Chang Soo Kim | Engineering | Best Researcher Award

Prof. Chang Soo Kim | Engineering | Best Researcher Award

Professor | Pukyong National University | South Korea

Professor. Chang Soo Kim is a distinguished Full Professor in the Division of Computer and AI Engineering at PuKyong National University, recognized for his expertise in intelligent manufacturing systems, artificial intelligence, and computational optimization. He holds advanced degrees in computer science with specialization in AI-driven optimization and machine learning, forming the foundation for his multidisciplinary research career. Throughout his long-standing academic tenure, he has served in key leadership roles including department chair, graduate program administrator, research center director, and executive leader for university–industry cooperation, successfully guiding large-scale projects, fostering collaborative innovation, and advancing strategic academic initiatives. His research focuses on flexible job shop scheduling, deep learning–based fault diagnosis, time-series forecasting, metaheuristic optimization, and smart industrial systems. He has produced an extensive portfolio of influential publications in high-impact SCI-indexed journals, contributing novel hybrid algorithms, trainable fusion strategies, adaptive scheduling frameworks, lightweight diagnostic models, and intelligent computational methods that support the evolution of smart manufacturing and data-driven engineering. His scholarly achievements have earned him multiple recognitions, including awards for research excellence, and he actively contributes to the global academic community through editorial service, participation in professional societies, and engagement in scientific committees. With a sustained record of innovative research, academic leadership, and impactful contributions to computer and AI engineering, Professor Chang Soo Kim exemplifies the qualities of a leading researcher whose work continues to influence both industry and academia.

Profiles:  Scopus

Featured Publications

1. Kim, C. S., et al. (2025). Flexible job shop scheduling optimization with multiple criteria using a hybrid metaheuristic framework. Processes.

2. Kim, C. S., et al. (2025). Multi-branch global Transformer-assisted network for fault diagnosis. Applied Soft Computing.

3. Kim, C. S., et al. (2025). DL-MSCNN: A general and lightweight framework for fault diagnosis with limited training samples. Journal of Intelligent Manufacturing.

4. Kim, C. S., et al. (2025). Enhanced quantum-based DNA sequence alignment with noise handling and error detection. IEEE Access.

5. Kim, C. S., et al. (2024). GAILS: An effective multi-object job shop scheduler based on genetic algorithm and iterative local search. Scientific Reports.

Professor Chang Soo Kim’s pioneering research in intelligent manufacturing, AI-driven optimization, and fault diagnosis advances the scientific foundations of smart industry while enabling more efficient, reliable, and data-driven production systems. His innovative computational frameworks and adaptive algorithms contribute directly to industrial digital transformation, fostering technological competitiveness and sustainable global innovation.

Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Assist. Prof. Dr. Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Faculty Member | Payame Noor University | Iran

Assist. Prof. Dr. Sayyid Ali Banihashemi, Associate Professor in the Department of Industrial Engineering at Payame Noor University, is a recognized scholar specializing in project scheduling, data envelopment analysis, supply chain management, and organizational agility. He holds advanced degrees in industrial engineering with a concentration in operations research and performance evaluation, complemented by rigorous training in quantitative decision-making. His professional experience includes leading academic programs, supervising research initiatives, and contributing to major analytical and optimization projects that support organizational and operational improvement. Dr. Banihashemi’s research portfolio encompasses influential publications, high-impact citations, and methodological advancements that have shaped contemporary practices in project planning efficiency, productivity assessment, and supply chain performance. His scholarly contributions are further reflected in editorial responsibilities for reputable journals, memberships in distinguished professional societies, and certifications in advanced analytical methods. Widely cited and respected in his field, he has earned multiple recognitions for research excellence, academic service, and contributions to the industrial engineering community, establishing him as a dedicated leader committed to advancing theory and practice in operations and performance management.

Profiles: Google Scholar

Featured Publications

1. Dahmardeh, N., & Banihashemi, S. A. (2010). Organizational agility and agile manufacturing. European Journal of Economics, Finance and Administrative Sciences, 27, 178–184.

2. Banihashemi, S. A. (2011). The role of communication to improve organizational process. European Journal of Humanities and Social Sciences, 1(1), 13–24.

3. Banihashemi, S. A., Khalilzadeh, M., Shahraki, A., Malkhalifeh, M. R. M., & others. (2020). Optimization of environmental impacts of construction projects: A time–cost–quality trade-off approach. International Journal of Environmental Science and Technology, 1–16.

4. Banihashemi, S. A., & Khalilzadeh, M. (2021). Time-cost-quality–environmental impact trade-off resource-constrained project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 28(7), 1979–2004.

5. Banihashemi, S. A., Khalilzadeh, M., Antucheviciene, J., & Edalatpanah, S. A. (2023). Identifying and prioritizing the challenges and obstacles of green supply chain management in the construction industry using the fuzzy BWM method. Buildings, 13(1), 38.

Dr. Sayyid Ali Banihashemi’s work advances scientific and industrial practice by integrating optimization, sustainability, and performance evaluation to improve project delivery and supply chain systems. His research supports data-driven decision-making that enhances organizational efficiency, reduces environmental impacts, and strengthens the resilience and agility of modern industries.

Ivett Greta Zsak | Engineering | Best Researcher Award

Ms. Ivett Greta Zsak | Engineering | Best Researcher Award

Ivett Greta Zsak | Technical University of Cluj-Napoca | Romania

Ms. Ivett-Gréta Zsák is an accomplished architect, lecturer, and PhD candidate with a strong focus on sustainable architecture, heritage preservation, and adaptive design. She has developed innovative frameworks, notably the Building Identity Passport for prefabricated housing rehabilitation, reflecting a unique integration of health, community engagement, and building performance. Her work demonstrates a balance between academic rigor and practical implementation, including coordinating heritage interventions and contributing to national architectural guidelines. She has actively participated in international conferences, showcasing thought leadership and fostering cross-cultural collaboration. Her technical proficiency in BIM, AutoCAD, and participatory design tools enhances her research’s practical impact, while her multilingual skills allow effective engagement in diverse academic environments. Recognized with multiple architecture awards, Ms. Zsák exemplifies a researcher whose work bridges theory and practice. Her research is measurable in Scopus, with 2 documents cited by 11 sources and an h-index of 2, demonstrating both productivity and scholarly influence.

Profile: Scopus | ORCID

Featured Publications

1. C. Savu, A.-H. Pescaru, I.-G. Zsak, A.-M. Durgheu, A.-P. Frent, N.-S. Suba, A. S. Buda, and S. Nistor, “Analysis on Using 3D Scanning and BIM to Reduce the Physical and Non-Physical Construction Waste for Sustainable Fireproofing of Steel Trusses,” Sustainability, Feb. 2024.

2. G. I. Zsak, “Ghiduri de arhitectură pentru încadrarea în specificul local din mediul rural,” The Order of Architects of Romania, Mar. 2020.

3. G. I. Zsak, “Regeneration of the industrial heritage in the central area of Oradea,” Materials Science and Engineering, vol. 603, Sep. 2019.

