Salem Batiyah | Engineering | Best Researcher Award

Dr. Salem Batiyah | Engineering | Best Researcher Award

Assistant Professor at Yanbu Industrial College, Saudi Arabia

Dr. Salem Mohammed Batiyah is a dedicated researcher in electrical engineering with strong contributions to distributed energy resources, microgrids, and advanced control systems. His work is published in respected journals such as IEEE Access and Energies, covering both theoretical and applied aspects of renewable energy systems. He has an active role as a reviewer for top-tier journals, reflecting recognition by the global research community. In addition to his research, Dr. Batiyah demonstrates academic leadership through curriculum development, teaching, and quality assurance roles. While his citation metrics and absence of major research grants suggest areas for growth, his ongoing publication record and technical expertise indicate a solid foundation for future impact. Strengthening international collaborations and securing research funding will further enhance his research profile. Overall, Dr. Batiyah is a strong candidate for the Best Researcher Award, especially in domains valuing practical innovation and contributions to sustainable energy and smart grid development

Professional Profile 

Google Scholar

Strengths for the Award

Dr. Salem Mohammed Batiyah presents a strong and relevant research portfolio in modern electrical engineering fields, particularly in distributed energy resources (DERs), microgrids, hybrid power plants, and advanced control systems. His work addresses high-impact areas such as renewable energy integration, predictive control, and fault-tolerant power electronics, which are central to global energy transition goals.

He has authored multiple peer-reviewed journal and conference papers, with publications in well-regarded outlets such as IEEE Access and Energies. These include both novel technical contributions and comprehensive reviews, suggesting breadth and depth. His global engagement as a reviewer for prestigious journals such as IEEE Transactions on Industrial Informatics and IEEE JESTIE reflects his standing in the academic community.

Additionally, Dr. Batiyah combines research with active academic and administrative leadership, curriculum development, and extensive teaching in power systems and control engineering. This integration of research and teaching enhances his impact and dissemination of knowledge.

Education

Dr. Salem Mohammed Batiyah holds a Ph.D. in Electrical Engineering from Mississippi State University, where he specialized in power management and control systems for renewable energy applications. He earned his M.Sc. and B.Sc. degrees in Electrical Engineering from Western Michigan University. His graduate studies focused on distributed energy resources, microgrid integration, and model predictive control systems. Throughout his academic journey, Dr. Batiyah developed a solid foundation in both theoretical and practical aspects of power systems, signal processing, and advanced control techniques. His educational background is complemented by professional certifications, including Lean Six Sigma and OSHA safety training, demonstrating his commitment to quality and operational excellence. Dr. Batiyah’s education has prepared him to address real-world engineering challenges in sustainable energy and has laid the groundwork for a research-oriented academic career. His academic experience is characterized by interdisciplinary training and international exposure, enhancing his perspective in solving complex energy system problems.

Experience

Dr. Salem Batiyah brings a wealth of academic and professional experience to the field of electrical engineering. Since 2020, he has been serving as an Assistant Professor at Yanbu Industrial College, where he has taught various undergraduate and associate courses in power electronics, control systems, and industrial electronics. He also worked as a Graduate Research Assistant at Mississippi State University from 2015 to 2020, engaging in research related to power management in renewable energy systems. His earlier academic experience includes working as a lecturer at Yanbu Industrial College from 2014 to 2020. Dr. Batiyah has held several administrative roles such as Department Curriculum Coordinator, Head of Curriculum and Development, and Academic Quality Coordinator. He is actively involved in multiple college and department-level committees, contributing to academic planning, program development, and quality assurance. His career reflects a blend of teaching, research, and leadership, all aimed at advancing engineering education and applied energy solutions.

Awards and Honors

Dr. Salem Batiyah has received multiple awards and honors recognizing his academic excellence and professional achievements. Notably, he was inducted into prestigious honor societies including Phi Kappa Phi, Gamma Beta Phi, and IEEE Eta Kappa Nu, reflecting high academic performance during his graduate and undergraduate studies. He was awarded the First Class Standing Award for Master of Science students and consistently made the Dean’s List during his undergraduate years. In 2023, his research output earned him 123 scholarly citations, with an h-index of 5 and an i10-index of 3, indicating growing recognition within the research community. Additionally, he holds professional certifications such as Black Belt in Lean Six Sigma and OSHA Safety Training, demonstrating his commitment to continuous professional development. His active participation in global academic organizations and contributions as a peer reviewer for multiple IEEE journals further validate his influence and leadership in the field of electrical and energy engineering.

