Chang Soo Kim | Engineering | Best Researcher Award

Prof. Chang Soo Kim | Engineering | Best Researcher Award

Professor | Pukyong National University | South Korea

Professor. Chang Soo Kim is a distinguished Full Professor in the Division of Computer and AI Engineering at PuKyong National University, recognized for his expertise in intelligent manufacturing systems, artificial intelligence, and computational optimization. He holds advanced degrees in computer science with specialization in AI-driven optimization and machine learning, forming the foundation for his multidisciplinary research career. Throughout his long-standing academic tenure, he has served in key leadership roles including department chair, graduate program administrator, research center director, and executive leader for university–industry cooperation, successfully guiding large-scale projects, fostering collaborative innovation, and advancing strategic academic initiatives. His research focuses on flexible job shop scheduling, deep learning–based fault diagnosis, time-series forecasting, metaheuristic optimization, and smart industrial systems. He has produced an extensive portfolio of influential publications in high-impact SCI-indexed journals, contributing novel hybrid algorithms, trainable fusion strategies, adaptive scheduling frameworks, lightweight diagnostic models, and intelligent computational methods that support the evolution of smart manufacturing and data-driven engineering. His scholarly achievements have earned him multiple recognitions, including awards for research excellence, and he actively contributes to the global academic community through editorial service, participation in professional societies, and engagement in scientific committees. With a sustained record of innovative research, academic leadership, and impactful contributions to computer and AI engineering, Professor Chang Soo Kim exemplifies the qualities of a leading researcher whose work continues to influence both industry and academia.

Profiles:  Scopus

Featured Publications

1. Kim, C. S., et al. (2025). Flexible job shop scheduling optimization with multiple criteria using a hybrid metaheuristic framework. Processes.

2. Kim, C. S., et al. (2025). Multi-branch global Transformer-assisted network for fault diagnosis. Applied Soft Computing.

3. Kim, C. S., et al. (2025). DL-MSCNN: A general and lightweight framework for fault diagnosis with limited training samples. Journal of Intelligent Manufacturing.

4. Kim, C. S., et al. (2025). Enhanced quantum-based DNA sequence alignment with noise handling and error detection. IEEE Access.

5. Kim, C. S., et al. (2024). GAILS: An effective multi-object job shop scheduler based on genetic algorithm and iterative local search. Scientific Reports.

Professor Chang Soo Kim’s pioneering research in intelligent manufacturing, AI-driven optimization, and fault diagnosis advances the scientific foundations of smart industry while enabling more efficient, reliable, and data-driven production systems. His innovative computational frameworks and adaptive algorithms contribute directly to industrial digital transformation, fostering technological competitiveness and sustainable global innovation.

Weitao Yue | Engineering | Research Excellence Award

Dr. Weitao Yue | Engineering | Research Excellence Award

China University of Mining and Technology | China

Dr. Weitao Yue is a Ph.D. candidate in Safety Science and Engineering at the China University of Mining and Technology, recognized for his specialization in coal and rock dynamic disaster prevention and control. With an academic foundation centered on advanced safety engineering and a research focus on hazardous dynamic phenomena in mining environments, he has developed strong expertise in the investigation of disaster mechanisms, monitoring technologies, early-warning strategies, and innovative control methods. His professional experience includes substantial involvement in major national scientific projects, where he has taken on core research roles involving theoretical modeling, experimental system development, large-scale data analysis, and interdisciplinary coordination. Through these efforts, he has demonstrated leadership, technical depth, and the ability to drive complex research tasks toward impactful outcomes. Dr. Yue has published multiple high-quality SCI papers as first or corresponding author in internationally renowned journals, with several works recognized among the most globally cited in the field, reflecting his rising academic influence and contribution to advancing coal mine safety science. His research achievements have earned significant academic recognition, further supported by his participation in professional research communities and contributions to collaborative scientific endeavors. Known for integrating theoretical insight with practical application, he consistently delivers research that supports safer mining operations and enhances scientific understanding of dynamic disasters. His growing portfolio of accomplishments, strong methodological capabilities, and commitment to scientific innovation position him as a promising researcher with substantial potential for future leadership and continued contribution to the safety engineering discipline.

Profiles:  Scopus

Featured Publications

1. [Authors not provided]. (2026). Failure mechanisms of fault fracture zone under dynamic loading. Engineering Failure Analysis.

