Bahaa Hussein Taher | Engineering | Research Excellence Award

Mr. Bahaa Hussein Taher | Engineering | Research Excellence Award

University of Sumer | China

Mr. Bahaa Hussein Taher is a senior engineer and academic affiliated with the University of Sumer, specializing in computer science and electronic engineering with a strong focus on advanced networking and edge computing. His academic background includes doctoral and master’s level training in computer science, electronic engineering, and information engineering, building a solid foundation in computing systems and optimization. Professionally, he has held academic, engineering, and leadership roles, contributing to teaching, research supervision, quality assurance management, IT infrastructure development, and participation in strategic planning and technical committees. His research expertise centers on edge computing, dynamic task allocation, secure execution in next-generation networks, cryptographic protocols, scheduling, and optimization, with multiple publications in internationally indexed journals. He has actively contributed to the academic community through workshops, seminars, and conference participation, reflecting sustained scholarly engagement. His recognitions include language proficiency certifications and professional credentials that support international research collaboration, highlighting his capacity to advance impactful, secure, and efficient computing solutions with strong future research potential.

Citation Metrics (Google Scholar)

443
300
150
50
0

443

3

4

Citations

i10-index

h-index


Top 5 Featured Publications

 

Weitao Yue | Engineering | Research Excellence Award

Dr. Weitao Yue | Engineering | Research Excellence Award

China University of Mining and Technology | China

Dr. Weitao Yue is a Ph.D. candidate in Safety Science and Engineering at the China University of Mining and Technology, recognized for his specialization in coal and rock dynamic disaster prevention and control. With an academic foundation centered on advanced safety engineering and a research focus on hazardous dynamic phenomena in mining environments, he has developed strong expertise in the investigation of disaster mechanisms, monitoring technologies, early-warning strategies, and innovative control methods. His professional experience includes substantial involvement in major national scientific projects, where he has taken on core research roles involving theoretical modeling, experimental system development, large-scale data analysis, and interdisciplinary coordination. Through these efforts, he has demonstrated leadership, technical depth, and the ability to drive complex research tasks toward impactful outcomes. Dr. Yue has published multiple high-quality SCI papers as first or corresponding author in internationally renowned journals, with several works recognized among the most globally cited in the field, reflecting his rising academic influence and contribution to advancing coal mine safety science. His research achievements have earned significant academic recognition, further supported by his participation in professional research communities and contributions to collaborative scientific endeavors. Known for integrating theoretical insight with practical application, he consistently delivers research that supports safer mining operations and enhances scientific understanding of dynamic disasters. His growing portfolio of accomplishments, strong methodological capabilities, and commitment to scientific innovation position him as a promising researcher with substantial potential for future leadership and continued contribution to the safety engineering discipline.

Profiles:  Scopus

Featured Publications

1. [Authors not provided]. (2026). Failure mechanisms of fault fracture zone under dynamic loading. Engineering Failure Analysis.

Mehdi Masoodi | Electronic and Telecommunication Engineering | Best Researcher Award

Dr. Mehdi Masoodi | Electronic and Telecommunication Engineering | Best Researcher Award

Senior Researcher | CNR-IREA | Italy

Dr. Mehdi Masoodi is a distinguished postdoctoral researcher at CNR-IREA, Naples, Italy, specializing in signal and image processing with a particular focus on radar imaging and the application of artificial intelligence to enhance imaging capabilities. He earned his Ph.D. in Industrial and Information Engineering from the University of Campania Luigi Vanvitelli, Italy, following a Master’s degree with honors in Telecommunication Engineering from Azad University, Iran, and a Bachelor’s in Telecommunications Engineering from Pasargad University, Iran. Dr. Masoodi’s professional experience spans roles as a postdoctoral researcher, volunteer researcher, and electronics engineer, contributing to projects including contactless surveys of reinforced concrete, antenna diagnostics, and telecommunication infrastructure development. He has co-authored numerous peer-reviewed journal articles, served as a referee for international journals and conferences, and is recognized for his contributions to model-based radar imaging strategies and AI-driven signal processing approaches. His work has earned significant citations, reflecting its impact and relevance in the scientific community. Dr. Masoodi has also been acknowledged for his academic excellence through national ranking distinctions and top performance in competitive examinations. Proficient in Matlab, Python, and GPR-MAX, he has demonstrated leadership in research projects and collaborative initiatives, combining technical expertise with innovation. His ongoing dedication to advancing radar imaging research, mentoring emerging scholars, and contributing to high-quality scientific publications establishes him as a leading figure in his field and a worthy candidate for recognition.

Profiles: Google Scholar | Scopus 

Featured Publications

1. Masoodi, M., & Taromideh, H. (2025). Optimal and uniform sensor arrangement in near-field imaging. Journal of Computational and Applied Mathematics, 454, 116188.

2. Masoodi, M., Gennarelli, G., Soldovieri, F., & Catapano, I. (2024). Multiview multistatic vs. multimonostatic three-dimensional ground-penetrating radar imaging: A comparison. Remote Sensing, 16(17), 3163.

3. Masoodi, M., Esposito, G., Gennarelli, G., Maisto, M. A., & Soldovieri, F. (2024). Transverse resolution in 2D linear inverse scattering by a multimonostatic/multifrequency configuration. IEEE Geoscience and Remote Sensing Letters.

4. Taromideh, F., Fazloula, R., Choubin, B., Masoodi, M., & Mosavi, A. (2024). Ensemble machine learning for urban flood hazard assessment. In 2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics.

5. Masoodi, M., & Leone, G. (2023). Diagnostics of conformal arrays by phaseless data and non-uniform sampling. In 2023 IEEE Conference on Antenna Measurements and Applications (CAMA) (pp. 212–216).