Research Focus on Engineering

Dr. Salem Batiyah’s research centers around the modeling, analysis, and control of distributed energy resources (DERs), including solar photovoltaics and battery energy storage systems. His work addresses the integration of these resources into microgrids and hybrid power plants, with an emphasis on system reliability and efficiency. A key area of focus is the application of advanced control methods such as nonlinear, robust, and model predictive control (MPC) to optimize energy management under varying load and environmental conditions. Dr. Batiyah also explores advanced signal processing and phase-locked loops within DER systems, supporting grid stability and intelligent power conversion. His research aims to provide scalable and sustainable solutions to modern energy challenges, contributing to the global shift toward renewable and decentralized energy systems. Through peer-reviewed publications and academic collaborations, Dr. Batiyah is establishing himself as a forward-thinking researcher addressing critical challenges in the evolving energy landscape.

Publications Top Notes

  • Title: An MPC-based power management of standalone DC microgrid with energy storage
    Authors: S. Batiyah, R. Sharma, S. Abdelwahed, N. Zohrabi
    Year: 2020
    Citations: 111

  • Title: An MPC-based power management of a PV/battery system in an islanded DC microgrid
    Authors: S. Batiyah, N. Zohrabi, S. Abdelwahed, R. Sharma
    Year: 2018
    Citations: 36

  • Title: Single-phase fault tolerant multilevel inverter topologies—comprehensive review and novel comparative factors
    Authors: H. Rehman, M. Tariq, A. Sarwar, W. Alhosaini, M.A. Hossain, S.M. Batiyah
    Year: 2022
    Citations: 22

  • Title: Optimal control design of a voltage controller for stand-alone and grid-connected PV converter
    Authors: S. Batiyah, N. Zohrabi, S. Abdelwahed, T. Qunais, M. Mousa
    Year: 2018
    Citations: 17

  • Title: Predictive control of PV/battery system under load and environmental uncertainty
    Authors: S. Batiyah, R. Sharma, S. Abdelwahed, W. Alhosaini, O. Aldosari
    Year: 2022
    Citations: 15

  • Title: Performance evaluation of multiple machine learning models in predicting power generation for a grid-connected 300 MW solar farm
    Authors: O. Aldosari, S. Batiyah, M. Elbashir, W. Alhosaini, K. Nallaiyagounder
    Year: 2024
    Citations: 11

  • Title: Image-based partial discharge identification in high voltage cables using hybrid deep network
    Authors: O. Aldosari, M.A. Aldowsari, S.M. Batiyah, N. Kanagaraj
    Year: 2023
    Citations: 8

  • Title: Impact of variation of energy resources on voltage stability of a micro grid
    Authors: M.A. Mousa, S. Abdelwahed, S.M. Batiyah, T. Qunais
    Year: 2017
    Citations: 6

  • Title: Deep neural networks model for accurate photovoltaic parameter estimation under variable weather conditions
    Authors: S. Batiyah, A. Al-Subhi, O. Elsherbiny, O. Aldosari, M. Aldawsari
    Year: 2025

  • Title: Predictive control of standalone DC microgrid with energy storage under load and environmental uncertainty
    Author: S.M. Batiyah (Ph.D. Dissertation)
    Year: 2020

Conclusion

Dr. Salem Mohammed Batiyah exemplifies a rising leader in electrical and energy systems engineering, combining academic rigor with real-world impact. His research contributions, especially in renewable energy integration and intelligent control systems, align with global priorities for sustainability and innovation. His dual strengths in teaching and research, complemented by his service in academic development and international peer reviewing, position him as a multidimensional scholar. While his citation metrics and grant record indicate room for further growth, his upward trajectory and commitment to excellence are undeniable. Dr. Batiyah stands out as a promising candidate for recognition in the research community and is well on his way to becoming a major contributor to the field of smart and sustainable energy systems. With continued focus on high-impact collaboration and innovation, he is poised to make significant strides that benefit academia, industry, and the broader society.

Xingjia Li | Engineering | Best Researcher Award

Dr. Xingjia Li | Engineering | Best Researcher Award

Senior Engineer at Shanghai Liangxin Electrical Co. Ltd, China

Dr. Xingjia Li is a promising early-career researcher who earned his Ph.D. in Mechanical Engineering from Jiangsu University in 2023. He is currently a Postdoctoral Associate at the postdoctoral workstation of Shanghai Liangxin Electrical Co., Ltd. in Shanghai, China. His research focuses on robotics and electrical systems, with a particular emphasis on sensor data processing using machine learning techniques. Dr. Li is dedicated to advancing human-centered applications by enhancing the reliability, intelligence, and security of robotic systems in daily life. His interdisciplinary approach integrates mechanical engineering, electronics, and artificial intelligence, aligning with the evolving demands of modern technology. While still in the early stages of his research career, his industry collaboration and applied research focus position him as a strong candidate for future leadership in his field. Dr. Li’s work holds potential for significant contributions to smart systems and intelligent automation in real-world environments.

