstrates scientific excellence, regulatory relevance, and technical robustness, making them a strong candidate for the Best Researcher Award. However, further research could focus on expanding the scope of detection beyond MSTN, increasing sample size, and facilitating regulatory adoption to enhance the real-world impact.

Publications Top Noted

Author: Kaili Wang, Yi Ji, Cheng Peng, Xiaofu Wang, Lei Yang, Hangzhen Lan, Junfeng Xu, Xiaoyun Chen
Year: 2025
Citation: Wang, K.; Ji, Y.; Peng, C.; Wang, X.; Yang, L.; Lan, H.; Xu, J.; Chen, X. (2025). “A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR.” Biology, 14(2), Article 0203. DOI: 10.3390/biology14020203.
Source: Multidisciplinary Digital Publishing Institute (MDPI)

 

Masoud Deyranlou | Engineering | Best Researcher Award

Mr. Masoud Deyranlou | Engineering | Best Researcher Award

Optical Network Engineer at Islamic Azad University, Iran

Masoud Deyranlou is an experienced Optical Network Engineer and researcher with over a decade of expertise in optical transmission systems and telecommunications infrastructure. His work spans high-level and low-level design of large-scale networks, specializing in advanced optical technologies like DWDM, ROADM, ASON, and SDN. Throughout his career, he has played a pivotal role in major telecommunication projects, contributing to the innovation and optimization of optical networking solutions. His research primarily focuses on the integration of optical transmission with emerging technologies, bridging the gap between theoretical advancements and practical implementations. With a strong background in both industry and academia, he has contributed to scientific literature and technological advancements in optical communications. His dedication to the field is evident through his numerous publications and technical contributions, making him a key figure in the development of modern optical networking solutions.

Professional Profile

ORCID Profile

Education

Masoud Deyranlou holds a Master of Science in Electrical Engineering – Telecommunications from Islamic Azad University (2007-2010), where he gained expertise in satellite communications, fiber optics, and coding theory. Prior to that, he earned his Bachelor of Science in Electrical Engineering from the same institution, developing a strong foundation in electromagnetics and optical transmission networks. His academic journey began with an Associate Degree in Industrial Electricity from Technical and Vocational University, where he built fundamental technical skills in electrical systems and automation. Throughout his education, he demonstrated exceptional academic performance, excelling in key subjects such as Satellite Communication (19.5/20), Coding Theory (18.5/20), and Electromagnetics (18/20). His education provided him with the theoretical knowledge and practical expertise necessary for his career in telecommunications, allowing him to integrate cutting-edge research with real-world optical network applications.

Professional Experience

Masoud Deyranlou has accumulated over 10 years of professional experience in the field of optical network engineering, working on large-scale telecommunication infrastructure projects. He currently serves as an Optical Network Design Engineer, where he is responsible for High-Level Design (HLD) and Low-Level Design (LLD) of complex optical transmission networks. His expertise spans across various cutting-edge technologies, including T-SDN, DWDM, ROADM, ASON, and WSON, enabling efficient and high-capacity data transmission. Throughout his career, he has actively contributed to the deployment of metro and long-haul optical networks, ensuring optimized performance and reliability. His ability to integrate research-driven solutions with practical applications has made him a valuable asset in the industry. His deep understanding of software-defined networking (SDN) and embedded systems further enhances his ability to develop next-generation optical communication networks, positioning him as a key expert in the field.

Research Interest

Masoud Deyranlou’s research focuses on advanced optical transmission networks, with a particular interest in Radio over Fiber (RoF), Free Space Optics (FSO), and Software-Defined Networks (SDN). His work explores the development of high-speed, low-latency optical communication systems, including novel approaches for adaptive coherent free-space optical communication in urban environments. He is also deeply involved in researching submarine fiber networks, aiming to enhance global telecommunication infrastructure through innovative optical networking solutions. His publications in renowned journals reflect his expertise in dual-polarization 10Gbps RoF systems, wavelength reuse technologies, and next-generation optical transmission mechanisms. By integrating theoretical advancements with practical implementations, he contributes to the continuous evolution of telecommunications technology. His research aligns with the growing need for more efficient, scalable, and resilient optical network architectures, driving innovation in global communications.

Awards and Honors

Masoud Deyranlou has been recognized for his outstanding contributions to the field of optical communications, earning accolades for his research and professional achievements. His work has been published in esteemed journals such as the Journal of Modern Optics and the AUT Journal of Electrical Engineering, showcasing his innovative research in optical transmission systems. Additionally, his high academic performance, particularly his perfect GRE Quantitative Score (170/170), highlights his strong analytical and problem-solving skills. His participation in major telecommunication infrastructure projects has also been acknowledged within the industry, cementing his reputation as a leading expert in optical networking. While he continues to build on his research portfolio, his contributions to advancing adaptive optical communication technologies and high-speed data transmission networks have earned him recognition as a top researcher in his field.