Ivett Greta Zsak | Engineering | Best Researcher Award

Ms. Ivett Greta Zsak | Engineering | Best Researcher Award

Ivett Greta Zsak | Technical University of Cluj-Napoca | Romania

Ms. Ivett-Gréta Zsák is an accomplished architect, lecturer, and PhD candidate with a strong focus on sustainable architecture, heritage preservation, and adaptive design. She has developed innovative frameworks, notably the Building Identity Passport for prefabricated housing rehabilitation, reflecting a unique integration of health, community engagement, and building performance. Her work demonstrates a balance between academic rigor and practical implementation, including coordinating heritage interventions and contributing to national architectural guidelines. She has actively participated in international conferences, showcasing thought leadership and fostering cross-cultural collaboration. Her technical proficiency in BIM, AutoCAD, and participatory design tools enhances her research’s practical impact, while her multilingual skills allow effective engagement in diverse academic environments. Recognized with multiple architecture awards, Ms. Zsák exemplifies a researcher whose work bridges theory and practice. Her research is measurable in Scopus, with 2 documents cited by 11 sources and an h-index of 2, demonstrating both productivity and scholarly influence.

Profile: Scopus | ORCID

Featured Publications

1. C. Savu, A.-H. Pescaru, I.-G. Zsak, A.-M. Durgheu, A.-P. Frent, N.-S. Suba, A. S. Buda, and S. Nistor, “Analysis on Using 3D Scanning and BIM to Reduce the Physical and Non-Physical Construction Waste for Sustainable Fireproofing of Steel Trusses,” Sustainability, Feb. 2024.

2. G. I. Zsak, “Ghiduri de arhitectură pentru încadrarea în specificul local din mediul rural,” The Order of Architects of Romania, Mar. 2020.

3. G. I. Zsak, “Regeneration of the industrial heritage in the central area of Oradea,” Materials Science and Engineering, vol. 603, Sep. 2019.

Akbar Hojjati Najafabadi | Engineering | Best Industrial Research Award

Dr. Akbar Hojjati Najafabadi | Engineering | Best Industrial Research Award

Faculty at Islamic Azad University Mobarakeh Branch, Iran

Dr. Akbar Hojjati Najafabadi is a distinguished researcher in mechanical engineering with expertise in manufacturing, production, hydraulics, pneumatics, robotics, and assistive technology. His research focuses on the design and development of orthotic and rehabilitation devices for individuals with spinal cord injuries and locomotion disabilities, bridging engineering innovation with healthcare needs. He has contributed significantly to industrial research through academic publications in international journals, authored and translated technical books, and supervised projects that integrate mechanical systems with biomedical applications. Beyond academia, he has executed impactful industrial projects, including the design and installation of specialized machinery in major steel industries, showcasing his ability to translate theory into practice. As a lecturer and research leader, he has guided advanced engineering initiatives and mentored students while promoting applied industrial solutions. Recognized for his pioneering contributions, Dr. Hojjati’s work demonstrates a balance of academic rigor, industrial innovation, and social impact, positioning him as a strong industrial researcher.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Akbar Hojjati Najafabadi holds a strong academic foundation in mechanical engineering, specializing in manufacturing and production. He earned his Ph.D. in Mechanical Engineering from Kashan University, where his doctoral research focused on advanced manufacturing and production processes with applications in assistive technologies. Prior to that, he completed his master’s degree at Iran University of Science and Technology, gaining expertise in industrial systems and applied mechanical design. His undergraduate studies were carried out at Islamic Azad University in Najafabad, providing him with the essential grounding in mechanical and production engineering. He also broadened his international research exposure through a visiting research position at the Friedrich Wilhelm Bessel Institut in Germany. This combination of domestic and international education has allowed him to integrate theoretical knowledge with practical innovation, preparing him to tackle complex industrial and biomedical engineering challenges. His academic journey reflects a continuous pursuit of applied, impactful research.

Experience

Dr. Hojjati has built a distinguished career in both academia and industry, serving as a lecturer in mechanical engineering at Islamic Azad University, Mobarakeh Branch, for over two decades. His teaching portfolio includes advanced hydraulics, robotics, industrial measurements, machining, and materials strength, equipping future engineers with cutting-edge knowledge. Beyond teaching, he has taken leadership roles such as group manager of the mechanical engineering department and head of the Advanced Engineering Research Center, where he spearheaded innovative industrial research projects. His applied expertise extends to significant industrial collaborations, including the design, development, and installation of specialized machinery for large-scale steel industries. He has also implemented research-based prototypes such as robotic orthoses, pneumatic muscle-driven devices, and CNC-based robotic systems. This combination of academic leadership, practical industrial implementation, and applied research highlights his commitment to bridging the gap between education, industry, and innovation. His experience exemplifies a balance of teaching, research, and industrial application.

Research Focus

Dr. Hojjati’s research primarily centers on the integration of mechanical engineering with assistive and rehabilitation technologies. His work emphasizes the design and development of orthotic systems, exoskeletons, and assistive devices aimed at improving mobility for individuals with spinal cord injuries and lower-limb disabilities. He has investigated mechanical and motor-driven systems for sit-to-stand transitions, gait improvement, and locomotion rehabilitation, with several prototypes demonstrating practical benefits in healthcare applications. His studies also extend to robotics, hydraulics, and pneumatics, with innovative applications of fluidic muscles and electromechanical drives in rehabilitation devices. In addition to biomedical engineering, he has explored industrial automation, machining performance, and intelligent monitoring systems for robotics. His extensive publication record in international journals, along with ongoing research into exoskeleton technologies, reflects his commitment to applied, impactful innovations. Overall, his research focus merges industrial engineering expertise with biomedical solutions, showcasing his dedication to developing technologies that improve human life and industrial practices.

