Ho Won Jang | Materials Science | Best Paper Award

Prof. Dr. Ho Won Jang | Materials Science | Best Paper Award

Professor at Seoul National University, South Korea

Prof. Ho Won Jang is a distinguished professor in the Department of Materials Science and Engineering at Seoul National University (SNU), South Korea. With a career spanning over two decades, he has made groundbreaking contributions to materials science, particularly in electronic and electrochemical applications. His research focuses on advanced materials, including memristive materials, nanostructures, and epitaxial thin films, which have significant implications for nanoelectronics, neuromorphic computing, and sustainable energy solutions. As a globally recognized scientist, he has been actively involved in editorial boards, international collaborations, and high-impact research publications, shaping the future of electronic materials. His leadership roles in academia and professional societies highlight his commitment to advancing science and mentoring young researchers. With an extensive portfolio of research excellence and prestigious accolades, Prof. Jang continues to be a driving force in cutting-edge materials research, contributing significantly to the evolution of modern technologies.

Professional Profile

Education

Prof. Ho Won Jang earned his Ph.D. in Materials Science and Engineering from POSTECH (Pohang University of Science and Technology), Korea, in 2004, after completing his M.S. (2001) and B.S. (1999) degrees at the same institution. His academic journey was marked by a strong foundation in nanomaterials, thin films, and semiconductor physics, which paved the way for his pioneering research in advanced materials. During his Ph.D., he focused on the design and synthesis of functional materials for electronic applications, laying the groundwork for his future studies in epitaxial thin films and nanostructured devices. His early research contributions were recognized through multiple prestigious awards, demonstrating his academic excellence and innovative approach to materials science. His education at one of Korea’s leading engineering institutions provided him with the technical expertise and research capabilities that would later define his career as a top-tier scientist in the field.

Professional Experience

Prof. Jang began his professional career as a Postdoctoral Fellow at POSTECH (2004-2005) before moving to the University of Wisconsin-Madison (2006-2009) as a Research Associate. In 2006, he joined the Korea Institute of Science and Technology (KIST) as a Senior Research Scientist, where he led several high-impact projects in nanoelectronics and electrochemical applications. His transition to Seoul National University in 2012 as a Professor marked a significant milestone in his career, where he has since played a crucial role in advancing research in materials science and engineering. Over the years, he has served as an editor for multiple international journals, collaborated with leading global researchers, and contributed to key advancements in electronic materials. His leadership positions, including serving as Associate Dean at SNU’s College of Engineering (2021-2024), highlight his influence in shaping the future of materials research and education.

Research Interests

Prof. Jang’s research focuses on epitaxial thin films, memristive materials, electrochemical catalysts, and nanosensors for next-generation electronic and energy applications. His studies on Mott insulators, neuromorphic computing, and electronic nose/tongue technologies have led to innovative breakthroughs in artificial intelligence-driven materials and nanoelectronic devices. Additionally, his work on localized surface plasmon resonance sensors and micro-light-emitting diodes (µLEDs) has potential applications in biomedical sensing and next-generation displays. His research in electrodes and catalysts for water splitting and CO₂ reduction aligns with global efforts toward sustainable and renewable energy solutions. By integrating multidisciplinary approaches, including nanotechnology, chemistry, and physics, he continues to explore novel materials with enhanced functionalities for computing, sensing, and clean energy applications, making significant contributions to both fundamental science and industrial innovation.

Awards and Honors

Prof. Ho Won Jang has received numerous prestigious awards for his outstanding contributions to materials science and engineering. His accolades include the Top 2% Scientists ranking by Stanford University (2022), the ACS Nano Top Contributor in Korea (2024), and the Academic Research and Education Award from SNU (2023). He has also been recognized with the 2021 Science and Technology Excellence Paper Award of Korea and multiple Best Paper Awards from leading conferences and institutions. His early achievements include the Young Ceramist Award (2014) and Young Scholarship Award (2014), highlighting his contributions to ceramic materials research. Additionally, he has played a vital role as an editorial board member for major scientific journals and a reviewer for over 200 high-impact journals, further solidifying his reputation as a leading scientist in materials research. His numerous honors reflect his exceptional research impact, leadership, and dedication to advancing materials science.