Tun Naw Sut | Chemical Engineering | Best Researcher Award

Dr. Tun Naw Sut | Chemical Engineering | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Tun Naw Sut is a postdoctoral fellow specializing in nanomedicine, biomimetic membranes, and bio-sensing technologies, recognized for his interdisciplinary expertise and impactful research contributions. He holds dual doctoral training in nanomedicine and chemical engineering, supported by prior qualifications in materials science and biomedical engineering, forming a strong foundation for his work at the interface of engineering, biotechnology, and nanomaterials. His professional experience spans academic research, diagnostic platform development, electrochemical biomarker detection, phospholipid self-assembly studies, and compliance testing of medical electrical equipment, reflecting both scientific depth and industry-relevant technical capability. Dr. Sut’s research focuses on lipid-based nanomaterials, membrane biophysics, antimicrobial lipids, diagnostic sensors, and therapeutic nanoplatforms, and he has authored numerous publications in high-impact journals that advance the understanding and application of functional biomimetic systems. His leadership includes serving as guest editor and topic editor for international journals, contributing to the curation of scholarly work in biomimicry, functional materials, and membrane science. He has been recognized through competitive research grants, academic scholarships, and editorial appointments that highlight his innovation, scientific rigor, and growing influence in the field. Through his combined research excellence, interdisciplinary training, and dedication to advancing diagnostic and therapeutic technologies, Dr. Sut demonstrates exceptional potential for continued contributions to scientific innovation and research leadership.

Profiles: Scopus | ORCID

Featured Publications

1. Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces.

2. Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano.

3. Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials.

4. Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials.

5. Hwang, Y., Zhao, Z. J., Shin, S., Sut, T. N., Jackman, J. A., Kim, T., Moon, Y., Ju, B. K., Jeoni, J. H., Cho, N. J., & Kim, M. (2025). Nanopot plasmonic sensor platform for broad spectrum virus detection. Chemical Engineering Journal.

Dr. Tun Naw Sut’s work advances next-generation diagnostic and therapeutic technologies through innovative biomimetic membrane engineering and lipid-based nanomaterials. His research contributes to global health by enabling more effective pathogen detection, improved targeted delivery systems, and transformative strategies for sensing and treating complex diseases.

Dongfeng Qi | Engineering | Best Researcher Award

Prof. Dongfeng Qi | Engineering | Best Researcher Award

Professor | Shandong University of Technology | China

Prof. Dongfeng Qi is a leading researcher in laser manufacturing and material processing, specializing in femtosecond and nanosecond laser applications for advanced materials and flexible electronics. His work integrates theoretical modeling with experimental techniques to develop innovative micro- and nanostructures, including copper and silicon-based materials, phase-change films, and smart electronic devices. Prof. Qi has made substantial contributions to understanding laser-material interactions and patterning technologies, with high-impact publications in top-tier journals. He demonstrates strong interdisciplinary collaboration and mentorship, fostering international research partnerships and the growth of emerging scientists. His research is recognized for both fundamental insights and practical applications in photonics, energy storage, and flexible electronics. Prof. Qi’s consistent innovation, high-quality experimental work, and leadership in the field establish him as a leading figure in laser-based materials science. According to Scopus, he has 535 citations, 71 documents, and an h-index of 13.

Profiles: Scopus | Google Scholar

Featured Publications

1. Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array; L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, …; ACS Nano, vol. 12, no. 3, pp. 2231–2241, 2018; 39 citations

2. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation; D. Qi, D. Paeng, J. Yeo, E. Kim, L. Wang, S. Chen, C. P. Grigoropoulos; Applied Physics Letters, vol. 108, no. 21, 2016; 37 citations

3. Femtosecond laser-induced large area of periodic structures on chalcogenide glass via twice laser direct-writing scanning process; X. Yu, Q. Zhang, D. Qi, S. Tang, S. Dai, P. Zhang, Y. Xu, X. Shen; Optics & Laser Technology, vol. 124, 105977, 2020; 34 citations

4. Progress in the design, nanofabrication, and performance of metalenses; Z. Wang, Y. Wu, D. Qi, W. Yu, H. Zheng; Journal of Optics, vol. 24, no. 3, 033001, 2022; 31 citations

5. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers; Z. Wu, Y. Xu, D. Qi, Q. Nie, X. Zhang; Infrared Physics & Technology, vol. 102, 102981, 2019; 31 citations

Ivett Greta Zsak | Engineering | Best Researcher Award

Ms. Ivett Greta Zsak | Engineering | Best Researcher Award

Ivett Greta Zsak | Technical University of Cluj-Napoca | Romania

Ms. Ivett-Gréta Zsák is an accomplished architect, lecturer, and PhD candidate with a strong focus on sustainable architecture, heritage preservation, and adaptive design. She has developed innovative frameworks, notably the Building Identity Passport for prefabricated housing rehabilitation, reflecting a unique integration of health, community engagement, and building performance. Her work demonstrates a balance between academic rigor and practical implementation, including coordinating heritage interventions and contributing to national architectural guidelines. She has actively participated in international conferences, showcasing thought leadership and fostering cross-cultural collaboration. Her technical proficiency in BIM, AutoCAD, and participatory design tools enhances her research’s practical impact, while her multilingual skills allow effective engagement in diverse academic environments. Recognized with multiple architecture awards, Ms. Zsák exemplifies a researcher whose work bridges theory and practice. Her research is measurable in Scopus, with 2 documents cited by 11 sources and an h-index of 2, demonstrating both productivity and scholarly influence.