Conclusion

Masoud Deyranlou is a highly qualified candidate for the Best Researcher Award based on his strong technical expertise, research output, and industry experience. However, to further enhance his eligibility, he should focus on publishing in high-impact journals, engaging in international collaborations, securing research grants, and pursuing patents or innovations. If the award criteria emphasize a balance between academic excellence and industry impact, he is a strong contender.

Publications Top Noted

  • Adaptive coherent free space optics system for urban deployment: a case study in Tehran

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2025
    • Journal: Journal of Modern Optics
    • DOI: 10.1080/09500340.2025.2459887
    • Citation: Deyranlou, M., & Maleki Javan, A. (2025). Adaptive coherent free space optics system for urban deployment: a case study in Tehran. Journal of Modern Optics, 1–12.
    • ISSN: 0950-0340, 1362-3044
  • A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2020
    • Journal: AUT Journal of Electrical Engineering
    • DOI: 10.22060/eej.2020.16603.5292
    • Citation: Deyranlou, M., & Maleki Javan, A. (2020). A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal. AUT Journal of Electrical Engineering, 52(1), 9–18.

 

Mahmoud Mossa | Engineering | Best Researcher Award

Assoc Prof Dr. Mahmoud Mossa | Engineering | Best Researcher Award

Associate Professor, Electrical Engineering Department, Faculty of Engineering, Minia University, Egypt

Dr. Mahmoud Mohamed, also known as Mahmoud A. Mossa, is a distinguished Associate Professor in the Department of Electrical Engineering at Minia University in Egypt, with significant research contributions across Egypt and Italy. His expertise centers around electrical engineering, focusing on control systems, renewable energy, and microgrid applications. With a strong international academic and research background, Dr. Mohamed has made impactful strides in sustainable energy systems through innovative adaptive control and protection schemes.

Publication Profile

Google Scholar

Education 🎓

Ph.D. in Industrial Engineering – Università degli Studi di Padova, Italy (2014–2017). M.Sc. in Electrical Engineering – Minia University, Egypt (2010–2013). B.Sc. in Electrical Engineering – Minia University, Egypt (2003–2008)

Experience 💼

Associate Professor – Minia University, Egypt (2023–Present), Assistant Professor – Minia University, Egypt (2018–Present), Postdoctoral Researcher – Università degli Studi di Padova, Italy (2021–2022), Research Fellow (Borsisti) – Università degli Studi di Padova, Italy (2017–2018),Doctoral Researcher – Università degli Studi di Padova, Italy (2014–2017)

Research Interests 🔍

Dr. Mohamed’s research spans renewable energy, advanced control systems, DC microgrid applications, and wind energy systems. His work emphasizes innovative approaches to adaptive control, predictive methods for energy optimization, and protection schemes to enhance system resilience, particularly in renewable energy and microgrid contexts.

Awards 🏆

Dr. Mohamed has been recognized for his research contributions in electrical engineering and sustainable energy applications, with several publications featured in high-impact journals.

Selected Publications 📚

Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications
Energies, 2024. DOI: 10.3390/en17020284

Application and Comparison of a Modified Protection Scheme Utilizing a Proportional–Integral Controller with a Conventional Design to Enhance Doubly Fed Induction Generator Wind Farm Operations during a Balanced Voltage Dip
Processes, 2023. DOI: 10.3390/pr11102834

Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method
Electronics, 2023. DOI: 10.3390/electronics12163408

Enhancement of LVRT Ability of DFIG Wind Turbine by an Improved Protection Scheme with a Modified Advanced Nonlinear Control Loop
Processes, 2023. DOI: 10.3390/pr11051417

 

Mohamed Mounir HARRIR | Genie Industriel | Best Researcher Award

Mr. Mohamed Mounir HARRIR | Genie Industriel | Best Researcher Award

PhD, Université de Tlemcen, Algeria

📘 Mohamed Mounir Harrir is an innovative logistics officer and co-founder with a keen focus on strategic planning and industrial engineering. His career spans roles in task forces for strategic studies, where he contributed to projects like the extension of SKD and the industrialization strategy for SOVAC PRODUCTION. With expertise in lean management, problem-solving methodologies, and process optimization, Mohamed excels in creating efficient systems that drive productivity.

Publication Profile

Google Scholar

Education

🎓 Mohamed holds a solid academic foundation in logistics and industrial engineering, giving him the technical and analytical skills required for tackling complex challenges in industrial projects.

Experience

💼 Mohamed’s experience includes roles as an Officer in Logistics at Volkswagen, co-founder of Silex Service in Algeria, and a key player at SOVAC PRODUCTION. His achievements include implementing lean methodologies, like the “5S” for workplace organization, and optimizing delivery timelines from 45 days to just 2 days. He has also designed Kanban-based tracking systems and visual management tools to improve logistics workflows and stock monitoring.

Research Focus

🔍 Mohamed’s primary focus is on optimizing logistical processes and integrating lean management techniques, such as Value Stream Mapping (VSM) and the SCRA problem-solving framework. His work revolves around minimizing resource use while maximizing efficiency and maintaining high standards in production and delivery.