Conclusion

Prof. Ho Won Jang is highly suitable for the Research Best Paper Award, given his exceptional research contributions, prestigious recognitions, and leadership in the field of materials science and engineering. His extensive publication record, awards, and editorial roles further validate his expertise. If the award criteria favor cutting-edge innovation and research influence, he would be an excellent candidate. Strengthening the application by highlighting real-world applications, interdisciplinary collaborations, and mentoring efforts could further solidify his case.

Publications Top Noted

  1. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    • Authors: A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, et al.
    • Year: 2009
    • Citations: 685
  2. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

    • Authors: S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, et al.
    • Year: 2010
    • Citations: 550
  3. Giant piezoelectricity on Si for hyperactive MEMS

    • Authors: S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, et al.
    • Year: 2011
    • Citations: 514
  4. One-dimensional oxide nanostructures as gas-sensing materials: review and issues

    • Authors: K. J. Choi, H. W. Jang
    • Year: 2010
    • Citations: 473
  5. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination

    • Authors: S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. V. Le, H. W. Jang, et al.
    • Year: 2020
    • Citations: 446
  6. Organolead halide perovskites for low operating voltage multilevel resistive switching

    • Authors: J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, et al.
    • Year: 2016
    • Citations: 361
  7. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films

    • Authors: H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, et al.
    • Year: 2009
    • Citations: 351
  8. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate

    • Authors: S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J. L. Lee
    • Year: 2017
    • Citations: 334
  9. Ferroelectricity in strain-free thin films

    • Authors: H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, et al.
    • Year: 2010
    • Citations: 334
  10. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending

  • Authors: Y. H. Kim, S. J. Kim, Y. J. Kim, Y. S. Shim, S. Y. Kim, B. H. Hong, H. W. Jang
  • Year: 2015
  • Citations: 326
  1. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
  • Authors: C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, et al.
  • Year: 2011
  • Citations: 312
  1. Strain-induced polarization rotation in epitaxial (001) thin films
  • Authors: H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, et al.
  • Year: 2008
  • Citations: 309
  1. Perspectives and challenges in multilayer ceramic capacitors for next-generation electronics
  • Authors: K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, H. W. Jang
  • Year: 2019
  • Citations: 307
  1. Organic–Inorganic hybrid halide perovskites for memories, transistors, and artificial synapses
  • Authors: J. Choi, J. S. Han, K. Hong, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 303
  1. Metallic and insulating oxide interfaces controlled by electronic correlations
  • Authors: H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, M. K. Niranjan, C. T. Nelson, et al.
  • Year: 2011
  • Citations: 287
  1. Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective
  • Authors: Q. V. Le, H. W. Jang, S. Y. Kim
  • Year: 2018
  • Citations: 278
  1. Spin injection/detection using an organic-based magnetic semiconductor
  • Authors: J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, A. J. Epstein
  • Year: 2010
  • Citations: 260
  1. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures
  • Authors: H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, J. H. Lee
  • Year: 2013
  • Citations: 259
  1. Low-dimensional halide perovskites: review and issues
  • Authors: K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 257
  1. Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions
  • Authors: K. Hong, M. Sajjadi, J. M. Suh, K. Zhang, M. Nasrollahzadeh, H. W. Jang, et al.
  • Year: 2020
  • Citations: 252

 

Muhammad Hussain | Materials Science | Best Researcher Award

Mr. Muhammad Hussain | Materials Science | Best Researcher Award

Academician/Research Scholar at UOW Australia, Australia

Muhammad Hussain is a dedicated mechanical engineer with a strong background in design, development, and automation of mechanical systems. With over eight years of professional experience, he has worked extensively on customized engineering solutions, advanced manufacturing techniques, and material processing technologies. His expertise spans 3D modeling, finite element simulations, laser spectroscopy, and additive manufacturing. Throughout his career, he has collaborated with various research institutions and industries to enhance mechanical system automation. His commitment to innovation and research excellence makes him a leading figure in the field of mechanical engineering.