Award and Honor

Dr. Hojjati has been recognized for his pioneering contributions to industrial and applied research with distinctions that reflect both academic and practical excellence. He was honored as a Pioneer Investigator by Islamic Azad University, highlighting his leadership in advancing engineering education and research. His inventive spirit is demonstrated by his patented Surface Quick Modeling Machine, certified by the General Bureau of Industrial Possessions and Corporations Records, marking a significant contribution to industrial innovation. Alongside this, his published works in highly regarded international journals and conference presentations have further solidified his standing as a recognized researcher in mechanical and biomedical engineering fields. His authored and translated books on pneumatics, robotics, mechatronics, and industrial systems showcase his commitment to knowledge dissemination and professional development. These awards and honors underscore his role as a respected academic and industrial innovator, reflecting a career dedicated to advancing engineering solutions with real-world impact.

Publications Top Notes

  • Title: Mechanical design and simulation of a saddle-assistive device for sit-to-stand transfer in healthy subjects
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2017
    Citations: 8

  • Title: The effect of saddle-assistive device on improving the gait parameters of patients with the lower limbs weakness: a pilot study
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2020
    Citations: 2

  • Title: Machining performance on AISI 304 steel in the milling machine with mechanical and hydraulic spindle
    Authors: M Shirazi, A Hojjati Najafabadi, S Amini
    Year: 2024
    Citations: 1

  • Title: Using a saddle-assistive device equipped with mechanical orthosis for walking of the person with incomplete spinal cord injury
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2021
    Citations: 1

  • Title: Improving sit-to-stand transition by the saddle-assistive device in the spinal cord injury: A case study
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2021
    Citations: 1

  • Title: Novel design and comprehensive mechanical analysis of a cost-effective manual patient lifting system with worm gear mechanism
    Authors: A Hojjati Najafabadi, M Ahmadi Bani
    Year: 2025

  • Title: Innovative Enhancements in Surface Quality and Hardness of Aluminium Alloy 2024 through an Optimized Burnishing Process
    Authors: AH Najafabadi
    Year: 2024

  • Title: Development of the Burnishing Process: Moving Towards Increasing the Quality and Surface Hardness of Aluminum alloy 2024
    Authors: AH Najafabadi
    Year: 2023

  • Title: Comparison of anterior and posterior wheeled walkers based on body weight support in improving gait function a subjects with spinal cord injury: A case study
    Authors: AH Najafabadi, MA Bani, V Pourmoghadam
    Year: 2022

  • Title: Design of patient lifting device based on the use of a worm gears mechanism in the protection of the caregiver
    Authors: AH Najafabadi
    Year: 2022

  • Title: Rapid welding of aluminum for marking on hot steel
    Authors: HB Soroush Baladi, Akbar Hojjati Najafabadi, Mohammad Reza Khanzadeh
    Year: 2022

Conclusion

Dr. Akbar Hojjati Najafabadi’s publication record reflects a strong and consistent focus on applied industrial and biomedical engineering research. His contributions span from early work in assistive device design to recent advancements in machining processes, patient lifting systems, and rehabilitation technologies. The research demonstrates both technical depth and practical application, particularly in developing innovative solutions for spinal cord injury rehabilitation and industrial manufacturing improvements. While some of his works have already gained citations and recognition in reputable journals, others represent emerging areas with potential for broader impact. The combination of interdisciplinary research, industrial collaboration, and continuous innovation positions him as a significant contributor to industrial research. His work not only advances scientific knowledge but also provides tangible benefits to healthcare and industry, reinforcing his suitability for recognition such as the Best Industrial Research Award.

Carlo Pettorruso | Engineering | Excellence in Innovation Award

Dr. Carlo Pettorruso | Engineering | Excellence in Innovation Award

Research fellow at Politecnico di milano, Italy

Carlo Pettorruso is a civil engineer and research fellow at Politecnico di Milano, specializing in the evaluation and seismic safety of existing infrastructure, particularly bridges. Currently pursuing a PhD in Architecture, Built Environment, and Construction Engineering, his research focuses on innovative strategies for the seismic retrofit of bridges and non-destructive inspection methods for prestressed concrete structures. He has actively contributed to national research projects funded by organizations such as FABRE, ANAS, and INAF, playing a key role in developing technical guidelines adopted by Italy’s Ministry of Infrastructure. His work bridges the gap between academic research and practical application, aiming to enhance the resilience and safety of critical infrastructure. With a strong academic background and hands-on experience in field assessments and structural analysis, Pettorruso demonstrates a commitment to innovation and public safety in civil engineering. His contributions reflect a deep integration of advanced research with national infrastructure priorities.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Carlo Pettorruso has a robust academic background in civil engineering, having completed all his higher education at Politecnico di Milano. He earned a Bachelor’s degree in Civil Engineering in 2015, followed by a Master’s degree in Civil Engineering with a focus on Advanced Structural Analysis in 2018, graduating with top marks (110/110). Currently, he is pursuing a PhD in Architecture, Built Environment, and Construction Engineering, with his research centered on seismic retrofit strategies for existing bridges. His PhD candidacy spans from 2019 to 2024 and has already produced impactful contributions in structural safety. The continuity of his education within one of Italy’s most prestigious technical universities has provided him with a solid theoretical foundation, practical research exposure, and long-term mentorship under leading experts in structural engineering and infrastructure resilience.