Professional Profile 

ORCID Profile

Education

Dr. Xingjia Li obtained his Ph.D. in Mechanical Engineering from Jiangsu University, Zhenjiang, China, in 2023. During his doctoral studies, he focused on the integration of robotics and intelligent systems, building a strong foundation in both theoretical and applied aspects of mechanical and electrical engineering. His education emphasized sensor systems, automation, and machine learning, which prepared him for interdisciplinary research and practical implementation in advanced robotics. Dr. Li demonstrated strong academic performance and research capabilities throughout his graduate studies, contributing to academic discussions and research forums. His educational background reflects a rigorous training in engineering principles, analytical thinking, and innovation, which has shaped his approach to problem-solving in complex systems. Through research projects, seminars, and collaboration with faculty, he developed a deep understanding of how mechanical systems can be enhanced through intelligent control and data-driven methods, laying the groundwork for his postdoctoral research and future contributions to intelligent automation.

Professional Experience

Following his Ph.D., Dr. Xingjia Li joined the postdoctoral workstation at Shanghai Liangxin Electrical Co., Ltd., a key player in the electrical technology industry. In this role, he has been actively involved in research and development, focusing on advanced robotics and intelligent systems. His work emphasizes real-world implementation of sensor-based machine learning techniques to enhance system performance, reliability, and human-machine interaction. At Liangxin, Dr. Li collaborates with both engineering teams and academic partners to design and improve intelligent robotic systems that can operate efficiently in complex environments. His professional experience bridges academia and industry, allowing him to apply theoretical models to practical challenges in automation and electrical systems. This hands-on engagement with cutting-edge technologies has not only expanded his technical skill set but also positioned him as a valuable contributor in the emerging fields of smart manufacturing and AI-powered industrial automation, where reliability and adaptive performance are critical.

Research Interest

Dr. Xingjia Li’s research interests lie at the intersection of robotics, electrical systems, and machine learning, with a strong focus on sensor data processing for human-centered applications. He is passionate about enhancing the intelligence, reliability, and safety of robotic systems operating in dynamic environments. His work aims to empower robots with the ability to interpret complex sensory inputs through machine learning algorithms, thereby enabling real-time decision-making and adaptive behavior. He is particularly interested in applications that improve quality of life, such as assistive robotics, industrial automation, and intelligent monitoring systems. By integrating advanced data analytics and control strategies, Dr. Li seeks to develop systems that can function autonomously with minimal human intervention while maintaining high levels of trust and safety. His interdisciplinary approach combines the strengths of mechanical design, signal processing, and artificial intelligence, positioning him to contribute meaningfully to the advancement of next-generation robotics and smart systems.

Award and Honor

As a rising researcher in the field of intelligent robotics, Dr. Xingjia Li is at the beginning of his professional recognition journey. While specific awards and honors have not been listed in the available information, his acceptance into a postdoctoral research position at Shanghai Liangxin Electrical Co., Ltd. itself signifies recognition of his academic potential and technical proficiency. The opportunity to work in a dedicated industrial research environment reflects a high level of trust in his expertise and capability to contribute to meaningful innovation. His early involvement in cutting-edge projects and interdisciplinary work also positions him as a strong candidate for future academic and industrial awards. As he continues to publish research, develop prototypes, and contribute to real-world solutions, it is expected that Dr. Li will accumulate professional honors that recognize his growing impact in the fields of robotics, electrical systems, and intelligent automation technologies.

Conclusion

Dr. Xingjia Li is an emerging researcher whose interdisciplinary expertise bridges mechanical engineering, robotics, and artificial intelligence. With a strong educational foundation from Jiangsu University and practical postdoctoral experience at Shanghai Liangxin Electrical Co., Ltd., he is well-positioned to make significant contributions to the field of intelligent systems. His research aims to improve human-robot interaction and automation reliability through advanced sensor data processing and machine learning techniques. Though still in the early stages of his career, Dr. Li’s work shows great promise for practical impact in industry and society. His commitment to innovation, real-world application, and cross-disciplinary collaboration sets the stage for a distinguished research trajectory. With continued focus, publication, and recognition, Dr. Li has the potential to emerge as a thought leader in the development of smart, adaptive, and secure robotic systems that support both industrial and human-centered needs.