Professional Profile

Education

Muhammad Hussain holds a Master’s degree in Mechanical Engineering, which provided him with a solid foundation in engineering design, thermomechanical analysis, and automation technologies. His academic journey was marked by active participation in research projects, advanced material processing, and welding technology studies. He has also undertaken specialized training in nondestructive testing (NDT), quality control, and industrial manufacturing systems, equipping him with a diverse skill set that bridges theoretical knowledge with practical applications.

Professional Experience

Muhammad Hussain has had an extensive professional career, notably serving at NCC-PINSTECH complex from October 2014 to May 2023 as a Design and Development Engineer. His work includes 3D computer-aided manufacturing (CAM), finite element analysis, and automation of mechanical systems. He has played a key role in mechanized material handling, welding automation, and HVAC system design. Additionally, he has contributed to contract management, quality assurance, and interdisciplinary research projects, making significant advancements in industrial manufacturing technologies.

Research Interests

His research interests focus on additive manufacturing, automated welding systems, thermomechanical welding, and advanced material processing. He has been actively involved in developing experimental setups, performing spectroscopy analysis, and studying composite materials like W-Cu for industrial applications. His expertise in Wire Arc Additive Manufacturing (WAAM) and Laser-Induced Breakdown Spectroscopy (LIBS) showcases his commitment to pushing the boundaries of mechanical engineering and manufacturing technology.

Awards and Honors

Muhammad Hussain has been recognized for his significant contributions to engineering and research. He has published research in peer-reviewed journals, including studies on welding metallurgy and composite material fabrication. His work in design and automation has led to numerous acknowledgments from research institutions and industrial partners. He continues to strive for excellence in mechanical engineering, automation, and material science, making him a strong candidate for prestigious research awards.

Conclusion

Muhammad Hussain has a strong technical background, with proven expertise in mechanical engineering, automation, and material science research. His innovations, interdisciplinary collaborations, and published work make him a strong candidate for the Best Researcher Award. However, to further enhance his research impact, expanding publication records, obtaining patents, and increasing involvement in mentorship or academic activities would strengthen his case.

Publications Top Noted

APA (7th Edition):

Hussain, M., Dong, B., Qiu, Z., Garbe, U., Pan, Z., & Li, H. (2025). A review on the additive manufacturing of W-Cu composites. Metals, 15(2), 197. https://doi.org/10.3390/met15020197.

IEEE:

M. Hussain, B. Dong, Z. Qiu, U. Garbe, Z. Pan, and H. Li, “A review on the additive manufacturing of W-Cu composites,” Metals, vol. 15, no. 2, p. 197, Feb. 2025. DOI: 10.3390/met15020197.

MLA:

Hussain, Muhammad, et al. “A Review on the Additive Manufacturing of W-Cu Composites.” Metals, vol. 15, no. 2, 2025, p. 197, https://doi.org/10.3390/met15020197.