Profile: Scopus | ORCID

Featured Publications

1. C. Savu, A.-H. Pescaru, I.-G. Zsak, A.-M. Durgheu, A.-P. Frent, N.-S. Suba, A. S. Buda, and S. Nistor, “Analysis on Using 3D Scanning and BIM to Reduce the Physical and Non-Physical Construction Waste for Sustainable Fireproofing of Steel Trusses,” Sustainability, Feb. 2024.

2. G. I. Zsak, “Ghiduri de arhitectură pentru încadrarea în specificul local din mediul rural,” The Order of Architects of Romania, Mar. 2020.

3. G. I. Zsak, “Regeneration of the industrial heritage in the central area of Oradea,” Materials Science and Engineering, vol. 603, Sep. 2019.

Velislava Lyubenova | Engineering | Best Researcher Award

Prof. Velislava Lyubenova | Engineering | Best Researcher Award

Academician at Bulgarian Academy of Science, Institute of Robotics, Bulgaria

Velislava Lyubenova is a distinguished Bulgarian researcher and professor with over 30 years of experience in biotechnological process control, mechatronics, and adaptive systems. She currently serves as the Head of the Mechatronic Bio/technological Systems Section at the Institute of Robotics, Bulgarian Academy of Sciences (BAS), and has held various academic and leadership roles across BAS institutions. She has led more than 10 national and international research projects, participated in numerous European programs, and supervised several PhD students. With over 200 scientific publications, many in high-impact journals, and invited lectures delivered at leading international institutions, she is widely recognized for her scientific contributions. Her expertise includes the development of innovative monitoring and control systems using tools like MATLAB and LABVIEW. An awardee of the “Marin Drinov” prize for young scientists, Lyubenova is also actively involved in academic governance, expert committees, and editorial boards, reflecting her deep commitment to scientific advancement and education.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Velislava Lyubenova holds a strong academic background in technical sciences and engineering. She earned her engineering degree in Radio Electronics from the Technical University of Sofia, followed by a Ph.D. in Automation with a dissertation focused on parameter estimation and biotechnological process monitoring. Her academic journey culminated with a Doctor of Technical Sciences degree from the Institute of System Engineering and Robotics (ISIR) at the Bulgarian Academy of Sciences (BAS), specializing in adaptive control and modeling of complex biotechnological systems. Her education blends deep technical knowledge with applied research capabilities, laying the foundation for a career in both theoretical and experimental domains. Her academic formation reflects a continuous pursuit of knowledge and specialization in interdisciplinary areas, preparing her to work across the fields of electronics, biotechnology, and control systems. This educational path has also enabled her to contribute to curriculum development and mentor future generations of researchers in her field.

Professional Experience

Professor Velislava Lyubenova has built a prolific career at the Bulgarian Academy of Sciences, progressing from a research fellow to a professor and head of department at the Institute of Robotics. Her early work in adaptive and robust control systems evolved into specialized research in bioengineering and mechatronic systems for biotechnology. She has served as Scientific Secretary at IR-BAS and has been a key figure in national expert commissions and scientific councils. Over her career, she has led and coordinated numerous national and international research projects, many involving cross-disciplinary collaboration. Her leadership roles include project management, supervision of PhD students, and delivery of advanced lecture courses. She also coordinates Erasmus programs and plays a pivotal role in academic exchange and cooperation. Her professional trajectory showcases a blend of scientific innovation, team leadership, and academic mentorship, making her a respected figure in both the Bulgarian and broader European research communities.

Research Interest

Velislava Lyubenova’s research is deeply rooted in the interdisciplinary fields of bioengineering, automation, and mechatronics. Her primary interest lies in the modeling, monitoring, and adaptive control of biotechnological processes, where she develops innovative methodologies to improve efficiency and reliability. She integrates control theory with practical applications using environments like MATLAB and LABVIEW, creating real-time monitoring systems that bridge theoretical concepts with industrial needs. Her work often addresses complex system dynamics in bioprocesses and seeks to optimize process performance through intelligent control algorithms. Additionally, she explores knowledge-based and adaptive systems that contribute to the advancement of next-generation biotechnological platforms. Her collaborative research also extends into European Union projects, educational initiatives, and technology transfer programs, reflecting a holistic approach to scientific inquiry. With a strong focus on experimental validation, her research continues to influence the development of advanced technologies in the fields of bioprocess engineering and industrial automation.