Professional Experience

Carlo Pettorruso has gathered significant professional experience through research fellowships and project participation primarily at Politecnico di Milano. Since 2023, he has served as a research fellow specializing in non-destructive evaluation of prestressed reinforced concrete bridges. He has been actively involved in multiple infrastructure assessment projects funded by the FABRE Consortium and other national organizations. His responsibilities include conducting field inspections, evaluating structural safety, and developing technical guidelines in line with governmental regulations. Additionally, he contributed to the seismic evaluation of high-precision structures such as the Large-Scale Telescope at CTAO-South, reflecting his adaptability across complex engineering contexts. Carlo has worked under prominent professors and collaborated with public institutions, ensuring that his work translates into practical policy and engineering standards. His professional journey reflects a consistent focus on improving structural diagnostics, seismic resilience, and bridge safety, bridging academic research and real-world engineering applications.

Research Interest

Carlo Pettorruso’s research interests lie at the intersection of structural engineering, seismic safety, and infrastructure diagnostics. He is particularly focused on non-destructive techniques for evaluating the condition of prestressed concrete bridges and on seismic isolation strategies to enhance the resilience of existing transportation infrastructure. His work spans both theoretical modeling and practical implementation, with strong involvement in the creation and refinement of technical guidelines for infrastructure monitoring and risk classification. He is also engaged in research related to the behavior of special structures, such as astronomical telescopes, under high seismic loads. His projects often involve the development of new methodologies for bridge inspection, retrofitting strategies, and policy-oriented safety frameworks. Overall, his interests reflect a strong commitment to innovation, public safety, and the sustainable management of civil infrastructure, especially in the face of seismic hazards and aging structural systems.

Award and Honor

While specific named awards are not listed in the provided CV, Carlo Pettorruso has consistently demonstrated academic excellence and professional recognition through top honors in education and participation in nationally significant research programs. His Master’s degree was awarded with full marks (110/110), and his ongoing PhD research has been conducted with distinction (noted as “Lode” – high praise). He has been selected to contribute to multiple high-impact, government-funded projects led by the Ministry of Infrastructure, ANAS, and the FABRE Consortium—an acknowledgment of his technical competence and innovative approach. His involvement in regulatory framework development for infrastructure safety suggests he is trusted within national expert networks. While formal individual honors may not be documented, his research roles, funding affiliations, and academic accolades collectively speak to his reputation as an emerging leader in infrastructure innovation and safety assessment.

Conclusion

Carlo Pettorruso is a highly dedicated and technically skilled civil engineering researcher whose work combines academic rigor with real-world impact. With a solid educational foundation and active participation in nationally important research projects, he has built a career focused on structural diagnostics, seismic safety, and innovative approaches to infrastructure management. His contribution to the development of national guidelines for bridge safety, his commitment to non-destructive evaluation techniques, and his role in applied research underline a strong potential for continued innovation in the field. While still in the early stages of his career, his achievements demonstrate a deep understanding of the engineering challenges facing modern infrastructure and a proactive approach to solving them. Carlo Pettorruso exemplifies the qualities of a forward-thinking researcher whose work directly supports public safety and sustainable development in civil engineering, making him a strong candidate for recognition through research and innovation awards.

Publications Top Notes

  • Design and experimental assessment of a prestressed lead damper with straight shaft for seismic protection of structures

    • Authors: V Quaglini, C Pettorruso, E Bruschi

    • Year: 2022

    • Citations: 30

  • Experimental and numerical assessment of prestressed lead extrusion dampers

    • Authors: V Quaglini, C Pettorruso, E Bruschi

    • Year: 2021

    • Citations: 26

  • Cold bending of vertical glass plates: Wind loads and geometrical instabilities

    • Authors: V Quaglini, S Cattaneo, C Pettorruso, L Biolzi

    • Year: 2020

    • Citations: 19

  • Supplemental energy dissipation with prestressed Lead Extrusion Dampers (P-LED): Experiments and modeling

    • Authors: C Pettorruso, E Bruschi, V Quaglini

    • Year: 2021

    • Citations: 12

  • Experimental and numerical investigation of a dissipative connection for the seismic retrofit of precast RC industrial sheds

    • Authors: V Quaglini, C Pettorruso, E Bruschi, L Mari

    • Year: 2022

    • Citations: 7

  • Design and experimental assessment of a novel damper with high endurance to seismic loads

    • Authors: V Quaglini, E Bruschi, C Pettorruso, M Sartori

    • Year: 2023

    • Citations: 6

  • Dimensionamento di dispositivi dissipativi per la riabilitazione sismica di strutture intelaiate

    • Authors: V Quaglini, E Bruschi, C Pettorruso

    • Year: 2022

    • Citations: 6

  • Characterization and numerical assessment of Lead Extrusion Damper with adaptive behavior

    • Authors: E Bruschi, F Macobatti, C Pettorruso, V Quaglini

    • Year: 2020

    • Citations: 6

  • Comparison of linear and nonlinear procedures for the analysis of the seismic performance of straight multi-span RC bridges

    • Authors: C Pettorruso, V Quaglini

    • Year: 2024

    • Citations: 3

  • Assessment of bridge Post‐Tensioning systems using non‐destructive (ND) inspection methods

    • Authors: V Quaglini, C Pettorruso, S Cattaneo, D Rossi

    • Year: 2023

    • Citations: 3

  • Strategies for the rehabilitation of existing bridges by seismic isolation

    • Author: C Pettorruso

    • Year: 2023

    • Citations: 2

  • Experimental and numerical assessment of isolation seismic device for retrofit of industrial shed

    • Authors: L Mari, V Quaglini, C Pettorruso, E Bruschi

    • Year: 2021

    • Citations: 2

  • Conceptual Design of Seismic Retrofit of Existing Bridges by Deck Isolation: Assessment of Effectiveness

    • Authors: C Pettorruso, V Quaglini

    • Year: 2024

    • Citations: 1

  • Fluid Viscous Dampers for seismic protection of bridges: a State of the Art

    • Authors: L Zoccolini, E Bruschi, C Pettorruso, D Rossi, V Quaglini

    • Year: 2024

    • Citations: 1

Tong Deng | Mechanical and Process Engineering | Best Researcher Award

Dr. Tong Deng | Mechanical and Process Engineering | Best Researcher Award

Senior Lecturer at University of Greenwich, United Kingdom.