Publications Top Notes

Velislava Lyubenova | Engineering | Best Researcher Award

Prof. Velislava Lyubenova | Engineering | Best Researcher Award

Academician at Bulgarian Academy of Science, Institute of Robotics, Bulgaria

Velislava Lyubenova is a distinguished Bulgarian researcher and professor with over 30 years of experience in biotechnological process control, mechatronics, and adaptive systems. She currently serves as the Head of the Mechatronic Bio/technological Systems Section at the Institute of Robotics, Bulgarian Academy of Sciences (BAS), and has held various academic and leadership roles across BAS institutions. She has led more than 10 national and international research projects, participated in numerous European programs, and supervised several PhD students. With over 200 scientific publications, many in high-impact journals, and invited lectures delivered at leading international institutions, she is widely recognized for her scientific contributions. Her expertise includes the development of innovative monitoring and control systems using tools like MATLAB and LABVIEW. An awardee of the “Marin Drinov” prize for young scientists, Lyubenova is also actively involved in academic governance, expert committees, and editorial boards, reflecting her deep commitment to scientific advancement and education.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Velislava Lyubenova holds a strong academic background in technical sciences and engineering. She earned her engineering degree in Radio Electronics from the Technical University of Sofia, followed by a Ph.D. in Automation with a dissertation focused on parameter estimation and biotechnological process monitoring. Her academic journey culminated with a Doctor of Technical Sciences degree from the Institute of System Engineering and Robotics (ISIR) at the Bulgarian Academy of Sciences (BAS), specializing in adaptive control and modeling of complex biotechnological systems. Her education blends deep technical knowledge with applied research capabilities, laying the foundation for a career in both theoretical and experimental domains. Her academic formation reflects a continuous pursuit of knowledge and specialization in interdisciplinary areas, preparing her to work across the fields of electronics, biotechnology, and control systems. This educational path has also enabled her to contribute to curriculum development and mentor future generations of researchers in her field.

Professional Experience

Professor Velislava Lyubenova has built a prolific career at the Bulgarian Academy of Sciences, progressing from a research fellow to a professor and head of department at the Institute of Robotics. Her early work in adaptive and robust control systems evolved into specialized research in bioengineering and mechatronic systems for biotechnology. She has served as Scientific Secretary at IR-BAS and has been a key figure in national expert commissions and scientific councils. Over her career, she has led and coordinated numerous national and international research projects, many involving cross-disciplinary collaboration. Her leadership roles include project management, supervision of PhD students, and delivery of advanced lecture courses. She also coordinates Erasmus programs and plays a pivotal role in academic exchange and cooperation. Her professional trajectory showcases a blend of scientific innovation, team leadership, and academic mentorship, making her a respected figure in both the Bulgarian and broader European research communities.

Research Interest

Velislava Lyubenova’s research is deeply rooted in the interdisciplinary fields of bioengineering, automation, and mechatronics. Her primary interest lies in the modeling, monitoring, and adaptive control of biotechnological processes, where she develops innovative methodologies to improve efficiency and reliability. She integrates control theory with practical applications using environments like MATLAB and LABVIEW, creating real-time monitoring systems that bridge theoretical concepts with industrial needs. Her work often addresses complex system dynamics in bioprocesses and seeks to optimize process performance through intelligent control algorithms. Additionally, she explores knowledge-based and adaptive systems that contribute to the advancement of next-generation biotechnological platforms. Her collaborative research also extends into European Union projects, educational initiatives, and technology transfer programs, reflecting a holistic approach to scientific inquiry. With a strong focus on experimental validation, her research continues to influence the development of advanced technologies in the fields of bioprocess engineering and industrial automation.

Award and Honor

Throughout her distinguished career, Velislava Lyubenova has received notable recognition for her contributions to science and research. A significant early milestone was her receipt of the “Marin Drinov” Young Scientist Award from the General Assembly of the Bulgarian Academy of Sciences in 1998—an honor bestowed upon promising researchers demonstrating exceptional scientific potential. She has also been invited to deliver over 15 specialized lectures at prestigious institutions abroad and six within Bulgaria, signifying her international recognition as a subject-matter expert. Her active involvement in over 30 international and national conferences further underscores her scientific engagement. Beyond individual accolades, her roles as a reviewer, jury member, editorial board member, and lecturer reflect a broader institutional and peer recognition of her expertise. These honors represent both her academic excellence and leadership in advancing science and education, and they demonstrate her lasting impact on the Bulgarian and global research landscape.