Muhammad Arshad | Material Sciences | Best Research Article Award

Dr. Muhammad Arshad | Material Sciences | Best Research Article Award

Principal Scientific Officer, Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Islamabad, Pakistan

Dr. Muhammad Arshad is a distinguished Staff Scientist at the Nanoscience & Technology Department (NS&TD) of the National Centre for Physics (NCP) at Quaid-i-Azam University (QAU) Campus, Islamabad, Pakistan. He previously served as a Principal Scientific Officer and Associate Professor at the same institution. Dr. Arshad manages advanced spectroscopy and microscopy systems, including X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). He also contributes as a visiting faculty member in the Department of Physics at QAU. 🧪🔬

Publication Profile

Scopus

Strengths for the Award:

  1. Expertise and Technical Skills:
    • Muhammad Arshad demonstrates a broad and deep technical expertise in the synthesis, characterization, and investigation of advanced materials, particularly carbon-based nanostructures. His experience with cutting-edge techniques such as X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM) is a significant asset.
    • His ability to handle and operate sophisticated equipment and software for data analysis showcases his high-level technical skills and hands-on experience, crucial for impactful research.
  2. Research Contributions:
    • Arshad has an impressive record of publications in reputable journals, highlighting his contributions to various fields, including energy storage devices, graphene-based materials, and spectroscopy. His recent papers indicate ongoing advancements and active engagement in his research areas.
    • His research on energy conversion and storage devices, as well as two-dimensional materials, addresses important and contemporary scientific challenges.
  3. Institutional and International Experience:
    • His experience working at renowned institutions like Lawrence Berkeley National Laboratory and Advanced Light Source, as well as his role in establishing and managing a surface science laboratory, demonstrates his capability to work at an international level and contribute to significant scientific projects.
  4. Educational Background:
    • His strong educational foundation, with a Ph.D. from the University of Groningen and extensive teaching experience, further solidifies his qualifications as a leading researcher in his field.

Areas for Improvement:

  1. Broader Impact and Outreach:
    • While his technical skills and research contributions are strong, enhancing the broader impact of his work through public outreach, collaborations with industry, or policy influence could strengthen his candidacy for the award.
    • Increasing visibility through more high-profile publications or presentations at major conferences could further establish his reputation in the scientific community.
  2. Interdisciplinary Research:
    • Exploring interdisciplinary research opportunities could expand the applications of his work and demonstrate versatility in addressing diverse scientific questions. This could also involve collaborating with researchers from different fields to tackle complex, multifaceted problems.

 

Education

Dr. Arshad earned his Ph.D. in 2018 from the Zernike Institute for Advanced Materials, University of Groningen, Netherlands, focusing on carbon-based hybrid nanostructures. He completed his M.Phil. in Physics in 2006 from Quaid-i-Azam University, Islamabad, and his M.Sc. in Physics in 2003 from Government College University, Lahore, Pakistan. 🎓📚

Experience

Dr. Arshad’s expertise spans the synthesis of carbon-based hybrid nanostructured materials and the growth of thin films and carbon nanostructures. He has substantial experience with synchrotron-based XPS at Lawrence Berkeley National Laboratory (LBNL) and has played a key role in establishing surface science laboratories at NCP. His technical skills include handling XPS, STM, AFM, and Raman spectroscopy systems, among others. 🌟🔧

Research Focus

Dr. Arshad’s research interests include energy conversion and storage devices, graphene-based composites, and the spectroscopy and microscopy of thin films and 2D materials. His work focuses on the synthesis, characterization, and investigation of advanced nanomaterials and their properties. 🔋📈

Awards and Honours

Dr. Arshad has been recognized for his significant contributions to nanoscience and technology, including awards for his research in nanostructured materials and spectroscopy. His work has earned him recognition within the scientific community for advancements in material science and surface analysis. 🏆🎖️

Publication Top Notes

S. Sharif, T. Ahmed, Z. Ahmad, M. A. Choudhary, M. Arshad, “Synthesis and characterization of Ag@Ni co-axial nanocables and their fluorescent and catalytic properties,” Science and Engineering of Composite Materials, 31(1), 20240010 (2024). 📄

N. Athar, G. Naz, M. Ramzan, M. S. Sadiq, M. Arshad, et al., “Enhanced sunlight-driven photocatalysis owing to synergetic effect of gold nanoparticles-incorporated ZnO/rGO ternary heterostructures,” J. K. Saud University-Science, 36(3), 103104 (2024). 🌟