Short Biography 📖✨

Dr. Tong Deng (BSc, BEng, MSc, PhD, FHEA) is a distinguished expert in solids erosion, electrostatics, powder segregation, adhesion, and powder flow 🏗️🔬. With over three decades of experience in academia and industry, he serves as a Senior Lecturer and Consultant Engineer at the University of Greenwich 🎓. His extensive research has significantly contributed to industries such as food, pharmaceuticals, and energy ⚡💊. As a mentor, researcher, and educator, he has supervised numerous students and led groundbreaking projects 📚💡. Dr. Deng is a prolific author with 60+ publications, making a lasting impact in his field 📑🌍.

Profile🔍

Google Scholar

Orcid

Education & Experience 🎓🔍

Doctor of Philosophy (PhD) – University of Greenwich, UK (2001) 🏛️
Master of Science (MSc) in Instrumentation & Analytical Science – University of Manchester (1997) 🧪
Bachelor of Engineering (BEng) in Mechatronics Engineering – Shenyang Ligong University (1992) ⚙️
Bachelor of Science (BSc) in Theoretical Physics – Liaoning University (1987) 🌀

Experience:
📌 Senior Lecturer & Consultant Engineer – University of Greenwich (2014–Present) 🏫
📌 Lecturer & Consultant Engineer – University of Greenwich (2013–2014) 🎓
📌 Research & Consultant Engineer – University of Greenwich (2006–2013) 🧑‍🔬
📌 Research Fellow – University of Greenwich (2001–2006) 📖
📌 Engineer – Shenyang Light Industrial Machinery Co. Ltd, China (1989–1996) 🏭
📌 Teacher – Shenyang Coal Miner’s High School, China (1987–1989) 🎓

Professional Development 🚀📘

Dr. Tong Deng has dedicated his career to advancing research and innovation in bulk solids handling and powder technology 🏗️🔬. A Fellow of the Higher Education Academy (FHEA), he actively contributes to academia through teaching, mentoring, and supervising research students 📚🎓. His collaborations with industries and funding bodies have led to numerous groundbreaking projects in materials processing, electrostatics, and segregation science 💡💰. Dr. Deng also plays a key role in organizing international conferences, reviewing top-tier journals, and delivering professional training courses, ensuring that his expertise benefits both the scientific community and industry leaders globally 🌍🧑‍🏫.

Research Focus 🔬📊

Dr. Deng’s research revolves around the science of bulk solids handling, with a particular focus on solids erosion, electrostatics, powder segregation, adhesion, and powder flow 💨⚡. His work plays a crucial role in optimizing industrial processes for food, pharmaceuticals, minerals, and energy sectors 🌾💊⚡. He investigates particle behavior in flow systems, powder caking, and electrostatic charging to enhance manufacturing efficiency 📈🔍. With extensive funding and industry collaborations, he has developed novel techniques for powder characterization and process optimization. His research directly contributes to improving material handling, reducing energy consumption, and ensuring sustainable industrial practices ♻️🏭.

Awards & Honors 🏆🎖️

🏅 Fellow of the Higher Education Academy (FHEA) – UK (2022) 🎓
🏅 Outstanding Reviewer Award – Particuology Journal (2022-2024) 🏅
🏅 Co-chair of 9th UK-China International Particle Technology Forum – Greenwich (2023) 🌏
🏅 Scientific Advisory Committee Member – 8th UK-China PTF (2021) 🏛️
🏅 Session Chair – CHoPS International Conference (2018) 🎤
🏅 US & UK Patent Contributor – Pneumatic Conveying Feedback Control (2023, 2025) 📜💡

Publications📖

📖 A novel model for hourly PM2.5 concentration prediction based on CART and EELM – Z Shang, T Deng, J He, X Duan | Science of The Total Environment | Cited by: 104 | Year: 2019

⚙️ Effect of particle concentration on erosion rate of mild steel bends in a pneumatic conveyor – T Deng, AR Chaudhry, M Patel, I Hutchings, MSA Bradley | Wear | Cited by: 85 | Year: 2005

🔄 The influence of particle rotation on the solid particle erosion rate of metals – T Deng, MS Bingley, MSA Bradley | Wear | Cited by: 77 | Year: 2004

📏 Influence of particle size, density, particle concentration on bend erosive wear in pneumatic conveyors – R Macchini, MSA Bradley, T Deng | Wear | Cited by: 70 | Year: 2013

🧪 The effect of carbon nanotube orientation on erosive wear resistance of CNT-epoxy based composites – J Chen, IM Hutchings, T Deng, MSA Bradley, KKK Koziol | Carbon | Cited by: 52 | Year: 2014

🔄 Effect of bend orientation on life and puncture point location due to solid particle erosion of a high concentration flow in pneumatic conveyors – T Deng, M Patel, I Hutchings, MSA Bradley | Wear | Cited by: 52 | Year: 2005

📊 Determination of a particle size distribution criterion for predicting dense phase pneumatic conveying behaviour of granular and powder materials – T Deng, M Bradley | Powder Technology | Cited by: 50 | Year: 2016

Conclusion:

