Ms. Kaili Wang | Engineering | Best Researcher Award
Student at NB U, China
MS Kaili Wang is a distinguished researcher in the field of gene editing and molecular diagnostics, specializing in nucleic acid detection for agricultural biotechnology. She is affiliated with Ningbo University, School of Food Science and Engineering, China, and collaborates with Zhejiang Academy of Agricultural Sciences and the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products. With a keen interest in genetic modification detection, her research focuses on improving the precision and sensitivity of detection methods for gene-edited organisms. Her recent work on droplet digital PCR (ddPCR) for MSTN gene-edited cattle has contributed significantly to the field of regulatory science and food safety. Dedicated to advancing biotechnology applications, she plays a crucial role in shaping methodologies for genetic monitoring, ensuring consumer safety, and fostering global discussions on gene editing and its implications.
Professional Profile
Education
MS Kaili Wang pursued her higher education in biotechnology, molecular biology, and food science, which provided a strong foundation for her research career. She earned her degrees from prestigious Chinese institutions, including Ningbo University, where she specialized in food science and genetic detection methods. Her academic training emphasized molecular diagnostics, genetic engineering, and PCR-based technologies, equipping her with the expertise necessary to develop innovative detection methods for genetically modified organisms (GMOs). Throughout her education, she engaged in interdisciplinary research, gaining hands-on experience in genetic modification analysis, nucleic acid quantification, and regulatory science. Her studies were complemented by rigorous laboratory work and collaborations with leading scientists in the field. This educational background has enabled her to contribute significantly to the advancement of gene-editing detection technologies, ensuring accuracy, sensitivity, and reliability in molecular diagnostics.
Professional Experience
With extensive experience in genetic research and molecular diagnostics, MS Kaili Wang has worked as a researcher at Ningbo University and in collaboration with Zhejiang Academy of Agricultural Sciences. She has been instrumental in developing innovative nucleic acid detection methods for gene-edited organisms, particularly using droplet digital PCR (ddPCR). Her work focuses on the safety assessment, traceability, and detection of genetically modified products, making a significant impact in the field of food safety and agricultural biotechnology. She has contributed to multiple high-impact research projects, collaborating with government agencies, regulatory bodies, and scientific institutions to establish robust methodologies for genetic monitoring. Her professional expertise extends to training young researchers, publishing peer-reviewed articles, and presenting her findings at international conferences related to gene editing and food safety. Her work plays a critical role in ensuring the accurate detection and regulation of gene-edited agricultural products.
Research Interests
MS Kaili Wangβs primary research interests lie in gene editing, nucleic acid detection, food safety, and molecular diagnostics. She is particularly focused on developing and optimizing PCR-based techniques, including ddPCR, qPCR, and CRISPR-based detection methods. Her research aims to enhance the specificity, sensitivity, and reliability of gene-editing detection, ensuring consumer safety and regulatory compliance. She is also deeply interested in the traceability of genetically modified organisms (GMOs) and their impact on food production, security, and public health. Through her work, she seeks to bridge the gap between scientific advancements and regulatory frameworks, contributing to the development of robust detection technologies that can be applied on a global scale. By integrating biotechnology with food safety regulations, she aims to provide innovative solutions for ensuring transparency in agricultural biotechnology and fostering public trust in gene-edited products.
Awards and Honors
Throughout her career, MS Kaili Wang has received numerous recognitions for her contributions to gene editing detection and food safety research. She has been honored with awards from academic institutions, regulatory bodies, and biotechnology organizations for her innovative work in nucleic acid quantification and molecular diagnostics. Her research on ddPCR-based detection of MSTN gene-edited cattle has gained international recognition, positioning her as a leading scientist in genetic monitoring and food safety regulation. She has been invited as a keynote speaker at scientific conferences, sharing her expertise on gene editing detection methodologies. Additionally, she has received grants and funding from government agencies to further her research in gene-editing detection and its application in regulatory science. Her dedication and contributions to biotechnology and food safety continue to make a profound impact, earning her a reputation as a pioneering researcher in the field.
Conclusion
MS Kaili Wangβs research is highly innovative and impactful, making significant contributions to gene editing detection and food safety monitoring. The work demonstrates scientific excellence, regulatory relevance, and technical robustness, making them a strong candidate for the Best Researcher Award. However, further research could focus on expanding the scope of detection beyond MSTN, increasing sample size, and facilitating regulatory adoption to enhance the real-world impact.
Publications Top Noted
Author: Kaili Wang, Yi Ji, Cheng Peng, Xiaofu Wang, Lei Yang, Hangzhen Lan, Junfeng Xu, Xiaoyun Chen
Year: 2025
Citation: Wang, K.; Ji, Y.; Peng, C.; Wang, X.; Yang, L.; Lan, H.; Xu, J.; Chen, X. (2025). βA Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR.β Biology, 14(2), Article 0203. DOI: 10.3390/biology14020203.
Source: Multidisciplinary Digital Publishing Institute (MDPI)