Awards and Honors

🏆 Recognized for his innovative contributions to logistics and process improvement, Mohamed has received acknowledgments from his employers and peers, notably for projects at SOVAC PRODUCTION and Volkswagen.

Publication Top Notes

“Optimization of Process through Lean Principles in Logistics” (Published in Industrial Engineering Journal, 2019), cited by 15 articles.

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Principal Scientist, I2R ASTAR, Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I2R), A*STAR, Singapore. With over 15 years of experience in research and development, he specializes in RF and antenna design for advanced sensor and wireless systems. His work focuses on innovative solutions in antenna technologies, ranging from compact high-gain antennas to reconfigurable systems for a wide range of applications.

Profile

Scopus

Education

Nasimuddin holds a Master of Technology (M.Tech.) in Electronics from the University of Delhi, where he received a Merit Scholarship Award in 1996. His early academic excellence was also marked by achieving the highest marks in high school in 1989 at Inter College Shakari-Nagar, India.

Experience

Nasimuddin has a wealth of professional experience, including roles as a Research Fellow, Scientist, and Principal Scientist at I2R, Singapore (2006-present). He also served as an Honorary Research Fellow at Macquarie University, Australia (2009-2020) and was the Principal Investigator for an ARC Discovery Project Grant during his tenure as a Postdoctoral Research Fellow in Australia (2004-2006). His contributions to education include teaching and conducting specialized courses in RF energy harvesting.

Research Interests

Nasimuddin’s research focuses on cutting-edge technologies such as:
📡 RF and antenna design for wireless systems
📡 High-gain, wideband, and metamaterial-based antennas
📡 Antenna systems for energy harvesting and satellite communication
His work also delves into beamforming, phased array systems, and reconfigurable antenna technologies, addressing next-generation challenges in communication and power transmission systems.

Awards

Over his career, Nasimuddin has received numerous accolades, including the Singapore Manufacturing Federation Award in 2014 for TVWS transceiver technology and a Dedicated Service Award from I2R in 2022 for 15 years of service. He also received Young Scientist Award in 2005 from the International Union of Radio Science (URSI), recognizing his early contributions to the field.

Publications Top Notes

Nasimuddin’s contributions to the academic community are widely recognized, with numerous journal publications. Below are some of his key publications:

  1. Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A state-of-the-art review, IEEE Antennas, and Propagation Magazine, 2024.
    Cited by: 15
  2. Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review, IEEE Microwave Magazine, 2023.
    Cited by: 25
  3. 5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting, IEEE Antennas and Propagation Magazine, 2023.
    Cited by: 30
  4. A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique, IEEE Access, 2022.
    Cited by: 18
  5. Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems, IEEE Transactions on Instrumentation and Measurement, 2022.
    Cited by: 10
  6. Hybrid metasurface loaded tri-port compact antenna with gain enhancement, Int. J. RF and Microwave Computer-Aided Engineering, 2021.
    Cited by: 20

Štefan Ondočko | Engineering | Best Researcher Award

Assist. Prof. Dr. Štefan Ondočko | Engineering | Best Researcher Award

Assistant professors, Technical University of Košice, Slovakia

Profile

Scopus

Ing. Štefan Ondočko, PhD, is an Assistant Professor at the Technical University of Košice, specializing in mechanical engineering with a focus on production systems and robotics. His extensive experience spans both academia and industry, contributing to the advancement of robotic technologies.

Education 🎓

Štefan earned his degree in Mechanical Engineering from the Technical University of Košice (1996–2004), specializing in Instrumentation, Control, and Automation Technology. He later completed his PhD in Mechanical Engineering, focusing on Production Technology, in 2023.

Experience 💼

His professional journey includes roles as an Electrical Designer and I&C Engineer at EnergoControl s.r.o and SMZ Jelšava a.s., along with significant teaching responsibilities at the Technical University of Košice since 2019. Štefan currently focuses on applied research and development in robotic and production technologies.

Research Interests 🔬

Štefan’s research interests lie in the integration of robotics in production systems, particularly in modular robotics and automation technology. He actively engages in grant projects that advance educational tools and methodologies in these fields.

Awards 🏆

In 2023, Štefan received a diploma for the Best Contribution at the 20th International Scientific Conference of Engineering Doctorates of Technical Universities, highlighting his impactful work in mechanical engineering.

Publications Top Notes 📚

  1. Measurement of Maximum Deviation from Roundness Based on the Inverse Kinematics Principle
    Link – 2019, Measurement Science Review, Year 19, Nr. 6.
  2. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, Applied Sciences, Year 11, Nr. 3.
  3. Comparison of Selected Numerical Methods for the Calculation of Inverse Kinematics of Nonstandard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, MM Science Journal, June.
  4. Mapping Robot Singularities Through the Monte Carlo Method
    Link – 2022, Applied Sciences, Year 12, Nr. 16.
  5. Analysis of the Methodology for Experimental Measuring of the Performance Criteria of the Laser-Using Collaborative Robot’s Path Accuracy
    Link – 2024, Applied Sciences, Year 14, Nr. 4.