Dr. Tong Deng’s exceptional research output, industry collaborations, funding success, and mentorship contributions make him a top candidate for a Best Researcher Award. His work not only advances scientific understanding but also translates into real-world industrial applications, making a lasting impact on multiple sectors. 🚀🏆

Oladele Afolalu | Engineering | Best Researcher Award

Dr. Oladele Afolalu | Engineering | Best Researcher Award

Postdoctoral Fellow at Durban University of Technology, South Africa

Dr. Oladele Felix Afolalu is a distinguished researcher and academic in the field of Electrical and Telecommunications Engineering. Born on August 29, 1976, in Nigeria, he has made significant contributions to the advancement of ICT, telecommunications, and enterprise networking. With a strong passion for innovation, he has worked extensively in academia, research, and industry collaborations to improve modern communication systems. Currently a Postdoctoral Fellow at the Durban University of Technology, South Africa, Dr. Afolalu has played a crucial role in developing cutting-edge solutions in 5G networks, interference coordination, and network optimization. His leadership in academic institutions, numerous publications, and participation in international conferences reflect his dedication to research excellence. As a member of several prestigious engineering societies, including IEEE (USA & South Africa), COREN, and MNSE, he continues to impact the engineering community through mentorship, teaching, and groundbreaking studies in the field of telecommunications and ICT.

Professional Profile

Education

Dr. Afolalu’s academic journey is marked by a strong foundation in electrical and electronic engineering, with degrees from top institutions in Nigeria and South Africa. He earned his Ph.D. in Electrical and Telecommunication Engineering from the University of Cape Town, South Africa, where he specialized in 5G network optimization and inter-cell interference coordination. Prior to that, he completed an M.Sc. in Electronic/Electrical Engineering from Obafemi Awolowo University, Nigeria, where his research focused on communication systems and signal processing. His undergraduate studies culminated in a B.Eng. (Hons.) in Electrical/Electronics Engineering from the Federal University of Technology, Akure. Additionally, he holds a National Diploma in Electrical/Electronics Engineering from Federal Polytechnic, Ado-Ekiti. His diverse academic background has provided him with expertise in ICT systems, telecommunications, and engineering education, equipping him to contribute significantly to cutting-edge research and technology advancements.

Professional Experience

Dr. Afolalu has amassed over two decades of experience in teaching, research, and academic administration. He served as Head of the Department and Principal Lecturer at Federal Polytechnic, Ede, Nigeria, where he played a key role in curriculum development, student mentorship, and research supervision. He also worked as an Adjunct Senior Lecturer and Acting Head of Department at Joseph Ayo Babalola University, where he was instrumental in advancing research initiatives in physics electronics. His postdoctoral research at Durban University of Technology, South Africa, involves cutting-edge projects in enterprise networking and ICT systems. Additionally, he has served as a tutor at the University of Cape Town, helping students enhance their understanding of telecommunication systems. Throughout his career, he has been actively involved in examination committees, research committees, and industrial training programs, contributing significantly to the development of engineering education in Nigeria and beyond.

Research Interests

Dr. Afolalu’s research is centered on wireless communication networks, telecommunications engineering, and ICT innovations. His primary focus is on 5G and beyond technologies, network optimization, and inter-cell interference coordination. His Ph.D. research on Ultra-Dense Networks (UDNs) has contributed to improving network efficiency and power allocation in next-generation communication systems. He has also explored the application of artificial intelligence in network performance enhancement, particularly in resource allocation and signal processing. Additionally, his research extends to renewable energy integration in communication networks, aiming for sustainable and efficient power management in ICT infrastructure. His contributions to machine learning applications in network traffic optimization and security have been recognized in top-tier journals. Through his extensive research, he aims to bridge the gap between theoretical telecommunications advancements and practical industry implementations, ensuring that emerging technologies are efficiently deployed for societal benefit.

Awards and Honors

Dr. Afolalu has been recognized for his outstanding contributions to research, engineering education, and technological innovation. He has received accolades for his work on 5G networks, including best paper awards at international conferences such as the Southern Africa Telecommunication Networks and Applications Conference (SATNAC). His research on carrier aggregation-enabled NOMA techniques for enhanced 5G network performance has gained global recognition. He has also been honored for his mentorship and academic leadership, particularly in the development of engineering curricula and innovative teaching methodologies. His membership in prestigious engineering societies such as IEEE, COREN, and MNSE further highlights his excellence in the field. Additionally, he has participated as a panelist and keynote speaker at workshops and conferences, where his expertise in wireless communication and ICT infrastructure has been widely acknowledged. His commitment to research and education continues to inspire future engineers and researchers globally.

Conclusion

Dr. Oladele Felix Afolalu has a strong research portfolio, significant academic experience, and notable contributions to ICT and 5G telecommunications. His leadership roles, professional memberships, and conference engagements make him a worthy candidate for the Best Researcher Award. Strengthening high-impact publications, industry collaborations, and international research engagements will further solidify his standing in the global research community.