Award and Honor

Throughout her distinguished career, Velislava Lyubenova has received notable recognition for her contributions to science and research. A significant early milestone was her receipt of the “Marin Drinov” Young Scientist Award from the General Assembly of the Bulgarian Academy of Sciences in 1998—an honor bestowed upon promising researchers demonstrating exceptional scientific potential. She has also been invited to deliver over 15 specialized lectures at prestigious institutions abroad and six within Bulgaria, signifying her international recognition as a subject-matter expert. Her active involvement in over 30 international and national conferences further underscores her scientific engagement. Beyond individual accolades, her roles as a reviewer, jury member, editorial board member, and lecturer reflect a broader institutional and peer recognition of her expertise. These honors represent both her academic excellence and leadership in advancing science and education, and they demonstrate her lasting impact on the Bulgarian and global research landscape.

Conclusion

Velislava Lyubenova stands out as an accomplished and influential researcher in the fields of biotechnological systems and automation. Her extensive education, progressive professional experience, and leadership in multidisciplinary research projects position her as a key contributor to both national and international scientific advancement. Her ability to combine theoretical models with practical applications, mentor young scientists, and contribute to global academic forums speaks to her depth of expertise and dedication. She has earned peer and institutional recognition for her scientific work, making her a respected leader in her field. Her over 200 publications, contributions to prestigious journals, and active engagement in scientific committees demonstrate both productivity and academic integrity. With a strong foundation in research and innovation, and an enduring commitment to education and collaboration, Velislava Lyubenova is exceptionally well-qualified for honors such as the Best Researcher Award. Her career reflects a lifelong dedication to the pursuit of scientific excellence and societal impact.

Publications Top Notes

  • Title: Indirect adaptive linearizing control of a class of bioprocesses–Estimator tuning procedure
    Authors: MN Ignatova, VN Lyubenova, MR García, C Vilas, AA Alonso
    Year: 2008
    Citations: 31

  • Title: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process
    Authors: V Shopska, R Denkova, V Lyubenova, G Kostov
    Year: 2019
    Citations: 21

  • Title: Adaptive control of fed-batch process for poly-beta-hydroxybutyrate production by mixed culture
    Authors: M Ignatova, V Lyubenova
    Year: 2007
    Citations: 16

  • Title: Control of biotechnological processes-new formalization of kinetics: Theoretical aspects and applications
    Authors: M Ignatova, V Lyubenova
    Year: 2011
    Citations: 15

  • Title: Model-based monitoring of biotechnological processes—a review
    Authors: V Lyubenova, G Kostov, R Denkova-Kostova
    Year: 2021
    Citations: 12

  • Title: Adaptive control of the Simultaneous Saccharification—Fermentation Process from Starch to Ethanol
    Authors: S Ochoa, V Lyubenova, JU Repke, M Ignatova, G Wozny
    Year: 2008
    Citations: 12

  • Title: An efficient hybrid of an ant lion optimizer and genetic algorithm for a model parameter identification problem
    Authors: O Roeva, D Zoteva, G Roeva, V Lyubenova
    Year: 2023
    Citations: 11

  • Title: Control of one stage bio ethanol production by recombinant strain
    Authors: V Lyubenova, S Ochoa, J Repke, M Ignatova, G Wozny
    Year: 2007
    Citations: 11

  • Title: Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm
    Authors: O Roeva, D Zoteva, V Lyubenova
    Year: 2021
    Citations: 10

  • Title: Reaction rate estimators of fed-batch process for poly-β-hydroxybutyrate (PHB) production by mixed culture
    Authors: V Lyubenova, M Ignatova, M Novak, T Patarinska
    Year: 2007
    Citations: 10

  • Title: Dynamics Monitoring of Fed-batch E. coli Fermentation
    Authors: A Zlatkova, V Lyubenova
    Year: 2017
    Citations: 8

  • Title: Encapsulation of brewing yeast in alginate/chitosan matrix: Kinetic characteristics of the fermentation process at a constant fermentation temperature
    Authors: I Petelkov, V Lyubenova, A Zlatkova, V Shopska, R Denkova, M Kaneva, …
    Year: 2016
    Citations: 8

  • Title: On-line estimation in a distributed parameter bioreactor: Application to the Gluconic Acid production
    Authors: MR García, C Vilas, E Balsa-Canto, VN Lyubenova, MN Ignatova, …
    Year: 2011
    Citations: 8

  • Title: Metaheuristic algorithms: theory and applications
    Authors: S Ribagin, V Lyubenova
    Year: 2021
    Citations: 7

  • Title: CASCADE SENSOR FOR MONITORING OF DENITRIFICATION IN ACTIVATED SLUDGE WASTEWATER TREATMENT PROCESS
    Authors: V Lyubenova, M Ignatova
    Year: 2011
    Citations: 7