Salem Batiyah | Engineering | Best Researcher Award

Dr. Salem Batiyah | Engineering | Best Researcher Award

Assistant Professor at Yanbu Industrial College, Saudi Arabia

Dr. Salem Mohammed Batiyah is a dedicated researcher in electrical engineering with strong contributions to distributed energy resources, microgrids, and advanced control systems. His work is published in respected journals such as IEEE Access and Energies, covering both theoretical and applied aspects of renewable energy systems. He has an active role as a reviewer for top-tier journals, reflecting recognition by the global research community. In addition to his research, Dr. Batiyah demonstrates academic leadership through curriculum development, teaching, and quality assurance roles. While his citation metrics and absence of major research grants suggest areas for growth, his ongoing publication record and technical expertise indicate a solid foundation for future impact. Strengthening international collaborations and securing research funding will further enhance his research profile. Overall, Dr. Batiyah is a strong candidate for the Best Researcher Award, especially in domains valuing practical innovation and contributions to sustainable energy and smart grid development

Professional Profile 

Google Scholar

Strengths for the Award

Dr. Salem Mohammed Batiyah presents a strong and relevant research portfolio in modern electrical engineering fields, particularly in distributed energy resources (DERs), microgrids, hybrid power plants, and advanced control systems. His work addresses high-impact areas such as renewable energy integration, predictive control, and fault-tolerant power electronics, which are central to global energy transition goals.

He has authored multiple peer-reviewed journal and conference papers, with publications in well-regarded outlets such as IEEE Access and Energies. These include both novel technical contributions and comprehensive reviews, suggesting breadth and depth. His global engagement as a reviewer for prestigious journals such as IEEE Transactions on Industrial Informatics and IEEE JESTIE reflects his standing in the academic community.

Additionally, Dr. Batiyah combines research with active academic and administrative leadership, curriculum development, and extensive teaching in power systems and control engineering. This integration of research and teaching enhances his impact and dissemination of knowledge.

Education

Dr. Salem Mohammed Batiyah holds a Ph.D. in Electrical Engineering from Mississippi State University, where he specialized in power management and control systems for renewable energy applications. He earned his M.Sc. and B.Sc. degrees in Electrical Engineering from Western Michigan University. His graduate studies focused on distributed energy resources, microgrid integration, and model predictive control systems. Throughout his academic journey, Dr. Batiyah developed a solid foundation in both theoretical and practical aspects of power systems, signal processing, and advanced control techniques. His educational background is complemented by professional certifications, including Lean Six Sigma and OSHA safety training, demonstrating his commitment to quality and operational excellence. Dr. Batiyah’s education has prepared him to address real-world engineering challenges in sustainable energy and has laid the groundwork for a research-oriented academic career. His academic experience is characterized by interdisciplinary training and international exposure, enhancing his perspective in solving complex energy system problems.

Experience

Dr. Salem Batiyah brings a wealth of academic and professional experience to the field of electrical engineering. Since 2020, he has been serving as an Assistant Professor at Yanbu Industrial College, where he has taught various undergraduate and associate courses in power electronics, control systems, and industrial electronics. He also worked as a Graduate Research Assistant at Mississippi State University from 2015 to 2020, engaging in research related to power management in renewable energy systems. His earlier academic experience includes working as a lecturer at Yanbu Industrial College from 2014 to 2020. Dr. Batiyah has held several administrative roles such as Department Curriculum Coordinator, Head of Curriculum and Development, and Academic Quality Coordinator. He is actively involved in multiple college and department-level committees, contributing to academic planning, program development, and quality assurance. His career reflects a blend of teaching, research, and leadership, all aimed at advancing engineering education and applied energy solutions.

Awards and Honors

Dr. Salem Batiyah has received multiple awards and honors recognizing his academic excellence and professional achievements. Notably, he was inducted into prestigious honor societies including Phi Kappa Phi, Gamma Beta Phi, and IEEE Eta Kappa Nu, reflecting high academic performance during his graduate and undergraduate studies. He was awarded the First Class Standing Award for Master of Science students and consistently made the Dean’s List during his undergraduate years. In 2023, his research output earned him 123 scholarly citations, with an h-index of 5 and an i10-index of 3, indicating growing recognition within the research community. Additionally, he holds professional certifications such as Black Belt in Lean Six Sigma and OSHA Safety Training, demonstrating his commitment to continuous professional development. His active participation in global academic organizations and contributions as a peer reviewer for multiple IEEE journals further validate his influence and leadership in the field of electrical and energy engineering.

Research Focus on Engineering

Dr. Salem Batiyah’s research centers around the modeling, analysis, and control of distributed energy resources (DERs), including solar photovoltaics and battery energy storage systems. His work addresses the integration of these resources into microgrids and hybrid power plants, with an emphasis on system reliability and efficiency. A key area of focus is the application of advanced control methods such as nonlinear, robust, and model predictive control (MPC) to optimize energy management under varying load and environmental conditions. Dr. Batiyah also explores advanced signal processing and phase-locked loops within DER systems, supporting grid stability and intelligent power conversion. His research aims to provide scalable and sustainable solutions to modern energy challenges, contributing to the global shift toward renewable and decentralized energy systems. Through peer-reviewed publications and academic collaborations, Dr. Batiyah is establishing himself as a forward-thinking researcher addressing critical challenges in the evolving energy landscape.

Publications Top Notes

  • Title: An MPC-based power management of standalone DC microgrid with energy storage
    Authors: S. Batiyah, R. Sharma, S. Abdelwahed, N. Zohrabi
    Year: 2020
    Citations: 111

  • Title: An MPC-based power management of a PV/battery system in an islanded DC microgrid
    Authors: S. Batiyah, N. Zohrabi, S. Abdelwahed, R. Sharma
    Year: 2018
    Citations: 36

  • Title: Single-phase fault tolerant multilevel inverter topologies—comprehensive review and novel comparative factors
    Authors: H. Rehman, M. Tariq, A. Sarwar, W. Alhosaini, M.A. Hossain, S.M. Batiyah
    Year: 2022
    Citations: 22

  • Title: Optimal control design of a voltage controller for stand-alone and grid-connected PV converter
    Authors: S. Batiyah, N. Zohrabi, S. Abdelwahed, T. Qunais, M. Mousa
    Year: 2018
    Citations: 17

  • Title: Predictive control of PV/battery system under load and environmental uncertainty
    Authors: S. Batiyah, R. Sharma, S. Abdelwahed, W. Alhosaini, O. Aldosari
    Year: 2022
    Citations: 15

  • Title: Performance evaluation of multiple machine learning models in predicting power generation for a grid-connected 300 MW solar farm
    Authors: O. Aldosari, S. Batiyah, M. Elbashir, W. Alhosaini, K. Nallaiyagounder
    Year: 2024
    Citations: 11

  • Title: Image-based partial discharge identification in high voltage cables using hybrid deep network
    Authors: O. Aldosari, M.A. Aldowsari, S.M. Batiyah, N. Kanagaraj
    Year: 2023
    Citations: 8

  • Title: Impact of variation of energy resources on voltage stability of a micro grid
    Authors: M.A. Mousa, S. Abdelwahed, S.M. Batiyah, T. Qunais
    Year: 2017
    Citations: 6

  • Title: Deep neural networks model for accurate photovoltaic parameter estimation under variable weather conditions
    Authors: S. Batiyah, A. Al-Subhi, O. Elsherbiny, O. Aldosari, M. Aldawsari
    Year: 2025

  • Title: Predictive control of standalone DC microgrid with energy storage under load and environmental uncertainty
    Author: S.M. Batiyah (Ph.D. Dissertation)
    Year: 2020

Conclusion

Dr. Salem Mohammed Batiyah exemplifies a rising leader in electrical and energy systems engineering, combining academic rigor with real-world impact. His research contributions, especially in renewable energy integration and intelligent control systems, align with global priorities for sustainability and innovation. His dual strengths in teaching and research, complemented by his service in academic development and international peer reviewing, position him as a multidimensional scholar. While his citation metrics and grant record indicate room for further growth, his upward trajectory and commitment to excellence are undeniable. Dr. Batiyah stands out as a promising candidate for recognition in the research community and is well on his way to becoming a major contributor to the field of smart and sustainable energy systems. With continued focus on high-impact collaboration and innovation, he is poised to make significant strides that benefit academia, industry, and the broader society.

Dr. Amir Hossein Poursaeed | Engineering | Best Researcher Award

Dr. Amir Hossein Poursaeed | Engineering | Best Researcher Award

Phd Candidate at University of Exeter, United Kingdom

Amir Hossein Poursaeed is an accomplished researcher in electrical engineering with a specialization in power systems, machine learning applications, and renewable energy integration. Holding a Master’s degree from Lorestan University, he has developed a strong academic foundation complemented by an exceptional research portfolio. His work focuses on power system protection, stability, and optimization using advanced AI techniques such as explainable deep learning and quantum neural networks. With over 17 peer-reviewed journal publications, many in Q1 journals, and multiple IEEE conference contributions, his research demonstrates both depth and innovation. He collaborates with leading academics internationally and has contributed to interdisciplinary studies in environmental modeling and water resource management. Amir’s commitment to cutting-edge research in inverter-based power grids, fault diagnosis, and energy systems places him among the promising young scholars in the field. His achievements reflect a rare blend of technical expertise, research leadership, and forward-looking vision essential for shaping the future of smart grids.

Professional Profile 

Google Scholar
ORCID Profile 

Education

Amir Hossein Poursaeed has a solid educational background in electrical engineering with a focus on power systems. He earned his Master of Science degree from Lorestan University, Iran, where he specialized in Digital Power System Protection and Power System Dynamics. His M.Sc. thesis, supervised by Professor Farhad Namdari, focused on using Support Vector Machines for wide-area protection against voltage and transient instabilities. He previously obtained his Bachelor of Science in Electrical Engineering from the same university, where he explored the optimal placement of phasor measurement units using metaheuristic algorithms. His academic performance was commendable, with a GPA of 18.87/20 in his M.Sc. program, demonstrating both technical strength and research capability. Throughout his education, he consistently focused on high-voltage systems, optimization, and smart grid technologies, laying the foundation for his research in AI-based power system protection and stability. His educational journey highlights a continuous commitment to excellence and innovation in energy systems.

Professional Experience

Amir Hossein Poursaeed has developed a robust professional profile centered around advanced power system research and academic collaboration. While specific institutional roles aren’t explicitly mentioned, his extensive list of high-impact publications indicates active involvement in collaborative research projects, particularly with institutions such as Lorestan University and international partners. He has co-authored multiple studies with recognized scholars, including Professor Farhad Namdari and Dr. P.A. Crossley, highlighting his integration into the global research community. His contributions include the design of advanced fault detection systems, AI-driven stability analysis tools, and renewable energy integration models. Additionally, his work in inter-turn fault diagnosis and real-time system protection showcases applied engineering skills with a focus on practical solutions for modern grid challenges. His experience spans theoretical research, model development, and algorithm implementation in live or simulated systems, establishing him as a well-rounded researcher in academia and an emerging leader in AI-enabled power engineering technologies.

Research Interest

Amir Hossein Poursaeed’s research interests are rooted in the intersection of electrical power systems and artificial intelligence. His primary focus includes power system stability, digital protection systems, fault detection, and the integration of renewable energy sources. He is especially passionate about leveraging advanced machine learning and explainable AI techniques for enhancing grid reliability and system monitoring. His recent work involves deep learning, support vector machines, and quantum neural networks applied to inverter-based power systems and DC microgrids—fields gaining global relevance due to the rise of decentralized energy systems. Optimization algorithms, transient analysis, and wide-area protection schemes are other key domains of his expertise. He also extends his knowledge into environmental systems, working on AI-based models for water quality assessment. This multidisciplinary approach underlines his goal of developing intelligent, robust, and real-time frameworks for smart grid operations, making his research both innovative and impactful in addressing contemporary and future challenges in energy systems.

Award and Honor

Although specific awards and honors are not listed, Amir Hossein Poursaeed’s academic and research accomplishments position him as a candidate deserving of high recognition. His publication record in prestigious Q1 journals, such as Applied Soft Computing, Energy Reports, and Sustainable Energy Technologies and Assessments, reflects scholarly excellence. His papers have introduced novel contributions to power system protection and AI-based monitoring, often co-authored with leading international experts—an indication of his growing reputation in the field. His research has also been accepted at major IEEE conferences, including the International Universities Power Engineering Conference and the International Conference on Electric Power and Energy Conversion Systems, which highlights peer recognition of his work. Moreover, his interdisciplinary research in water resource management using machine learning models demonstrates his versatility and impact beyond core power engineering. Given these achievements, he is highly deserving of academic awards, particularly those that celebrate emerging researchers and innovators in smart energy systems.

Conclusion

Amir Hossein Poursaeed is an emerging thought leader in the field of power systems and intelligent energy technologies. With a strong educational background and a research focus on AI-driven solutions for grid stability and protection, he has consistently demonstrated excellence in both theoretical innovation and practical application. His contributions span power engineering, machine learning, and even environmental sciences—showcasing his ability to bridge disciplines for impactful solutions. Through numerous high-impact publications and international conference engagements, he has established himself as a respected voice in the global research community. His work addresses critical challenges in inverter-based grids, renewable integration, and real-time monitoring, aligning perfectly with the global shift toward sustainable and resilient energy systems. Amir’s trajectory reflects not only technical brilliance but also research leadership, collaboration, and a vision for smarter, safer, and more efficient power systems. He is undoubtedly a strong candidate for honors such as the Best Researcher Award.

Publications Top Notes

  • Title: An Ultra-Fast Directional Protection Scheme for DC Microgrids Based on High-Order Synchrosqueezing Transform
    Authors: A.H. Poursaeed, F. Namdari
    Year: 2023
    Citations: 7

  • Title: Online Transient Stability Assessment Implementing the Weighted Least-Square Support Vector Machine with the Consideration of Protection Relays
    Authors: A.H. Poursaeed, F. Namdari
    Year: 2025
    Citations: 6

  • Title: A New Strategy for Prediction of Water Qualitative and Quantitative Parameters by Deep Learning-Based Models with Determination of Modelling Uncertainties
    Authors: M. Poursaeid, A.H. Poursaeed
    Year: 2024
    Citations: 6

  • Title: Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
    Authors: A.H. Poursaeed, F. Namdari
    Year: 2020
    Citations: 6

  • Title: High‐Speed Algorithm for Fault Detection and Location in DC Microgrids Based on a Novel Time–Frequency Analysis
    Authors: A.H. Poursaeed, F. Namdari
    Year: 2024
    Citations: 3

  • Title: Hydraulic Modeling of the Water Resources Using Learning Techniques
    Authors: M. Poursaeid, A.H. Poursaeed, S. Shabanlou
    Year: 2022
    Citations: 3

  • Title: Explainable AI-Driven Quantum Deep Neural Network for Fault Location in DC Microgrids
    Authors: A.H. Poursaeed, F. Namdari
    Year: 2025
    Citations: 2

  • Title: Simulation Using Machine Learning and Multiple Linear Regression in Hydraulic Engineering
    Authors: M. Poursaeid, A.H. Poursaeed, S. Shabanlou
    Year: 2023
    Citations: 2

  • Title: Optimized Explainable Tabular Transformer Model for Fault Localization in DC Microgrids
    Authors: A.H. Poursaeed, F. Namdari, P.A. Crossley
    Year: 2025
    Citations: 1