Publications Top Notes

  1. Carrier Aggregation‐Enabled Non‐Orthogonal Multiple Access Approach Towards Enhanced Network Performance in 5G Ultra‐Dense Networks

    • Author(s): O Afolalu, N Ventura

    • Year: 2021

    • Citations: 10

  2. A Survey of Interference Challenges and Mitigation Techniques in 5G Heterogeneous Cellular Networks

    • Author(s): OF Afolalu, JO Petinrin, MA Ayoade

    • Year: 2016

    • Citations: 4

  3. Internet of Things and Software Applications in Patient Safety Adverse Event Detection and Reporting: A Comprehensive Literature Review

    • Author(s): OO Afolalu, SA Afolalu, OF Afolalu, OA Akpor

    • Year: 2024

    • Citations: 2

  4. Inter-Cell Interference Coordination in 5G Ultra-Dense Networks

    • Author(s): OF Afolalu

    • Year: 2021

    • Citations: 2

  5. Internet of Things Applications in Health Systems’ Equipment: Challenges and Trends in the Fourth Industrial Revolution

    • Author(s): OO Afolalu, OA Akpor, SA Afolalu, OF Afolalu

    • Year: 2024

    • Citations: 1

  6. Application of Particle Swarm Optimization Method to Economic Dispatch of Nigerian Power System Considering Valve-Point Loading Effect

    • Author(s): GA Adepoju, MA Tijani, MO Okelola, MA Ayoade, OF Afolalu

    • Year: 2021

    • Citations: 1

  7. Enterprise Networking Optimization: A Review of Challenges, Solutions, and Technological Interventions

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  8. A Novel Security Solution for Efficient Connectivity in Software-Defined Wide Area Network (SD-WAN)

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  9. Sickle Cell Disease Epidemiology and Management in Africa: Current Trends and Future Directions in Digital Health Technologies

    • Author(s): AO Olajumoke, O Akpor, AS Afolalu, OF Afolalu, HB Oyewole, AO Oke

    • Year: 2024

    • Citations: Not available yet

  10. Analysis of Spectrum Occupancy of Active FM Band within Federal Polytechnic Ede Northern Campus

  • Author(s): AK Adebayo, JO Agbolade, IA Bamikefa, OF Afolalu, MA Ayoade

  • Year: 2021

  • Citations: Not available

  1. Development of Induction Motor Monitoring System with Protection Against Abnormal Voltage, Current, and Temperature

  • Author(s): MA Ayoade, IA Bamikefa, MA Tijani, OF Afolalu, AK Adebayo

  • Year: 2018

  • Citations: Not available

  1. Effects of Angles of Inclinations on the Performances of Photovoltaic (PV) Arrays

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, MA Tijani, MA Sanusi

  • Year: 2017

  • Citations: Not available

  1. Development of a Wireless Induction Motor Unbalanced Voltage Detection and Control System for Hazardous Environments

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, AK Adebayo, MA Sanusi

  • Year: 2017

  • Citations: Not available

 

Peng Gu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Peng Gu | Engineering | Best Researcher Award

associate professor at donghua university, China

Dr. Gu Peng is an accomplished researcher specializing in ultra-precision manufacturing and intelligent processing equipment. He is currently an Associate Professor at Donghua University, following his postdoctoral research at Shanghai Jiao Tong University under the mentorship of esteemed scholars. His work focuses on advanced machining technologies, contributing to national and international research projects. With multiple high-impact publications, patents, and awards, Dr. Gu has established himself as a leading expert in precision engineering. His contributions extend beyond academia through industry collaborations, making significant advancements in manufacturing automation. He actively serves as a reviewer for top SCI journals and is recognized as an expert in China’s leading technology committees. His academic excellence, combined with his research leadership and industrial impact, positions him as a key figure in the field of intelligent manufacturing and ultra-precision machining.

Professional Profile

Education

Dr. Gu Peng obtained his Bachelor’s degree in Mechanical Design, Manufacturing, and Automation from Hefei University of Technology in 2016, graduating ranked first in his class. He pursued a Master’s-Doctoral continuous program in Mechanical Engineering at Tongji University, where he demonstrated outstanding research potential and academic excellence. During his doctoral studies, he participated in an international training program at Politecnico di Torino, Italy, expanding his expertise in advanced manufacturing technologies. His dedication to research earned him multiple national scholarships and institutional awards, including the Outstanding Doctoral Student Award at Tongji University. His education laid a solid foundation for his expertise in precision engineering, manufacturing automation, and optical surface processing.

Professional Experience

Dr. Gu Peng began his professional career as a Postdoctoral Researcher at Shanghai Jiao Tong University (2022-2024), where he worked on ultra-precision machining under the guidance of renowned scholars. In 2024, he joined Donghua University as an Associate Professor, leading projects on intelligent manufacturing technologies. He has played a critical role in multiple national research projects, including the National Natural Science Foundation of China (NSFC) Youth Fund and key industrial research initiatives. In addition to his academic roles, he has been an expert consultant for major industrial projects, contributing to the development of advanced machining equipment for aerospace, optics, and semiconductor industries. His professional experience bridges cutting-edge research and practical industrial applications, ensuring his work has both theoretical and real-world impact.

Research Interests

Dr. Gu Peng’s research focuses on ultra-precision machining, intelligent manufacturing, and automation technologies. He specializes in high-precision grinding and polishing techniques for complex optical surfaces, including microstructure arrays and freeform surfaces. His work also explores the integration of intelligent control systems and AI-driven manufacturing processes, improving efficiency and accuracy in high-performance manufacturing industries. As the Principal Investigator of multiple national research projects, he is pioneering new methodologies for ultra-precision machining, particularly in single-point oblique axis grinding and laser-assisted cutting. His research has direct applications in aerospace, semiconductor manufacturing, and high-precision optics, making significant contributions to the field.

Awards and Honors

Dr. Gu Peng has received numerous national and institutional awards for his academic excellence and research contributions. He was a recipient of the Shanghai Super Postdoctoral Fellowship, the National Scholarship for Undergraduate and Doctoral Students, and multiple Outstanding Graduate Awards from Tongji University. He has also been recognized in national technology competitions, securing top prizes in innovation and mathematical modeling contests. In addition to his academic accolades, he serves as a reviewer for leading SCI journals, including the Journal of Manufacturing Technology and Applied Surface Technology. His contributions to ultra-precision machining and automation technology have established him as a highly respected figure in both academic and industrial research communities.