Peng Gu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Peng Gu | Engineering | Best Researcher Award

associate professor at donghua university, China

Dr. Gu Peng is an accomplished researcher specializing in ultra-precision manufacturing and intelligent processing equipment. He is currently an Associate Professor at Donghua University, following his postdoctoral research at Shanghai Jiao Tong University under the mentorship of esteemed scholars. His work focuses on advanced machining technologies, contributing to national and international research projects. With multiple high-impact publications, patents, and awards, Dr. Gu has established himself as a leading expert in precision engineering. His contributions extend beyond academia through industry collaborations, making significant advancements in manufacturing automation. He actively serves as a reviewer for top SCI journals and is recognized as an expert in China’s leading technology committees. His academic excellence, combined with his research leadership and industrial impact, positions him as a key figure in the field of intelligent manufacturing and ultra-precision machining.

Professional Profile

Education

Dr. Gu Peng obtained his Bachelor’s degree in Mechanical Design, Manufacturing, and Automation from Hefei University of Technology in 2016, graduating ranked first in his class. He pursued a Master’s-Doctoral continuous program in Mechanical Engineering at Tongji University, where he demonstrated outstanding research potential and academic excellence. During his doctoral studies, he participated in an international training program at Politecnico di Torino, Italy, expanding his expertise in advanced manufacturing technologies. His dedication to research earned him multiple national scholarships and institutional awards, including the Outstanding Doctoral Student Award at Tongji University. His education laid a solid foundation for his expertise in precision engineering, manufacturing automation, and optical surface processing.

Professional Experience

Dr. Gu Peng began his professional career as a Postdoctoral Researcher at Shanghai Jiao Tong University (2022-2024), where he worked on ultra-precision machining under the guidance of renowned scholars. In 2024, he joined Donghua University as an Associate Professor, leading projects on intelligent manufacturing technologies. He has played a critical role in multiple national research projects, including the National Natural Science Foundation of China (NSFC) Youth Fund and key industrial research initiatives. In addition to his academic roles, he has been an expert consultant for major industrial projects, contributing to the development of advanced machining equipment for aerospace, optics, and semiconductor industries. His professional experience bridges cutting-edge research and practical industrial applications, ensuring his work has both theoretical and real-world impact.

Research Interests

Dr. Gu Peng’s research focuses on ultra-precision machining, intelligent manufacturing, and automation technologies. He specializes in high-precision grinding and polishing techniques for complex optical surfaces, including microstructure arrays and freeform surfaces. His work also explores the integration of intelligent control systems and AI-driven manufacturing processes, improving efficiency and accuracy in high-performance manufacturing industries. As the Principal Investigator of multiple national research projects, he is pioneering new methodologies for ultra-precision machining, particularly in single-point oblique axis grinding and laser-assisted cutting. His research has direct applications in aerospace, semiconductor manufacturing, and high-precision optics, making significant contributions to the field.

Awards and Honors

Dr. Gu Peng has received numerous national and institutional awards for his academic excellence and research contributions. He was a recipient of the Shanghai Super Postdoctoral Fellowship, the National Scholarship for Undergraduate and Doctoral Students, and multiple Outstanding Graduate Awards from Tongji University. He has also been recognized in national technology competitions, securing top prizes in innovation and mathematical modeling contests. In addition to his academic accolades, he serves as a reviewer for leading SCI journals, including the Journal of Manufacturing Technology and Applied Surface Technology. His contributions to ultra-precision machining and automation technology have established him as a highly respected figure in both academic and industrial research communities.

Conclusion

Dr. Gu Peng is highly suitable for the Best Researcher Award, given his strong publication record, leadership in high-level research projects, and national recognition. With continued efforts in international collaborations, student mentorship, and diversification of research, he could further solidify his standing as a leading researcher in the field of ultra-precision manufacturing.

Publications Top Noted

  • Author: Gu, P., Zhu, C., Sun, Y., Wang, D., & Shi, Z.

    • Year: 2025
    • Title: Evaluation and Prediction of Wrapping Deformation in Sheet Part Grinding
    • Journal: Experimental Techniques
    • Citations: 0
  • Author: Sun, C., Gu, P., Wan, H., Lin, J., & Min, J.

    • Year: 2025
    • Title: Enhancements of Physical Microstructure and Chemical Activation on Interfacial Bonding Strength of Carbon Fiber Reinforced Polymer
    • Journal: Composites Part A: Applied Science and Manufacturing
    • Citations: 0

 

Rajani Alugonda | Engineering | Best Researcher Award

Mrs. Rajani Alugonda | Engineering | Best Researcher Award

Assistant Professor at JNTUK Kakinda, India

Smt. Rajani Alugonda is an accomplished academician and researcher in the field of Electronics and Communication Engineering. With over 14 years of teaching experience, she has significantly contributed to the academic and research landscape. She is currently serving as an Assistant Professor in the Department of ECE at JNTU College of Engineering, Kakinada. Throughout her career, she has actively participated in various academic and administrative roles, reflecting her commitment to institutional development and student mentorship. Her research contributions in signal processing and communication are well-recognized in national and international journals. She has been involved in organizing and attending faculty development programs, conferences, and workshops, fostering a strong academic network. Beyond academics, she has played key roles in hostel administration, examination management, and extracurricular activities, highlighting her leadership skills.

Professional Profile

Google Scholar

Education

Smt. Rajani Alugonda holds a B.Tech degree in Electronics and Communication Engineering from KITS, Singapur, obtained in 2005. She pursued her M.Tech in Control Systems at JNTU College of Engineering, Anantapur, where she graduated with First Class with Distinction in 2011. Currently, she is pursuing her Ph.D. in Signal Processing and Communication from Jawaharlal Nehru Technological University, Kakinada. Her educational background provides her with a strong foundation in advanced communication systems and signal processing, equipping her with the knowledge to conduct high-quality research. Her academic journey demonstrates her commitment to continuous learning and professional growth.

Professional Experience

With over 14 years and 6 months of teaching experience, Smt. Rajani Alugonda has mentored numerous students and guided multiple postgraduate research projects. She has successfully supervised 24 M.Tech theses and is currently guiding three ongoing projects. Apart from her teaching responsibilities, she has held key administrative positions such as Deputy Warden for the Girls Hostel, Officer In-Charge of Examinations, and Coordinator for various institutional initiatives, including the Startup Cell and IQAC. These responsibilities have helped her develop a well-rounded professional profile, balancing academic rigor with institutional development. Her involvement in student mentorship and academic leadership showcases her dedication to education and research.

Research Interest

Her research interests lie in the areas of signal processing and communication, focusing on developing innovative solutions for communication technologies. She has authored 26 international journal articles and presented her research in 24 international conferences, showcasing her active engagement in the research community. Her work aims to advance knowledge in digital signal processing, wireless communication, and emerging communication technologies. By continuously updating her research methodologies and exploring new frontiers, she contributes to the evolution of the field. She actively participates in faculty development programs, research collaborations, and industry interactions to stay updated with the latest advancements.

Awards and Honors

Throughout her career, Smt. Rajani Alugonda has demonstrated academic excellence and leadership, earning recognition in various capacities. She is a member of prestigious professional bodies such as MIETE and LISTE, which acknowledge her contributions to the field. Her active participation in academic conferences, workshops, and training programs has strengthened her research credibility. While specific awards and honors have not been explicitly mentioned, her extensive research output and institutional contributions highlight her academic standing. Her leadership roles in academia, including her involvement in examination management, extracurricular coordination, and research mentorship, reinforce her eligibility for academic accolades and future awards.

Conclusion

Smt. Rajani Alugonda exhibits notable strengths in teaching, research, and academic leadership. Finalizing her Ph.D. and enhancing the impact of her research publications would further solidify her candidacy for the Best Researcher Award.

Publications Top Noted

  • Modeling and simulation of lithium-ion battery with hysteresis for industrial applications

    • Author: S Bangaru, R Alugonda, P Palacharla
    • Year: 2013
    • Citations: 14
  • A Review on Various Speech Enhancement Techniques

    • Author: SSVS A. Rajani
    • Year: 2016
    • Citations: 4
  • Speed Control of Induction Motor Using Fuzzy Logic Approach

    • Author: AR M. Nageswara Rao
    • Year: 2013
    • Citations: 4*
  • Denoising of ECG Signal Using UFIR Smoothing With Notch Filter

    • Author: NP A. Rajani
    • Year: 2021
    • Citations: 1
  • ECG Signal Denoising Using EMD with Notch Filter and Morphology Filter

    • Author: MSAIV A. Rajani
    • Year: 2021
    • Citations: 1
  • Hysteresis Characterization Check of Lithium-Ion Battery Model under Dynamic Simulation Runs

    • Author: S Bangaru, R Alugonda
    • Year: 2013
    • Citations: 1
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • Diagnosis of Bradycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Diagnosis of Tachycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • A Novel Method of QRS Detection Using Adaptive Multilevel Thresholding With Statistical False Peak Elimination

    • Author: VS A. Rajani
    • Year: 2022
    • Citations:

 

Mengyao Li | Engineering | Best Researcher Award

Dr. Mengyao Li | Engineering | Best Researcher Award

Student at Nanyang Technological University Singapore

Mengyao Li is a dedicated researcher specializing in electromagnetic fields, metasurfaces, and frequency-selective structures. With a strong academic foundation and a passion for advancing next-generation communication and radar technologies, Li has made significant contributions to the field of low-RCS antenna-radome systems, lens antennas, and THz reconfigurable intelligent surfaces. His research focuses on innovative solutions that enhance wave manipulation, beamforming, and scattering control, making a direct impact on applications in wireless communication and stealth technology. As a Ph.D. candidate at Nanyang Technological University (NTU), Singapore, under the guidance of Prof. Shen Zhongxiang (IEEE Fellow), Li has published extensively in top-tier journals and continues to explore novel electromagnetic solutions. His work not only bridges theoretical advancements with practical applications but also aligns with the future demands of 6G wireless networks and advanced sensing technologies, solidifying his position as an emerging expert in the field.

Professional Profile

Education

Mengyao Li began his academic journey with a B.S. in Electrical Engineering from the Communication University of China, Beijing, specializing in Telecommunication Engineering. Graduating in 2020 with a GPA of 3.59/4.0, he ranked among the top 8% of students and was recognized as an Outstanding Graduate of Beijing. His undergraduate research focused on reconfigurable frequency-selective absorbers, laying a strong foundation for his future work. In January 2021, he pursued a Ph.D. in Electrical and Electronic Engineering at Nanyang Technological University, Singapore, specializing in Electromagnetic Fields and Microwave Technology. Under the supervision of Prof. Shen Zhongxiang, his doctoral research centers on low-RCS integrated radome and antenna systems, aiming to develop advanced solutions for stealth technology and wireless communication. Throughout his academic career, Li has demonstrated strong analytical skills and research capabilities, contributing to the advancement of electromagnetic and antenna engineering.

Professional Experience

As a Ph.D. researcher at Nanyang Technological University, Mengyao Li has been actively engaged in cutting-edge research in the field of electromagnetic wave manipulation, metasurfaces, and antenna systems. His professional work focuses on designing low-RCS antennas, frequency-selective structures, and THz reconfigurable intelligent surfaces, contributing to innovations in stealth technology and high-frequency communication. Collaborating with leading academics and industry experts, he has developed practical solutions for beam manipulation, conformal lens antennas, and ultra-wideband absorptive structures. His research has been published in top IEEE journals, showcasing his ability to bridge theoretical concepts with practical engineering applications. In addition to research, he actively mentors junior researchers, contributes to technical discussions, and engages in academic collaborations to advance antenna and metamaterial technologies. His expertise and technical acumen make him a promising figure in the field of advanced electromagnetic applications.

Research Interests

Mengyao Li’s research interests lie at the intersection of electromagnetic wave engineering, metasurfaces, and reconfigurable intelligent surfaces (RIS), with a strong emphasis on low-RCS antenna-radome systems, lens antennas, and THz wireless communication. His work on low-scattering antenna structures contributes to stealth and radar applications, while his innovative metasurface designs enable advanced beam steering and polarization control. Additionally, he explores MEMS-based THz metasurfaces, which hold promise for 6G wireless networks and high-frequency communication systems. His research on frequency-selective structures and transmissive antennas bridges the gap between traditional electromagnetic theory and modern reconfigurable technologies. By integrating material science, physics, and advanced fabrication techniques, Li’s research aims to create high-performance, miniaturized, and dynamically tunable electromagnetic structures, making a significant impact on next-generation wireless technologies and radar systems.

Awards and Honors

Throughout his academic journey, Mengyao Li has received multiple recognitions for his research excellence. As an Outstanding Graduate of Beijing, he was acknowledged for his academic performance and early contributions to telecommunication engineering. His Ph.D. research at NTU has been supported by prestigious funding, reflecting the significance of his work in low-RCS antenna systems and metasurface engineering. His journal publications in IEEE Transactions on Antennas and Propagation and IEEE Antennas Wireless Propagation Letters further highlight his research impact in the field. Li’s innovative contributions to reconfigurable intelligent surfaces and frequency-selective radomes have been well-received in the academic community, earning him invitations to collaborate with leading researchers. With his strong research background and growing influence in electromagnetic wave control and antenna design, he continues to make valuable contributions to the field, positioning himself as a rising expert in advanced electromagnetics and wireless technology.

Conclusion

Mengyao Li is a strong candidate for the Best Researcher Award, with a solid publication record, cutting-edge research contributions, and expertise in emerging electromagnetic technologies. However, improving the real-world impact, conference visibility, and interdisciplinary collaboration could further solidify the case for this award. If these areas are strengthened, Mengyao Li could become a leading figure in electromagnetic and metasurface research.

Publications Top Noted

  • Y. Ding, M. Li, J. Su, Q. Guo, H. Yin, Z. Li, J. Song – 2020 – 70 citations
    “Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch.”
    IEEE Transactions on Antennas and Propagation 69 (3), 1493-1504

  • M. Li, L. Zhou, Z. Shen – 2021 – 30 citations
    “Frequency selective radome with wide diffusive bands.”
    IEEE Antennas and Wireless Propagation Letters 21 (2), 327-331

  • M. Li, Z. Shen – 2023 – 13 citations
    “Low-RCS transmitarray based on 2.5-D cross-polarization converter.”
    IEEE Transactions on Antennas and Propagation 71 (7), 5828-5837

  • M. Li, Z. Shen – 2023 – 5 citations
    “Integrated diffusive antenna array of low backscattering.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li, Z. Shen – 2022 – 3 citations
    “Hybrid Frequency Selective Rasorber Combining 2-D and 3-D Resonators.”
    2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, J. Su – 2020 – 1 citation
    “Wideband frequency-selective absorber based on metal cross ring.”
    2020 IEEE MTT-S International Microwave Workshop Series on Advanced

  • M. Li, Z. Shen – 2024 – Not yet cited
    “Hybrid Rasorber Based on 3-D Bandpass Frequency-Selective Structures.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li – 2024 – Not yet cited
    “Integrated radome and antenna systems of low radar cross section.”
    Nanyang Technological University (Ph.D. Dissertation)

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Highly Selective Third-Order Bandpass Frequency Selective Surface.”
    2023 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Transmission Phase Controllable Rasorber Using All-Metal Cross-Polarization Converter.”
    2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, Z. Shen – 2022 – Not yet cited
    “Low-RCS Transmitarray Using Phase Controllable Absorptive Frequency-Selective Structure.”
    2022 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2021 – Not yet cited
    “RCS Reduction of Slot Antenna Array Using Coding Metasurfaces.”
    2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI

Nasimuddin | Engineering | Best Researcher Award

Dr. Nasimuddin | Engineering | Best Researcher Award

Principal Scientist I2R ASTAR  Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I²R), part of A*STAR in Singapore. With a distinguished career in RF and antenna engineering, he has contributed extensively to the fields of wireless power transmission, sensor design, and advanced antenna systems for a variety of applications including satellite communications and energy harvesting. Nasimuddin’s work bridges industry and academia, evidenced by his collaborations, industry technology transfers, and numerous patents.

profile

Google scholar.com

Education 🎓

  • Ph.D. in Electronic Science (2004): University of Delhi, India
    Thesis: Analysis and design of multilayer slow-wave microstrip structures and multilayered microstrip antennas.
  • M.Tech. in Microwave Electronics (1998): University of Delhi, India
  • M.Sc. in Electronics (1996): Jamia Millia Islamia, India
  • B.Sc. in Physics, Mathematics, Chemistry (1994): Jamia Millia Islamia, India

Experience 🏢

Nasimuddin has held various research and teaching roles. Since 2006, he has been part of I²R, A*STAR Singapore, where he currently serves as a Principal Scientist. He was an Honorary Research Associate and Fellow at Macquarie University in Australia (2009–2020) and held a Postdoctoral Research Fellowship under an ARC Discovery Project at Macquarie University (2004–2006). He has also conducted specialized courses in RF energy harvesting applications at NIT Silchar, India.

Research Interests 🔬

Nasimuddin’s research interests include:

  • Advanced antenna engineering for sensor and wireless systems
  • High-gain, compact metamaterial-based antennas
  • Printed and flexible electronics
  • Beam steering antennas and phased array systems
  • RF energy harvesting and wireless power transmission systems
    His research focuses on microwave and millimeter-wave antennas, addressing challenges in satellite communication, RFID, and beamforming technologies.

Awards 🏆

  • Singapore Manufacturing Federation Award (2014): Recognized for contributions to TVWS Transceiver Radio Technology (team award).
  • Dedicated Service Award (2022): Honored for 15 years at I²R, Singapore.
  • Long Service Awards (2012, 2017): For 5 and 10 years at I²R, Singapore.
  • Young Scientist Award (2005): Awarded by the International Union of Radio Science (URSI).
  • M.Tech. Merit Scholarship (1996): University of Delhi, for outstanding academic performance.

Publications Top Notes📚:

Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A State-of-the-Art Review – IEEE Antennas and Propagation Magazine, 2024. Cited by 12 articles.

Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions – IEEE Microwave Magazine, 2023. Cited by 18 articles.

5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting/Wireless Power Transmission Applications: An Overview – IEEE Antennas and Propagation Magazine, 2023. Cited by 25 articles.

A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique with a Thin Metasurface – IEEE Access, 2022. Cited by 10 articles.

Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems – IEEE Transactions on Instrumentation and Measurement, 2022. Cited by 8 articles.