  • Title: Optimal Coordination of Directional Overcurrent Relays: A Fast and Precise Quadratically Constrained Quadratic Programming Solution Methodology
    Authors: A.H. Poursaeed, M. Doostizadeh, S. Hossein Beigi Fard, A.H. Baharvand, F. Namdari
    Year: 2024
    Citations: 1

Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Professor at University of Patras, Greece

Professor Vassilis Kostopoulos is a distinguished Greek academic in Mechanical Engineering, currently serving at the University of Patras. With a PhD in Applied Mechanics, he has built a prolific career specializing in composite materials, aerospace structures, non-destructive evaluation, and nano-engineering. He has published over 260 peer-reviewed journal papers, authored several books, and amassed more than 8,800 citations with an h-index of 48. As principal investigator in 85 international research projects funded by bodies like the EU, ESA, and NSF, he has made significant contributions to advanced materials and aerospace research. He has served on multiple European advisory bodies (ACARE, Clean Sky), editorial boards, and has supervised 34 PhD and 185 MSc theses. His work has earned international recognition through patents and awards, including the TRA VISIONS Senior Scientist Award. Widely respected for his innovation, mentorship, and research leadership, he exemplifies excellence in academic and applied engineering research.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile 

Education

Professor Vassilis Kostopoulos received his Diploma in Mechanical Engineering from the National Technical University of Athens in 1980. He later pursued a Ph.D. in Applied Mechanics at the University of Patras, completed in 1987, with a focus on wave propagation, scattering, and non-destructive testing of composite materials. His academic formation established a robust foundation in mechanics, materials science, and engineering physics. Over the years, he expanded his expertise through advanced training, collaborations, and international academic exposure. His educational background underpins his deep theoretical and applied understanding of composite materials and aerospace engineering. In addition to his own education, he has contributed extensively to the academic growth of students through comprehensive undergraduate and graduate-level teaching in subjects such as dynamics, elasticity, and thermomechanical behavior of advanced materials. His educational journey has continuously evolved in parallel with his research and teaching responsibilities, ensuring a solid, interdisciplinary academic foundation.

Professional Experience

Professor Kostopoulos holds a long-standing faculty position at the University of Patras, where he previously served as Director of the Applied Mechanics and Vibrations Laboratory. He has also held visiting positions at prestigious institutions, including JRC Petten in the Netherlands and, more recently, the University of Delaware and George Emil Palade University in Romania. Beyond academia, he has actively contributed to European aviation and aerospace research policy through roles with ACARE, Clean Sky, and Clean Aviation Joint Undertakings. He has been a national delegate and evaluator for several EU framework programs (FP6, FP7) and other international research agencies. His editorial and peer review responsibilities span over 60 international journals. These roles highlight his influence across both academic and policy-making spheres. As a mentor, advisor, evaluator, and leader in multi-institutional projects, Professor Kostopoulos has consistently demonstrated professional excellence and leadership, further reinforcing his global academic reputation in the field of mechanical and aerospace engineering.

Research Interest

Professor Kostopoulos’s research spans a wide array of cutting-edge engineering topics, primarily centered on composite materials and aerospace structures. His key interests include the design, optimization, and damage assessment of lightweight composite structures, with particular attention to fatigue, fracture, and high strain rate behavior. He is also deeply involved in non-destructive inspection and structural health monitoring, nano-augmentation of materials, anisotropic elasticity, and additive manufacturing. His work extends into space technologies, such as microsatellites, as well as UAVs and aeronautic applications. In recent years, he has ventured into biomechanics and bioengineering, focusing on implant design and fatigue in biomedical components. His interdisciplinary approach links advanced mechanics with real-world applications in aerospace, defense, and biomedical engineering. Notably, his integration of life cycle and cost analysis into material design reflects a forward-thinking approach. His comprehensive, problem-solving research focus continues to shape innovations in engineering science across multiple domains.

Award and Honor

Professor Kostopoulos has received numerous prestigious awards recognizing his innovation, mentorship, and scientific impact. Notably, he was honored with the 1st Senior Scientist Award at the TRA VISIONS 2020 Researcher Competition, a major European recognition in transport and aerospace research. In 2024, under his supervision, the UPOGEE student team won the Special Award in the ESA Student Aerospace Challenge. Other honors include the Communication Award and Innovation Award at ESA educational events and UK competitions, as well as high placements in international contests such as iGEM and the CubeSat Mission Contest in China. His influence in mentoring award-winning student teams underscores his commitment to academic development. Additionally, he holds 3 European, 1 U.S., and 7 national patents, further highlighting his innovative contributions. These accolades reflect his leadership in research, education, and industry collaboration, establishing him as a prominent figure in European and global engineering research communities.

Conclusion

In conclusion, Professor Vassilis Kostopoulos is an exemplary academic and researcher whose career embodies excellence in education, professional service, and scientific innovation. With over four decades of impactful research in composite materials and aerospace engineering, he has significantly advanced both the theoretical and applied aspects of the field. His extensive publication record, international collaborations, high-level policy engagement, and commitment to student mentorship make him a model of academic leadership. His work not only contributes to cutting-edge technologies in space, defense, and aviation but also addresses sustainability, cost-effectiveness, and health applications. Recognized globally through awards, patents, and editorial roles, he maintains a dynamic presence in the research community. As a result, he is not only a deserving candidate for high-level research awards but also a vital contributor to the future of engineering science. His legacy continues to inspire innovation, education, and international collaboration in multiple scientific domains.

Publications Top Notes

  • Title: Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe
    Authors: S. Attia, P. Eleftheriou, F. Xeni, R. Morlot, C. Ménézo, V. Kostopoulos, M. Betsi, …
    Year: 2017
    Citations: 378

  • Title: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes
    Authors: V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, A. Paipetis
    Year: 2010
    Citations: 361

  • Title: The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery
    Authors: T.H. Loutas, D. Roulias, E. Pauly, V. Kostopoulos
    Year: 2011
    Citations: 283

  • Title: Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes
    Authors: P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Paipetis
    Year: 2009
    Citations: 271

  • Title: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements
    Authors: T.H. Loutas, G. Sotiriades, I. Kalaitzoglou, V. Kostopoulos
    Year: 2009
    Citations: 230

  • Title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    Authors: G. Georgoulas, T. Loutas, C.D. Stylios, V. Kostopoulos
    Year: 2013
    Citations: 187

  • Title: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission
    Authors: V. Kostopoulos, T.H. Loutas, A. Kontsos, G. Sotiriadis, Y.Z. Pappas
    Year: 2003
    Citations: 161

  • Title: On the fatigue life prediction of CFRP laminates using the electrical resistance change method
    Authors: A. Vavouliotis, A. Paipetis, V. Kostopoulos
    Year: 2011
    Citations: 157

  • Title: Finite element analysis of impact damage response of composite motorcycle safety helmets
    Authors: V. Kostopoulos, Y.P. Markopoulos, G. Giannopoulos, D.E. Vlachos
    Year: 2002
    Citations: 151

  • Title: Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Health monitoring of carbon/carbon, woven reinforced composites: Damage assessment by using advanced signal processing techniques. Part II: Acousto-ultrasonics monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures
    Authors: A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, V. Kostopoulos
    Year: 2011
    Citations: 140

  • Title: Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms
    Authors: T.H. Loutas, V. Kostopoulos, C. Ramirez-Jimenez, M. Pharaoh
    Year: 2006
    Citations: 140

  • Title: Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements
    Authors: T.H. Loutas, A. Panopoulou, D. Roulias, V. Kostopoulos
    Year: 2012
    Citations: 135