E. Dogan, S. Altundag, S. Altin, M. Arshad, et al., “Production of V‐Doped P2‐type Na0.67Mn0.5Fe0.43Al0.07O2 Cathodes and Investigation of Na‐Ion Full Cells Performance,” Energy Technology, 12(1), 2300837 (2024). 🔋

S. Irfan, Y. A Haleem, M. Usman, N. Ahmad, M. Arshad, et al., “Validating superior electrochemical properties of Ti3C2 MXene for supercapacitor applications through first-principles calculations,” New J. Chem., 48, 4982 (2024). 🔬

U. Younas, M. Atif, M. Sahil, T. Ali, M. Arshad, et al., “Structural, optical, dielectric, and ferroelectric properties in BaTi1−xCrxO3 ceramics prepared by a solvothermal reflux approach,” Ceramics International, 50(3), 4469-4479 (2024). 📘

M. Arshad, L. Sorba, P. Rudolf, C. Cepek, “Synthesis and Characterization of Carbon Nanofibers Grown on Vertically Aligned InAs Nanowires Via Chemical Vapour Deposition,” Nanomaterials, 13, 3083 (2023). 📖

Conclusion:

Muhammad Arshad’s robust technical expertise, impressive publication record, and significant contributions to advanced materials research make him a strong candidate for the Best Researcher Article Award. His work in energy storage, graphene-based materials, and advanced spectroscopy techniques demonstrates both depth and breadth in his research. While he has a solid foundation and excellent credentials, expanding his impact through broader outreach and interdisciplinary collaboration could enhance his profile even further. Overall, his qualifications and achievements align well with the criteria for this prestigious award.

 

Xiangfan Fang | Materials Science | Best Research Article Award

Prof Dr. Xiangfan Fang | Materials Science | Best Research Article Award

Institut of Automotive Lightweight Design, University of Siegen, Germany

Prof. Dr.-Ing. Xiangfan Fang is a distinguished professor and director of the Institute of Automotive Lightweight Design at the University of Siegen. With a robust background in materials engineering and a career spanning several prestigious institutions and companies, he has made significant contributions to the field of vehicle body and chassis lightweight design. His expertise encompasses materials engineering, manufacturing technology, and the integrative approach to vehicle lightweight design. Prof. Fang has held key roles in both academia and industry, leading innovative projects and research that have advanced the automotive sector.

Profile

Scopus

Education 🎓

Prof. Fang earned his Diplom-Ingenieur degree in Metallurgy and Metal Physics in 1987 from RWTH Aachen, followed by a Dr.-Ing. in 1992 from the same institution. His education laid the foundation for a career characterized by a deep understanding of materials science and engineering principles.

Professional Experience 🛠️

Prof. Fang’s career began as a research associate at TU Hamburg-Harburg and RWTH Aachen. He then moved into industry, working as a project engineer at Adam Opel AG, where he introduced integrative approaches to weight reduction in car bodies. At Stahlwerke Bremen GmbH, he led the first series launch of non-linear laser welded blanks in vehicles. His tenure at MAGNA COSMA Europe saw him manage product and technology development, focusing on ultrahigh-strength steels and hot-forming technologies. Since 2010, he has been a W3-Professor and director at the University of Siegen, furthering research in automotive lightweight design.

Research Interests 🔬

Prof. Fang’s research interests are centered around developing methods for component development in vehicles, focusing on material selection, geometric section design, and the study of material loading limits under severe stresses and strains. He also explores novel manufacturing methods for multi-material-forming and joining, and the development of advanced vehicle chassis systems for fuel cell and battery electric vehicles.

Awards 🏆

Prof. Fang has received notable accolades, including the Springgorum Medal for his distinguished Diplom and the Borchers Medal for his outstanding doctorate from RWTH Aachen. These awards highlight his academic excellence and contributions to engineering.

Publications Top Notes 📚

C. Hartig, X. F. Fang, H. Mecking, and M. Dahms, “Textures and plastic anisotropy in TiAl,” Acta Metallurgica, 1992, pp. 1883-1894. doi:10.1016/0956-7151(92)90175-e.

U. Reichel, X. F. Fang, and W. Dahl, “Nummerische Verfahren zur Fließspannungsanalyse,” Steel Research, 1991, pp. 131-136. doi:10.1002/srin.199101262.

X. F. Fang and W. Dahl, “Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels,” Materials Science and Engineering A, 1991, pp. 189-198. doi:10.1016/0921-5093(91)90769-j.

 

 

 

Seyed Ali Hosseini Khorasani | Materials Information | Best Researcher Award

Dr. Seyed Ali Hosseini Khorasani | Materials Information | Best Researcher Award

PhD Candidate, Semnan University, Iran

Dr. Seyed Ali Hosseini Khorasani, a dedicated PhD Candidate at Semnan University in Iran, has been recognized for his outstanding contributions in Materials Information with the prestigious Best Researcher Award. 🏆 His relentless pursuit of excellence and innovative research methodologies have propelled him to the forefront of his field. With a keen focus on advancing our understanding of materials science, Dr. Khorasani’s work promises to have far-reaching implications in various industries. His unwavering commitment to pushing the boundaries of knowledge exemplifies the spirit of academic inquiry and underscores his status as a leader in the field of materials research.

Profile

Google Scholar

Education 🎓

Seyed Ali Hosseini Khorasani has pursued an impressive academic journey in the field of nanotechnology, culminating in his current status as a Ph.D. candidate in Nanomaterials at Semnan University, Iran. Starting from his Bachelor’s degree in Materials Science and Engineering at the University of Sistan and Balochestan, Zahedan, Iran, he continued to excel in his Master’s studies in Nanotechnology at Tarbiat Modares University, Tehran, Iran.

Experience 💼

Seyed Ali Hosseini Khorasani’s professional experience spans various roles, primarily focused on nanomaterials synthesis and application. Notably, he has been involved in synthesizing colloidal silica and zeolites for moisture adsorption properties in the petroleum industry. His expertise extends to mineral compound products for oil purification, solvent-based coatings for the painting industry, and lignin removal from paper industry wastewater. His diverse experience reflects his versatility in the field of nanotechnology.

Research Interests 🔬

Seyed Ali Hosseini Khorasani’s research interests are broad and encompass various aspects of nanotechnology, including nanomaterials synthesis, surface engineering, composite catalysts, renewable energy, and nanobiotechnology. His work focuses on experimental procedures and data-driven approaches, utilizing artificial neural networks for material design. His dedication to advancing knowledge in these areas underscores his commitment to pushing the boundaries of nanotechnology.

Awards 🏆

Seyed Ali Hosseini Khorasani’s academic achievements have been recognized through several honors and awards. His outstanding performance in both national master’s and doctorate degree admission exams demonstrates his academic excellence. Additionally, his high GPA in both Master’s and Ph.D. studies further highlights his exceptional abilities in the field of nanomaterials. These accolades signify his dedication and contributions to advancing nanotechnology research in Iran.

Publications Top Notes 📚

“High corrosion resistance Ni-reduced graphene oxide nanocomposite coating” – Corrosion Reviews, 2016

“Towards Tailored Thermoelectric Materials: An Artificial Intelligence-Powered Approach to Material Design” – Physica B: Condensed Matter, 2024 .