Conclusion

Dr. Gu Peng is highly suitable for the Best Researcher Award, given his strong publication record, leadership in high-level research projects, and national recognition. With continued efforts in international collaborations, student mentorship, and diversification of research, he could further solidify his standing as a leading researcher in the field of ultra-precision manufacturing.

Publications Top Noted

  • Author: Gu, P., Zhu, C., Sun, Y., Wang, D., & Shi, Z.

    • Year: 2025
    • Title: Evaluation and Prediction of Wrapping Deformation in Sheet Part Grinding
    • Journal: Experimental Techniques
    • Citations: 0
  • Author: Sun, C., Gu, P., Wan, H., Lin, J., & Min, J.

    • Year: 2025
    • Title: Enhancements of Physical Microstructure and Chemical Activation on Interfacial Bonding Strength of Carbon Fiber Reinforced Polymer
    • Journal: Composites Part A: Applied Science and Manufacturing
    • Citations: 0

 

Rajani Alugonda | Engineering | Best Researcher Award

Mrs. Rajani Alugonda | Engineering | Best Researcher Award

Assistant Professor at JNTUK Kakinda, India

Smt. Rajani Alugonda is an accomplished academician and researcher in the field of Electronics and Communication Engineering. With over 14 years of teaching experience, she has significantly contributed to the academic and research landscape. She is currently serving as an Assistant Professor in the Department of ECE at JNTU College of Engineering, Kakinada. Throughout her career, she has actively participated in various academic and administrative roles, reflecting her commitment to institutional development and student mentorship. Her research contributions in signal processing and communication are well-recognized in national and international journals. She has been involved in organizing and attending faculty development programs, conferences, and workshops, fostering a strong academic network. Beyond academics, she has played key roles in hostel administration, examination management, and extracurricular activities, highlighting her leadership skills.

Professional Profile

Google Scholar

Education

Smt. Rajani Alugonda holds a B.Tech degree in Electronics and Communication Engineering from KITS, Singapur, obtained in 2005. She pursued her M.Tech in Control Systems at JNTU College of Engineering, Anantapur, where she graduated with First Class with Distinction in 2011. Currently, she is pursuing her Ph.D. in Signal Processing and Communication from Jawaharlal Nehru Technological University, Kakinada. Her educational background provides her with a strong foundation in advanced communication systems and signal processing, equipping her with the knowledge to conduct high-quality research. Her academic journey demonstrates her commitment to continuous learning and professional growth.

Professional Experience

With over 14 years and 6 months of teaching experience, Smt. Rajani Alugonda has mentored numerous students and guided multiple postgraduate research projects. She has successfully supervised 24 M.Tech theses and is currently guiding three ongoing projects. Apart from her teaching responsibilities, she has held key administrative positions such as Deputy Warden for the Girls Hostel, Officer In-Charge of Examinations, and Coordinator for various institutional initiatives, including the Startup Cell and IQAC. These responsibilities have helped her develop a well-rounded professional profile, balancing academic rigor with institutional development. Her involvement in student mentorship and academic leadership showcases her dedication to education and research.

Research Interest

Her research interests lie in the areas of signal processing and communication, focusing on developing innovative solutions for communication technologies. She has authored 26 international journal articles and presented her research in 24 international conferences, showcasing her active engagement in the research community. Her work aims to advance knowledge in digital signal processing, wireless communication, and emerging communication technologies. By continuously updating her research methodologies and exploring new frontiers, she contributes to the evolution of the field. She actively participates in faculty development programs, research collaborations, and industry interactions to stay updated with the latest advancements.

Awards and Honors

Throughout her career, Smt. Rajani Alugonda has demonstrated academic excellence and leadership, earning recognition in various capacities. She is a member of prestigious professional bodies such as MIETE and LISTE, which acknowledge her contributions to the field. Her active participation in academic conferences, workshops, and training programs has strengthened her research credibility. While specific awards and honors have not been explicitly mentioned, her extensive research output and institutional contributions highlight her academic standing. Her leadership roles in academia, including her involvement in examination management, extracurricular coordination, and research mentorship, reinforce her eligibility for academic accolades and future awards.

Conclusion

Smt. Rajani Alugonda exhibits notable strengths in teaching, research, and academic leadership. Finalizing her Ph.D. and enhancing the impact of her research publications would further solidify her candidacy for the Best Researcher Award.

Publications Top Noted

  • Modeling and simulation of lithium-ion battery with hysteresis for industrial applications

    • Author: S Bangaru, R Alugonda, P Palacharla
    • Year: 2013
    • Citations: 14
  • A Review on Various Speech Enhancement Techniques

    • Author: SSVS A. Rajani
    • Year: 2016
    • Citations: 4
  • Speed Control of Induction Motor Using Fuzzy Logic Approach

    • Author: AR M. Nageswara Rao
    • Year: 2013
    • Citations: 4*
  • Denoising of ECG Signal Using UFIR Smoothing With Notch Filter

    • Author: NP A. Rajani
    • Year: 2021
    • Citations: 1
  • ECG Signal Denoising Using EMD with Notch Filter and Morphology Filter

    • Author: MSAIV A. Rajani
    • Year: 2021
    • Citations: 1
  • Hysteresis Characterization Check of Lithium-Ion Battery Model under Dynamic Simulation Runs

    • Author: S Bangaru, R Alugonda
    • Year: 2013
    • Citations: 1
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • Diagnosis of Bradycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Diagnosis of Tachycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • A Novel Method of QRS Detection Using Adaptive Multilevel Thresholding With Statistical False Peak Elimination

    • Author: VS A. Rajani
    • Year: 2022
    • Citations: