Tun Naw Sut | Chemical Engineering | Best Researcher Award

Dr. Tun Naw Sut | Chemical Engineering | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Tun Naw Sut is a postdoctoral fellow specializing in nanomedicine, biomimetic membranes, and bio-sensing technologies, recognized for his interdisciplinary expertise and impactful research contributions. He holds dual doctoral training in nanomedicine and chemical engineering, supported by prior qualifications in materials science and biomedical engineering, forming a strong foundation for his work at the interface of engineering, biotechnology, and nanomaterials. His professional experience spans academic research, diagnostic platform development, electrochemical biomarker detection, phospholipid self-assembly studies, and compliance testing of medical electrical equipment, reflecting both scientific depth and industry-relevant technical capability. Dr. Sut’s research focuses on lipid-based nanomaterials, membrane biophysics, antimicrobial lipids, diagnostic sensors, and therapeutic nanoplatforms, and he has authored numerous publications in high-impact journals that advance the understanding and application of functional biomimetic systems. His leadership includes serving as guest editor and topic editor for international journals, contributing to the curation of scholarly work in biomimicry, functional materials, and membrane science. He has been recognized through competitive research grants, academic scholarships, and editorial appointments that highlight his innovation, scientific rigor, and growing influence in the field. Through his combined research excellence, interdisciplinary training, and dedication to advancing diagnostic and therapeutic technologies, Dr. Sut demonstrates exceptional potential for continued contributions to scientific innovation and research leadership.

Profiles: Scopus | ORCID

Featured Publications

1. Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces.

2. Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano.

3. Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials.

4. Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials.

5. Hwang, Y., Zhao, Z. J., Shin, S., Sut, T. N., Jackman, J. A., Kim, T., Moon, Y., Ju, B. K., Jeoni, J. H., Cho, N. J., & Kim, M. (2025). Nanopot plasmonic sensor platform for broad spectrum virus detection. Chemical Engineering Journal.

Dr. Tun Naw Sut’s work advances next-generation diagnostic and therapeutic technologies through innovative biomimetic membrane engineering and lipid-based nanomaterials. His research contributes to global health by enabling more effective pathogen detection, improved targeted delivery systems, and transformative strategies for sensing and treating complex diseases.

Liana Mogilnikova | Materials Science | Best Researcher Award

Mrs. Liana Mogilnikova | Materials Science | Best Researcher Award

Liana Mogilnikova  | MISIS | Russia

Mrs. Liana Mogilnikova is a dedicated and accomplished researcher specializing in the study of hexagonal ferrites and magnetically hard materials. Her research focuses on understanding phase transformations and crystal structures, contributing valuable insights into the synthesis and characterization of strontium hexaferrite. Through meticulous experimentation and analytical precision, she has developed a comprehensive methodology for investigating the structural and phase states of ferrite materials. Her scholarly contributions, reflected in publications in reputed journals, demonstrate her commitment to advancing material science and magnetic materials research. With strong skills in data analysis, academic writing, and conference presentation, she effectively communicates complex scientific findings to the research community. Her work not only deepens the understanding of ferrite synthesis mechanisms but also lays the foundation for future innovations in nanostructured and energy-efficient magnetic materials, establishing her as a promising and impactful researcher in her field.

Profiles: Scopus | ORCID

Featured Publications

1. Mogilnikova, L. D., Menushenkov, V. P., Mogilnikov, P. S., & Savchenko, A. G. (2025). Phase transformations in the synthesis process of strontium hexaferrite SrFe₁₂O₁₉ by the sol-gel method. Journal of Alloys and Compounds, 1042, 183995.

Oleg Morozov | Engineering | Best Researcher Award

Prof. Oleg Morozov | Engineering | Best Researcher Award

Professor at Kazan National Research Technical University n.a. A.N. Tupolev-KAI, Russia

Prof. Oleg G. Morozov is a distinguished academic and researcher in the field of microwave photonics and fiber optic sensor technology. Born on October 30, 1960, in Kazan, Tatarstan, Russia, he has made significant contributions to both fundamental and applied aspects of electrodynamics and photonics. With a professional career spanning over four decades, Prof. Morozov has held various high-impact academic and administrative positions at Kazan National Research Technical University named after A.N. Tupolev-KAI. He is known for his leadership in advancing research at the intersection of electronics, photonics, and cyber-physical systems. His work has been central to establishing several key academic departments and research labs, and he is currently the Head of the IT-COM Department. In addition to his academic duties, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems. He is widely respected for both his scientific rigor and leadership in research development.

Professional Profile

Education

Prof. Morozov pursued his early higher education in radiotechnics, graduating as an Engineer in 1983 from the Tupolev Aviation Institute in Kazan. Demonstrating academic excellence and deep technical curiosity, he completed his Ph.D. in 1987, focusing on advanced topics in applied physics and communication systems. Further solidifying his standing in the academic community, he earned the prestigious Doctor of Technology degree in 2004 from Kazan National Research Technical University named after A.N. Tupolev-KAI. His educational journey is characterized by a strong foundation in electronics, microwave engineering, and photonics—fields that have informed his research career. Throughout his academic progression, Prof. Morozov has stayed closely involved with evolving technological disciplines, often integrating cross-disciplinary approaches in his teaching and research. His educational background has equipped him not only with in-depth technical knowledge but also with a strategic vision for technology’s role in science and innovation, particularly within the Russian higher education landscape.