“Synthesis of mesoporous aluminosilicate using fly ash: Optimization of crystallization time and temperature” – The 8th Zeolite Conference of the Iranian Chemical Society, 2023

 

Mohsen Issa | Structural and Materials Engineering Award | Best Researcher Award

Prof. Mohsen Issa | Structural and Materials Engineering Award | Best Researcher Award

Professor of Structural and Materials Engineering, University of Illinois at Chicago, United States

Mohsen Issa is a distinguished civil engineer and educator 🏗️. Holding a Ph.D. in Civil Engineering from the University of Texas at Arlington, he has been a faculty member at the University of Illinois since 1989. With a rich background in both academia and industry, Dr. Issa has made significant contributions to structural engineering research and innovation 🏅. His expertise spans various domains, including bridges, materials, and structural engineering. Dr. Issa’s dedication to advancing the field is reflected in his extensive publication record and involvement in prestigious organizations. He is celebrated for his leadership in translating theoretical advancements into real-world applications, shaping the future of civil engineering.

Profile

Google Scholar

Education  🎓

Mohsen Issa holds a Bachelor, Master, and Ph.D. in Civil Engineering (Structures) from the University of Texas at Arlington 🏫. His educational journey equipped him with a solid foundation in structural engineering, laying the groundwork for his illustrious career in academia and research.

Experience 💼

Before joining the University of Illinois, Dr. Issa served as a Consulting Structural Engineer and held academic positions at various institutions, including the University of California Irvine. His diverse experiences enriched his understanding of real-world engineering challenges and academic pursuits.

Research Interests 🔍

Dr. Issa’s research interests encompass a wide range of topics within civil engineering, including bridges, materials, and structural engineering. He is particularly passionate about advancing methodologies and solutions to complex engineering challenges, driving innovation and progress in the field.

Awards 🏆

Dr. Issa’s remarkable contributions have been recognized through numerous awards and honors, including fellowships from prestigious engineering societies and teaching excellence awards at the University of Illinois. His dedication to teaching and research excellence has left a lasting impact on both students and colleagues alike.

Publications Top Notes 📚

“Behavior of masonry-infilled nonductile reinforced concrete frames,” Journal of Structural Engineering, 2002. [Link]

“Fractal dimension––a measure of fracture roughness and toughness of concrete,” Engineering Fracture Mechanics, 2003. [Link]

“Investigation of cracking in concrete bridge decks at early ages,” Journal of Bridge Engineering, 1999. [Link]

 

 

 

 

Micaela Castellino | Materials Science | Women Researcher Award

Dr . Micaela Castellino | Materials Science | Women Researcher Award

Senior PostDoc Researcher, Politecnico di Torino, Italy

Micaela Castellino, born on April 23, 1979, in Turin, Italy 🇮🇹, is a distinguished Senior PostDoc Researcher at the Applied Science and Technology Department of Polytechnic of Turin since September 2023. As the XPS lab head, she oversees the characterization of diverse surface materials, ranging from carbon-based materials to ceramics and metallic nanoparticles. Micaela’s expertise spans Experimental Physics, Material Science, and Solid State Physics, with a focus on Chemico-Physical Characterization and Surface functionalization. Her work involves cutting-edge techniques like X-Ray Photoelectron Spectroscopy (XPS), contributing to advancements in Electrical and Thermal Conductivity, Carbon-based materials, Polymer composites, Biomaterials, and Materials for Energy Harvesting and CO2 trapping. 🌐🔬👩‍🔬

Profile

linkedin

Scopus

orcid

Work Experiences

Micaela Castellino has been a trailblazer in her role as a Senior Post Doc Researcher at the Applied Science and Technology Department (DISAT) of Politecnico di Torino since September 2023. 🌟 Specializing in the study and characterization of materials for Energy Harvesting/Conversion applications and CO2 absorption and conversion, she has also been a dedicated professor for the “Nanomaterials Engineering” course for the Master’s degree in Functional Materials Engineering. Prior to this, from September 2018 to August 2023, Micaela served as an Assistant Professor at DISAT, focusing on materials for Energy Harvesting/Conversion applications and teaching the “Nanomaterials Engineering” course. 📚 Before joining Politecnico di Torino, she made significant contributions during her tenure as a Senior Post Doc Researcher at the Centre for Sustainable Future Technologies at Istituto Italiano di Tecnologia from June 2013 to August 2018. In this role, she delved into the study and characterization of nanostructured materials for energy harvesting applications, also imparting her knowledge through teaching XPS (X-ray Photoelectron Spectroscopy) lab courses for Master’s and Ph.D. students. 👩‍🏫🔬🌍