  • Title: On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species
    Authors: C. Kostagiannakopoulou, T.H. Loutas, G. Sotiriadis, A. Markou, …
    Year: 2015
    Citations: 125

Velislava Lyubenova | Engineering | Best Researcher Award

Prof. Velislava Lyubenova | Engineering | Best Researcher Award

Academician at Bulgarian Academy of Science, Institute of Robotics, Bulgaria

Velislava Lyubenova is a distinguished Bulgarian researcher and professor with over 30 years of experience in biotechnological process control, mechatronics, and adaptive systems. She currently serves as the Head of the Mechatronic Bio/technological Systems Section at the Institute of Robotics, Bulgarian Academy of Sciences (BAS), and has held various academic and leadership roles across BAS institutions. She has led more than 10 national and international research projects, participated in numerous European programs, and supervised several PhD students. With over 200 scientific publications, many in high-impact journals, and invited lectures delivered at leading international institutions, she is widely recognized for her scientific contributions. Her expertise includes the development of innovative monitoring and control systems using tools like MATLAB and LABVIEW. An awardee of the “Marin Drinov” prize for young scientists, Lyubenova is also actively involved in academic governance, expert committees, and editorial boards, reflecting her deep commitment to scientific advancement and education.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Velislava Lyubenova holds a strong academic background in technical sciences and engineering. She earned her engineering degree in Radio Electronics from the Technical University of Sofia, followed by a Ph.D. in Automation with a dissertation focused on parameter estimation and biotechnological process monitoring. Her academic journey culminated with a Doctor of Technical Sciences degree from the Institute of System Engineering and Robotics (ISIR) at the Bulgarian Academy of Sciences (BAS), specializing in adaptive control and modeling of complex biotechnological systems. Her education blends deep technical knowledge with applied research capabilities, laying the foundation for a career in both theoretical and experimental domains. Her academic formation reflects a continuous pursuit of knowledge and specialization in interdisciplinary areas, preparing her to work across the fields of electronics, biotechnology, and control systems. This educational path has also enabled her to contribute to curriculum development and mentor future generations of researchers in her field.

Professional Experience

Professor Velislava Lyubenova has built a prolific career at the Bulgarian Academy of Sciences, progressing from a research fellow to a professor and head of department at the Institute of Robotics. Her early work in adaptive and robust control systems evolved into specialized research in bioengineering and mechatronic systems for biotechnology. She has served as Scientific Secretary at IR-BAS and has been a key figure in national expert commissions and scientific councils. Over her career, she has led and coordinated numerous national and international research projects, many involving cross-disciplinary collaboration. Her leadership roles include project management, supervision of PhD students, and delivery of advanced lecture courses. She also coordinates Erasmus programs and plays a pivotal role in academic exchange and cooperation. Her professional trajectory showcases a blend of scientific innovation, team leadership, and academic mentorship, making her a respected figure in both the Bulgarian and broader European research communities.

Research Interest

Velislava Lyubenova’s research is deeply rooted in the interdisciplinary fields of bioengineering, automation, and mechatronics. Her primary interest lies in the modeling, monitoring, and adaptive control of biotechnological processes, where she develops innovative methodologies to improve efficiency and reliability. She integrates control theory with practical applications using environments like MATLAB and LABVIEW, creating real-time monitoring systems that bridge theoretical concepts with industrial needs. Her work often addresses complex system dynamics in bioprocesses and seeks to optimize process performance through intelligent control algorithms. Additionally, she explores knowledge-based and adaptive systems that contribute to the advancement of next-generation biotechnological platforms. Her collaborative research also extends into European Union projects, educational initiatives, and technology transfer programs, reflecting a holistic approach to scientific inquiry. With a strong focus on experimental validation, her research continues to influence the development of advanced technologies in the fields of bioprocess engineering and industrial automation.

Award and Honor

Throughout her distinguished career, Velislava Lyubenova has received notable recognition for her contributions to science and research. A significant early milestone was her receipt of the “Marin Drinov” Young Scientist Award from the General Assembly of the Bulgarian Academy of Sciences in 1998—an honor bestowed upon promising researchers demonstrating exceptional scientific potential. She has also been invited to deliver over 15 specialized lectures at prestigious institutions abroad and six within Bulgaria, signifying her international recognition as a subject-matter expert. Her active involvement in over 30 international and national conferences further underscores her scientific engagement. Beyond individual accolades, her roles as a reviewer, jury member, editorial board member, and lecturer reflect a broader institutional and peer recognition of her expertise. These honors represent both her academic excellence and leadership in advancing science and education, and they demonstrate her lasting impact on the Bulgarian and global research landscape.

Conclusion

Velislava Lyubenova stands out as an accomplished and influential researcher in the fields of biotechnological systems and automation. Her extensive education, progressive professional experience, and leadership in multidisciplinary research projects position her as a key contributor to both national and international scientific advancement. Her ability to combine theoretical models with practical applications, mentor young scientists, and contribute to global academic forums speaks to her depth of expertise and dedication. She has earned peer and institutional recognition for her scientific work, making her a respected leader in her field. Her over 200 publications, contributions to prestigious journals, and active engagement in scientific committees demonstrate both productivity and academic integrity. With a strong foundation in research and innovation, and an enduring commitment to education and collaboration, Velislava Lyubenova is exceptionally well-qualified for honors such as the Best Researcher Award. Her career reflects a lifelong dedication to the pursuit of scientific excellence and societal impact.

Publications Top Notes

  • Title: Indirect adaptive linearizing control of a class of bioprocesses–Estimator tuning procedure
    Authors: MN Ignatova, VN Lyubenova, MR García, C Vilas, AA Alonso
    Year: 2008
    Citations: 31

  • Title: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process
    Authors: V Shopska, R Denkova, V Lyubenova, G Kostov
    Year: 2019
    Citations: 21

  • Title: Adaptive control of fed-batch process for poly-beta-hydroxybutyrate production by mixed culture
    Authors: M Ignatova, V Lyubenova
    Year: 2007
    Citations: 16

  • Title: Control of biotechnological processes-new formalization of kinetics: Theoretical aspects and applications
    Authors: M Ignatova, V Lyubenova
    Year: 2011
    Citations: 15

  • Title: Model-based monitoring of biotechnological processes—a review
    Authors: V Lyubenova, G Kostov, R Denkova-Kostova
    Year: 2021
    Citations: 12

  • Title: Adaptive control of the Simultaneous Saccharification—Fermentation Process from Starch to Ethanol
    Authors: S Ochoa, V Lyubenova, JU Repke, M Ignatova, G Wozny
    Year: 2008
    Citations: 12

  • Title: An efficient hybrid of an ant lion optimizer and genetic algorithm for a model parameter identification problem
    Authors: O Roeva, D Zoteva, G Roeva, V Lyubenova
    Year: 2023
    Citations: 11

  • Title: Control of one stage bio ethanol production by recombinant strain
    Authors: V Lyubenova, S Ochoa, J Repke, M Ignatova, G Wozny
    Year: 2007
    Citations: 11

  • Title: Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm
    Authors: O Roeva, D Zoteva, V Lyubenova
    Year: 2021
    Citations: 10

  • Title: Reaction rate estimators of fed-batch process for poly-β-hydroxybutyrate (PHB) production by mixed culture
    Authors: V Lyubenova, M Ignatova, M Novak, T Patarinska
    Year: 2007
    Citations: 10

  • Title: Dynamics Monitoring of Fed-batch E. coli Fermentation
    Authors: A Zlatkova, V Lyubenova
    Year: 2017
    Citations: 8

  • Title: Encapsulation of brewing yeast in alginate/chitosan matrix: Kinetic characteristics of the fermentation process at a constant fermentation temperature
    Authors: I Petelkov, V Lyubenova, A Zlatkova, V Shopska, R Denkova, M Kaneva, …
    Year: 2016
    Citations: 8

  • Title: On-line estimation in a distributed parameter bioreactor: Application to the Gluconic Acid production
    Authors: MR García, C Vilas, E Balsa-Canto, VN Lyubenova, MN Ignatova, …
    Year: 2011
    Citations: 8

  • Title: Metaheuristic algorithms: theory and applications
    Authors: S Ribagin, V Lyubenova
    Year: 2021
    Citations: 7

  • Title: CASCADE SENSOR FOR MONITORING OF DENITRIFICATION IN ACTIVATED SLUDGE WASTEWATER TREATMENT PROCESS
    Authors: V Lyubenova, M Ignatova
    Year: 2011
    Citations: 7

Shekhar Suman | Engineering | Young Scientist Award

Dr. Shekhar Suman | Engineering | Young Scientist Award

Research Scientist at Borah University of Texas at Tyler, United States

Dr. Shekhar Suman Borah is a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. He holds a Ph.D. in Electronics & Communication Engineering from IIIT Guwahati, with a strong academic foundation in Analog VLSI Design, Memristors, and Signal Processing. His prolific research output includes over 25 publications in reputed journals and conferences, four book chapters, and editorial and peer-review contributions to leading journals. Dr. Borah has also secured research funding for AI-based hardware-software systems and contributed to projects at Bhabha Atomic Research Centre. His work spans advanced circuit design, environmental sensing, and precision agriculture using UAVs. He has delivered invited talks and participated in international conferences across India, the USA, and Japan. A committed IEEE member, Dr. Borah combines technical excellence with interdisciplinary collaboration, positioning him as a promising candidate for awards recognizing young scientific talent.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Shekhar Suman Borah has a strong academic foundation in electronics and communication engineering. He earned his Ph.D. from the Indian Institute of Information Technology (IIIT) Guwahati in 2022, where he specialized in analog signal processing and current-mode circuit design. Prior to this, he completed his M.Tech with First Class from KIIT University, Bhubaneswar, and his B.E. from Visvesvaraya Technological University, Karnataka, also with First Class honors. His academic journey reflects a consistent focus on electronics, signal processing, and circuit design, particularly in analog VLSI systems. During his doctoral studies, he developed expertise in the use of memristors, current-mode building blocks, and oscillator/filter design, forming the basis for much of his later research. His educational trajectory demonstrates both depth and specialization, equipping him with the technical proficiency and theoretical grounding necessary for advanced research and innovation in modern electronics and intelligent systems.

Professional Experience

Dr. Borah currently serves as a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. Previously, he was a Research Associate at the Bhabha Atomic Research Centre (BARC), Mumbai, contributing to projects in the Radiation Safety Systems Division. He has over five years of academic teaching assistance experience in labs related to analog VLSI, communication systems, and integrated circuits. His role in grant-funded projects—particularly an AI-based tutoring tool for hardware-software co-design—underscores his engagement in interdisciplinary research. He has collaborated with several international researchers and contributed to publications across areas such as memristive circuits, environmental sensing, UAV applications, and edge computing. His growing leadership in research, combined with a solid background in academic and national research institutions, marks him as a well-rounded scientist with both applied and theoretical expertise across diverse sectors in electronics and intelligent system design.

Research Interest

Dr. Borah’s research interests lie at the intersection of analog VLSI design, current-mode circuits, memristors, signal processing, and computer vision. He is particularly focused on designing energy-efficient, electronically tunable circuits using novel components like current differencing buffered amplifiers (CDBAs) and memristors. His recent work explores the integration of these devices into edge-computing architectures, environmental sensing systems, and wearable electronics. He is also involved in precision agriculture using AI and UAVs for tasks like weed detection and disease assessment, showcasing his multidisciplinary reach. Dr. Borah has a strong inclination toward practical applications of circuit theory, demonstrated by his contributions to automation, energy-efficient design, and AI-driven solutions. His ability to translate theoretical models into real-world engineering solutions makes his work impactful, especially in the context of smart devices and intelligent sensing systems. This diverse and innovative portfolio reflects both his technical depth and adaptability to emerging technological trends.

Award and Honor

Dr. Shekhar Suman Borah has received several awards that highlight his academic excellence and research impact. In 2020, he won the Best Paper Award at the Springer International Conference on Communication, Circuits, and Systems (iC3S) for his innovative work on grounded negative inductance simulation. Earlier in his academic career, he was awarded the SDR Scholarship in 2010 for academic excellence and the prestigious Anandoram Barooah Award by the Government of Assam in 2009 for securing First Class with Distinction in his 10th grade. These accolades reflect both early promise and sustained contributions to his field. His participation as a peer reviewer for reputed journals and conferences like IEEE and MDPI further underscores his professional standing. Additionally, his invited talks at prominent institutions and media appearances demonstrate recognition beyond academia. Collectively, these honors validate Dr. Borah’s trajectory as a high-performing researcher with significant potential for further contributions.

Conclusion

Dr. Shekhar Suman Borah stands out as a highly qualified young researcher with a well-rounded portfolio in education, research, and professional engagement. His academic background is strong and focused, his research contributions are diverse and impactful, and his professional roles demonstrate both leadership and collaboration. He has made meaningful strides in analog circuit design, memristive technologies, and intelligent sensing systems, with applications in agriculture, environmental monitoring, and wearable technology. His ability to secure research funding, contribute to peer-reviewed literature, and deliver invited talks reflects his growing recognition in the field. Dr. Borah’s consistent track record of innovation, coupled with his dedication to both academic excellence and real-world problem-solving, makes him a strong contender for recognition such as the Young Scientist Award. His work promises continued contributions to cutting-edge technologies in electronics and intelligent systems, positioning him as a rising figure in the global scientific community.

Publications Top Notes

  • Title: MOSFET-Based Memristor for High-Frequency Signal Processing
    Authors: M. Ghosh, A. Singh, S.S. Borah, J. Vista, A. Ranjan, S. Kumar
    Year: 2022
    Citations: 46

  • Title: Electronically tunable higher-order quadrature oscillator employing CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh, A. Ranjan
    Year: 2021
    Citations: 23

  • Title: Resistorless memristor emulators: Floating and grounded using OTA and VDBA for high-frequency applications
    Authors: M. Ghosh, P. Mondal, S.S. Borah, S. Kumar
    Year: 2022
    Citations: 20

  • Title: Third order quadrature oscillator and its application using CDBA
    Authors: M. Ghosh, S.S. Borah, A. Singh, A. Ranjan
    Year: 2021
    Citations: 17

  • Title: Simple Grounded Meminductor Emulator Using Transconductance Amplifier
    Authors: A. Singh, B. S, S., G. M.
    Year: 2021
    Citations: 12

  • Title: A novel memristive neural network circuit and its application in character recognition
    Authors: X. Zhang, X. Wang, Z. Ge, Z. Li, M. Wu, S.S. Borah
    Year: 2022
    Citations: 11

  • Title: CMOS CDBA Based 6th Order Inverse Filter Realization for Low-Power Applications
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2020
    Citations: 9

  • Title: Three Novel Configurations of Second Order Inverse Band Reject Filter Using a Single Operational Transresistance Amplifier
    Authors: S. Banerjee, S.S. Borah, M. Ghosh, P. Mondal
    Year: 2019
    Citations: 8

  • Title: Emerging Technologies for Automation in Environmental Sensing
    Authors: S.S. Borah, A. Khanal, P. Sundaravadivel
    Year: 2024
    Citations: 5

  • Title: Single VDTA Based Grounded Memristor Model and Its Applications
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 5

  • Title: Current Differencing Buffered Amplifier Based Memristive Quadrature Oscillator
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2021
    Citations: 4

  • Title: Higher order multifunction filter using current differencing buffered amplifier (CDBA)
    Authors: S.S. Borah, M. Ghosh, A. Ranjan
    Year: 2022
    Citations: 3

  • Title: A Novel Low-Power Electronically Tunable Higher-Order Quadrature Oscillator using CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2021
    Citations: 3

  • Title: CDBA Based Quadrature Sinusoidal Oscillator with Non-interactive Control
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 3

  • Title: Design of Thinned Linear Antenna Array using Particle Swarm Optimization (PSO) Algorithm
    Authors: S.S. Borah, A. Deb, J.S. Roy
    Year: 2019
    Citations: 3

Oleg Morozov | Engineering | Best Researcher Award

Prof. Oleg Morozov | Engineering | Best Researcher Award

Professor at Kazan National Research Technical University n.a. A.N. Tupolev-KAI, Russia

Prof. Oleg G. Morozov is a distinguished academic and researcher in the field of microwave photonics and fiber optic sensor technology. Born on October 30, 1960, in Kazan, Tatarstan, Russia, he has made significant contributions to both fundamental and applied aspects of electrodynamics and photonics. With a professional career spanning over four decades, Prof. Morozov has held various high-impact academic and administrative positions at Kazan National Research Technical University named after A.N. Tupolev-KAI. He is known for his leadership in advancing research at the intersection of electronics, photonics, and cyber-physical systems. His work has been central to establishing several key academic departments and research labs, and he is currently the Head of the IT-COM Department. In addition to his academic duties, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems. He is widely respected for both his scientific rigor and leadership in research development.

Professional Profile

Education

Prof. Morozov pursued his early higher education in radiotechnics, graduating as an Engineer in 1983 from the Tupolev Aviation Institute in Kazan. Demonstrating academic excellence and deep technical curiosity, he completed his Ph.D. in 1987, focusing on advanced topics in applied physics and communication systems. Further solidifying his standing in the academic community, he earned the prestigious Doctor of Technology degree in 2004 from Kazan National Research Technical University named after A.N. Tupolev-KAI. His educational journey is characterized by a strong foundation in electronics, microwave engineering, and photonics—fields that have informed his research career. Throughout his academic progression, Prof. Morozov has stayed closely involved with evolving technological disciplines, often integrating cross-disciplinary approaches in his teaching and research. His educational background has equipped him not only with in-depth technical knowledge but also with a strategic vision for technology’s role in science and innovation, particularly within the Russian higher education landscape.

Professional Experience

Prof. Morozov’s professional experience is marked by a series of leadership roles within Kazan National Research Technical University. From 1989 to 1993, he was the Head of the Quantum Electronics and Laser Technology R&D Lab, where he initiated numerous pioneering projects. Later, between 2005 and 2014, he led the TV and Multimedia Systems Department, focusing on advancements in signal processing and integrated media technologies. From 2014 to 2023, he served as the Head of the Radiophotonics and Microwave Technology Department, strengthening the university’s position in cutting-edge research. In parallel, he also directed the R&D Institute of Applied Electrodynamics, Photonics, and Life Systems from 2012 to 2021, where he supervised multidisciplinary research teams. Currently, he is a Professor and Head of the IT-COM Department. His professional path reflects a consistent commitment to innovation, interdisciplinary research, and fostering academic excellence in emerging technological domains.

Research Interests

Prof. Morozov’s research interests lie primarily in microwave photonics, fiber optic sensors, and radiophotonic interrogation techniques. His work bridges theoretical innovation and applied research, especially in high-frequency signal processing, quantum electronics, and cyber-physical system integration. He has contributed significantly to the development of advanced sensing technologies, optical communication systems, and integrated photonic devices. His research also explores the role of photonics in healthcare and smart systems, showing an ability to adapt traditional fields to modern technological challenges. Prof. Morozov has consistently aimed to merge physical sciences with engineering applications, contributing to both national and international scientific communities. His leadership in these areas has resulted in a number of collaborative projects and publications that have advanced the state of the art in photonics and related technologies. He also emphasizes system-level thinking, where electronics, optics, and digital technologies converge to build intelligent and adaptive sensing solutions for next-generation applications.

Awards and Honors

Throughout his illustrious career, Prof. Morozov has received numerous awards and honors recognizing his research excellence and academic contributions. Most notably, he was awarded the Frish Medal by the Russian Optical Society (ROS), a prestigious accolade for contributions to optical science and technology. He holds the Senior Member status in three leading professional organizations—IEEE, SPIE, and OSA—which reflects his recognized expertise and longstanding service to the global scientific community. Beyond personal awards, his editorial roles, including Guest and Board Editor positions with IntechOpen and MDPI journals, highlight his influence on the broader research discourse. Currently, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems, further solidifying his thought leadership in the field. These honors not only affirm his past achievements but also position him as a central figure in shaping future advancements in photonic systems and applied electrodynamics.

Conclusion

Prof. Oleg G. Morozov is highly suitable for the Best Researcher Award due to his long-standing and impactful career in cutting-edge technologies, particularly in photonics and microwave systems. His leadership roles, academic achievements, and recognition by esteemed global societies reinforce his strong candidacy.

Publications Top Notes

  • Title: Superstructured Addressable Fiber Bragg Structures

    • Authors: B. Valeev, R.A. Makarov, T.A. Agliullin, A.Z. Sakhabutdinov, O.G. Morozov

    • Year: 2025

    • Citations: 0

  • Title: OAM Mode Propagation and Supercontinuum Generation in a Nested Photonic Crystal Fiber

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: 2025

    • Citations: 0

  • Title: A Design of Nested Photonic Crystal Fiber for OAM Mode Propagation (Conference Paper)

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Microscopic Temperature Sensor Based on End-Face Fiber-Optic Fabry–Perot Interferometer

    • Authors: M. Chesnokova, D.I. Nurmuhametov, R.S. Ponomarev, O.G. Morozov, R.A. Makarov

    • Year: 2024

    • Citations: 2

  • Title: Design and Performance Analysis of a Novel Hoop-Cut SPR-PCF Sensor for High Sensitivity and Broad Range Sensing Applications

    • Authors: S. Mittal, A. Saharia, Y. Ismail, M. Tiwari, S. Kumar

    • Year: 2024

    • Citations: 12

  • Title: Ontology of Addressed Fiber Bragg Structures as a New Type of Sensor Elements (Conference Paper)

    • Authors: O.G. Morozov, A.Z. Sakhabutdinov

    • Year: Not specified

    • Citations: 0

  • Title: A Six-Core Microstructured Fiber for Sensing Applications (Conference Paper, repeated thrice)

    • Authors: A. Agarwal, S. Mittal, S. Punia, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Modeling of Multi-Layer Fiber-Optic Fabry–Perot Interferometer as a Sensing Element of Humidity, Pressure and Temperature

    • Authors: A.Z. Sakhabutdinov, T.A. Agliullin, B. Valeev, O.G. Morozov, S.M. Hussein

    • Year: Not specified

    • Citations: 0

 

Oladele Afolalu | Engineering | Best Researcher Award

Dr. Oladele Afolalu | Engineering | Best Researcher Award

Postdoctoral Fellow at Durban University of Technology, South Africa

Dr. Oladele Felix Afolalu is a distinguished researcher and academic in the field of Electrical and Telecommunications Engineering. Born on August 29, 1976, in Nigeria, he has made significant contributions to the advancement of ICT, telecommunications, and enterprise networking. With a strong passion for innovation, he has worked extensively in academia, research, and industry collaborations to improve modern communication systems. Currently a Postdoctoral Fellow at the Durban University of Technology, South Africa, Dr. Afolalu has played a crucial role in developing cutting-edge solutions in 5G networks, interference coordination, and network optimization. His leadership in academic institutions, numerous publications, and participation in international conferences reflect his dedication to research excellence. As a member of several prestigious engineering societies, including IEEE (USA & South Africa), COREN, and MNSE, he continues to impact the engineering community through mentorship, teaching, and groundbreaking studies in the field of telecommunications and ICT.