Professional Experience

Prof. Morozov’s professional experience is marked by a series of leadership roles within Kazan National Research Technical University. From 1989 to 1993, he was the Head of the Quantum Electronics and Laser Technology R&D Lab, where he initiated numerous pioneering projects. Later, between 2005 and 2014, he led the TV and Multimedia Systems Department, focusing on advancements in signal processing and integrated media technologies. From 2014 to 2023, he served as the Head of the Radiophotonics and Microwave Technology Department, strengthening the university’s position in cutting-edge research. In parallel, he also directed the R&D Institute of Applied Electrodynamics, Photonics, and Life Systems from 2012 to 2021, where he supervised multidisciplinary research teams. Currently, he is a Professor and Head of the IT-COM Department. His professional path reflects a consistent commitment to innovation, interdisciplinary research, and fostering academic excellence in emerging technological domains.

Research Interests

Prof. Morozov’s research interests lie primarily in microwave photonics, fiber optic sensors, and radiophotonic interrogation techniques. His work bridges theoretical innovation and applied research, especially in high-frequency signal processing, quantum electronics, and cyber-physical system integration. He has contributed significantly to the development of advanced sensing technologies, optical communication systems, and integrated photonic devices. His research also explores the role of photonics in healthcare and smart systems, showing an ability to adapt traditional fields to modern technological challenges. Prof. Morozov has consistently aimed to merge physical sciences with engineering applications, contributing to both national and international scientific communities. His leadership in these areas has resulted in a number of collaborative projects and publications that have advanced the state of the art in photonics and related technologies. He also emphasizes system-level thinking, where electronics, optics, and digital technologies converge to build intelligent and adaptive sensing solutions for next-generation applications.

Awards and Honors

Throughout his illustrious career, Prof. Morozov has received numerous awards and honors recognizing his research excellence and academic contributions. Most notably, he was awarded the Frish Medal by the Russian Optical Society (ROS), a prestigious accolade for contributions to optical science and technology. He holds the Senior Member status in three leading professional organizations—IEEE, SPIE, and OSA—which reflects his recognized expertise and longstanding service to the global scientific community. Beyond personal awards, his editorial roles, including Guest and Board Editor positions with IntechOpen and MDPI journals, highlight his influence on the broader research discourse. Currently, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems, further solidifying his thought leadership in the field. These honors not only affirm his past achievements but also position him as a central figure in shaping future advancements in photonic systems and applied electrodynamics.

Conclusion

Prof. Oleg G. Morozov is highly suitable for the Best Researcher Award due to his long-standing and impactful career in cutting-edge technologies, particularly in photonics and microwave systems. His leadership roles, academic achievements, and recognition by esteemed global societies reinforce his strong candidacy.

Publications Top Notes

  • Title: Superstructured Addressable Fiber Bragg Structures

    • Authors: B. Valeev, R.A. Makarov, T.A. Agliullin, A.Z. Sakhabutdinov, O.G. Morozov

    • Year: 2025

    • Citations: 0

  • Title: OAM Mode Propagation and Supercontinuum Generation in a Nested Photonic Crystal Fiber

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: 2025

    • Citations: 0

  • Title: A Design of Nested Photonic Crystal Fiber for OAM Mode Propagation (Conference Paper)

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Microscopic Temperature Sensor Based on End-Face Fiber-Optic Fabry–Perot Interferometer

    • Authors: M. Chesnokova, D.I. Nurmuhametov, R.S. Ponomarev, O.G. Morozov, R.A. Makarov

    • Year: 2024

    • Citations: 2

  • Title: Design and Performance Analysis of a Novel Hoop-Cut SPR-PCF Sensor for High Sensitivity and Broad Range Sensing Applications

    • Authors: S. Mittal, A. Saharia, Y. Ismail, M. Tiwari, S. Kumar

    • Year: 2024

    • Citations: 12

  • Title: Ontology of Addressed Fiber Bragg Structures as a New Type of Sensor Elements (Conference Paper)

    • Authors: O.G. Morozov, A.Z. Sakhabutdinov

    • Year: Not specified

    • Citations: 0

  • Title: A Six-Core Microstructured Fiber for Sensing Applications (Conference Paper, repeated thrice)

    • Authors: A. Agarwal, S. Mittal, S. Punia, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Modeling of Multi-Layer Fiber-Optic Fabry–Perot Interferometer as a Sensing Element of Humidity, Pressure and Temperature

    • Authors: A.Z. Sakhabutdinov, T.A. Agliullin, B. Valeev, O.G. Morozov, S.M. Hussein

    • Year: Not specified

    • Citations: 0