Education

Micaela Castellino holds a Ph.D. in Fundamental & Applied Physics and Astrophysics, where her research focused on the “Study and characterization of diamond surfaces for biosensoring applications.” 🎓 During her doctoral journey, she played a pivotal role in implementing and characterizing an XPS instrument situated in the Solid State Physics Laboratory. 🛠️ Her expertise shone in Diamond Surface Characterization and Functionalization, specifically contributing to the development of nano-biosensors for the DIBIOREX Project at the NIS (Nanostructured Interfaces and Surfaces) Centre within the University of Turin. 🌐 The intersection of physics and biosensor technology marked a significant chapter in her academic pursuits. 👩‍🔬💎

Language

Micaela Castellino’s proficiency extends to the realms of Nuclear, SubNuclear, and Astroparticle Physics, where she has made notable contributions in the detection of cosmic rays. 🌌🔍 Her skill set is further enriched by her adeptness in C++ language programming, allowing her to navigate complex computational challenges in her research endeavors. 💻 Fluent in Italian, her mother tongue, and boasting a C1 level in English, Micaela is well-equipped for effective communication and collaboration in an international scientific context. Additionally, she possesses a foundational understanding of Spanish at an A1 level. 🇮🇹🌐🌍 This multilingual proficiency enhances her ability to engage with diverse scientific communities and contribute meaningfully to her field. 👩‍🔬📊

Publications Top Notes

 

  1. “The beneficial role of nano-sized Fe3O4 entrapped in ultra-stable Y zeolite for the complete mineralization of phenol by heterogeneous photo-Fenton under solar light”
    • Authors: Tammaro, O., Morante, N., Marocco, A., … Sannino, D., Pansini, M.
    • Journal: Chemosphere, 2023, 345, 140400
    • Citations: 2 📚
  2. “Understanding the role of imidazolium-based ionic liquids in the electrochemical CO2 reduction reaction”
    • Authors: Fortunati, A., Risplendi, F., Re Fiorentin, M., … Russo, N., Hernández, S.
    • Journal: Communications Chemistry, 2023, 6(1), 84
    • Citations: 3 📚
  3. “Decoration of laser-induced graphene with MXene and manganese oxide for fabrication of a hybrid supercapacitor”
    • Authors: Reina, M., Serrapede, M., Zaccagnini, P., … Gonzalez-Julian, J., Lamberti, A.
    • Journal: Electrochimica Acta, 2023, 468, 143163
    • Citations: 3 📚
  4. “Standardization of Cu2O nanocubes synthesis: Role of precipitation process parameters on physico-chemical and photo-electrocatalytic properties”
    • Authors: Cuatto, G., Zoli, M., Gallone, M., … Castellino, M., Hernández, S.
    • Journal: Chemical Engineering Research and Design, 2023, 199, pp. 384–398
    • Citations: 1 📚
  5. “CO2 hydrogenation to methanol over Zr- and Ce-doped indium oxide”
    • Authors: Salomone, F., Sartoretti, E., Ballauri, S., … Pirone, R., Bensaid, S.
    • Journal: Catalysis Today, 2023, 423, 114023
    • Citations: 7 📚
  6. “CO2 conversion into hydrocarbons via modified Fischer-Tropsch synthesis by using bulk iron catalysts combined with zeolites”
    • Authors: Corrao, E., Salomone, F., Giglio, E., … Pirone, R., Bensaid, S.
    • Journal: Chemical Engineering Research and Design, 2023, 197, pp. 449–465
    • Citations: 2 📚