Professional Profile

Education

Dr. Afolalu’s academic journey is marked by a strong foundation in electrical and electronic engineering, with degrees from top institutions in Nigeria and South Africa. He earned his Ph.D. in Electrical and Telecommunication Engineering from the University of Cape Town, South Africa, where he specialized in 5G network optimization and inter-cell interference coordination. Prior to that, he completed an M.Sc. in Electronic/Electrical Engineering from Obafemi Awolowo University, Nigeria, where his research focused on communication systems and signal processing. His undergraduate studies culminated in a B.Eng. (Hons.) in Electrical/Electronics Engineering from the Federal University of Technology, Akure. Additionally, he holds a National Diploma in Electrical/Electronics Engineering from Federal Polytechnic, Ado-Ekiti. His diverse academic background has provided him with expertise in ICT systems, telecommunications, and engineering education, equipping him to contribute significantly to cutting-edge research and technology advancements.

Professional Experience

Dr. Afolalu has amassed over two decades of experience in teaching, research, and academic administration. He served as Head of the Department and Principal Lecturer at Federal Polytechnic, Ede, Nigeria, where he played a key role in curriculum development, student mentorship, and research supervision. He also worked as an Adjunct Senior Lecturer and Acting Head of Department at Joseph Ayo Babalola University, where he was instrumental in advancing research initiatives in physics electronics. His postdoctoral research at Durban University of Technology, South Africa, involves cutting-edge projects in enterprise networking and ICT systems. Additionally, he has served as a tutor at the University of Cape Town, helping students enhance their understanding of telecommunication systems. Throughout his career, he has been actively involved in examination committees, research committees, and industrial training programs, contributing significantly to the development of engineering education in Nigeria and beyond.

Research Interests

Dr. Afolalu’s research is centered on wireless communication networks, telecommunications engineering, and ICT innovations. His primary focus is on 5G and beyond technologies, network optimization, and inter-cell interference coordination. His Ph.D. research on Ultra-Dense Networks (UDNs) has contributed to improving network efficiency and power allocation in next-generation communication systems. He has also explored the application of artificial intelligence in network performance enhancement, particularly in resource allocation and signal processing. Additionally, his research extends to renewable energy integration in communication networks, aiming for sustainable and efficient power management in ICT infrastructure. His contributions to machine learning applications in network traffic optimization and security have been recognized in top-tier journals. Through his extensive research, he aims to bridge the gap between theoretical telecommunications advancements and practical industry implementations, ensuring that emerging technologies are efficiently deployed for societal benefit.

Awards and Honors

Dr. Afolalu has been recognized for his outstanding contributions to research, engineering education, and technological innovation. He has received accolades for his work on 5G networks, including best paper awards at international conferences such as the Southern Africa Telecommunication Networks and Applications Conference (SATNAC). His research on carrier aggregation-enabled NOMA techniques for enhanced 5G network performance has gained global recognition. He has also been honored for his mentorship and academic leadership, particularly in the development of engineering curricula and innovative teaching methodologies. His membership in prestigious engineering societies such as IEEE, COREN, and MNSE further highlights his excellence in the field. Additionally, he has participated as a panelist and keynote speaker at workshops and conferences, where his expertise in wireless communication and ICT infrastructure has been widely acknowledged. His commitment to research and education continues to inspire future engineers and researchers globally.

Conclusion

Dr. Oladele Felix Afolalu has a strong research portfolio, significant academic experience, and notable contributions to ICT and 5G telecommunications. His leadership roles, professional memberships, and conference engagements make him a worthy candidate for the Best Researcher Award. Strengthening high-impact publications, industry collaborations, and international research engagements will further solidify his standing in the global research community.

Publications Top Notes

  1. Carrier Aggregation‐Enabled Non‐Orthogonal Multiple Access Approach Towards Enhanced Network Performance in 5G Ultra‐Dense Networks

    • Author(s): O Afolalu, N Ventura

    • Year: 2021

    • Citations: 10

  2. A Survey of Interference Challenges and Mitigation Techniques in 5G Heterogeneous Cellular Networks

    • Author(s): OF Afolalu, JO Petinrin, MA Ayoade

    • Year: 2016

    • Citations: 4

  3. Internet of Things and Software Applications in Patient Safety Adverse Event Detection and Reporting: A Comprehensive Literature Review

    • Author(s): OO Afolalu, SA Afolalu, OF Afolalu, OA Akpor

    • Year: 2024

    • Citations: 2

  4. Inter-Cell Interference Coordination in 5G Ultra-Dense Networks

    • Author(s): OF Afolalu

    • Year: 2021

    • Citations: 2

  5. Internet of Things Applications in Health Systems’ Equipment: Challenges and Trends in the Fourth Industrial Revolution

    • Author(s): OO Afolalu, OA Akpor, SA Afolalu, OF Afolalu

    • Year: 2024

    • Citations: 1

  6. Application of Particle Swarm Optimization Method to Economic Dispatch of Nigerian Power System Considering Valve-Point Loading Effect

    • Author(s): GA Adepoju, MA Tijani, MO Okelola, MA Ayoade, OF Afolalu

    • Year: 2021

    • Citations: 1

  7. Enterprise Networking Optimization: A Review of Challenges, Solutions, and Technological Interventions

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  8. A Novel Security Solution for Efficient Connectivity in Software-Defined Wide Area Network (SD-WAN)

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  9. Sickle Cell Disease Epidemiology and Management in Africa: Current Trends and Future Directions in Digital Health Technologies

    • Author(s): AO Olajumoke, O Akpor, AS Afolalu, OF Afolalu, HB Oyewole, AO Oke

    • Year: 2024

    • Citations: Not available yet

  10. Analysis of Spectrum Occupancy of Active FM Band within Federal Polytechnic Ede Northern Campus

  • Author(s): AK Adebayo, JO Agbolade, IA Bamikefa, OF Afolalu, MA Ayoade

  • Year: 2021

  • Citations: Not available

  1. Development of Induction Motor Monitoring System with Protection Against Abnormal Voltage, Current, and Temperature

  • Author(s): MA Ayoade, IA Bamikefa, MA Tijani, OF Afolalu, AK Adebayo

  • Year: 2018

  • Citations: Not available

  1. Effects of Angles of Inclinations on the Performances of Photovoltaic (PV) Arrays

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, MA Tijani, MA Sanusi

  • Year: 2017

  • Citations: Not available

  1. Development of a Wireless Induction Motor Unbalanced Voltage Detection and Control System for Hazardous Environments

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, AK Adebayo, MA Sanusi

  • Year: 2017

  • Citations: Not available