Conclusion

Velislava Lyubenova stands out as an accomplished and influential researcher in the fields of biotechnological systems and automation. Her extensive education, progressive professional experience, and leadership in multidisciplinary research projects position her as a key contributor to both national and international scientific advancement. Her ability to combine theoretical models with practical applications, mentor young scientists, and contribute to global academic forums speaks to her depth of expertise and dedication. She has earned peer and institutional recognition for her scientific work, making her a respected leader in her field. Her over 200 publications, contributions to prestigious journals, and active engagement in scientific committees demonstrate both productivity and academic integrity. With a strong foundation in research and innovation, and an enduring commitment to education and collaboration, Velislava Lyubenova is exceptionally well-qualified for honors such as the Best Researcher Award. Her career reflects a lifelong dedication to the pursuit of scientific excellence and societal impact.

Publications Top Notes

  • Title: Indirect adaptive linearizing control of a class of bioprocesses–Estimator tuning procedure
    Authors: MN Ignatova, VN Lyubenova, MR García, C Vilas, AA Alonso
    Year: 2008
    Citations: 31

  • Title: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process
    Authors: V Shopska, R Denkova, V Lyubenova, G Kostov
    Year: 2019
    Citations: 21

  • Title: Adaptive control of fed-batch process for poly-beta-hydroxybutyrate production by mixed culture
    Authors: M Ignatova, V Lyubenova
    Year: 2007
    Citations: 16

  • Title: Control of biotechnological processes-new formalization of kinetics: Theoretical aspects and applications
    Authors: M Ignatova, V Lyubenova
    Year: 2011
    Citations: 15

  • Title: Model-based monitoring of biotechnological processes—a review
    Authors: V Lyubenova, G Kostov, R Denkova-Kostova
    Year: 2021
    Citations: 12

  • Title: Adaptive control of the Simultaneous Saccharification—Fermentation Process from Starch to Ethanol
    Authors: S Ochoa, V Lyubenova, JU Repke, M Ignatova, G Wozny
    Year: 2008
    Citations: 12

  • Title: An efficient hybrid of an ant lion optimizer and genetic algorithm for a model parameter identification problem
    Authors: O Roeva, D Zoteva, G Roeva, V Lyubenova
    Year: 2023
    Citations: 11

  • Title: Control of one stage bio ethanol production by recombinant strain
    Authors: V Lyubenova, S Ochoa, J Repke, M Ignatova, G Wozny
    Year: 2007
    Citations: 11

  • Title: Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm
    Authors: O Roeva, D Zoteva, V Lyubenova
    Year: 2021
    Citations: 10

  • Title: Reaction rate estimators of fed-batch process for poly-β-hydroxybutyrate (PHB) production by mixed culture
    Authors: V Lyubenova, M Ignatova, M Novak, T Patarinska
    Year: 2007
    Citations: 10

  • Title: Dynamics Monitoring of Fed-batch E. coli Fermentation
    Authors: A Zlatkova, V Lyubenova
    Year: 2017
    Citations: 8

  • Title: Encapsulation of brewing yeast in alginate/chitosan matrix: Kinetic characteristics of the fermentation process at a constant fermentation temperature
    Authors: I Petelkov, V Lyubenova, A Zlatkova, V Shopska, R Denkova, M Kaneva, …
    Year: 2016
    Citations: 8

  • Title: On-line estimation in a distributed parameter bioreactor: Application to the Gluconic Acid production
    Authors: MR García, C Vilas, E Balsa-Canto, VN Lyubenova, MN Ignatova, …
    Year: 2011
    Citations: 8

  • Title: Metaheuristic algorithms: theory and applications
    Authors: S Ribagin, V Lyubenova
    Year: 2021
    Citations: 7

  • Title: CASCADE SENSOR FOR MONITORING OF DENITRIFICATION IN ACTIVATED SLUDGE WASTEWATER TREATMENT PROCESS
    Authors: V Lyubenova, M Ignatova
    Year: 2011
    Citations: 7

Oleg Morozov | Engineering | Best Researcher Award

Prof. Oleg Morozov | Engineering | Best Researcher Award

Professor at Kazan National Research Technical University n.a. A.N. Tupolev-KAI, Russia

Prof. Oleg G. Morozov is a distinguished academic and researcher in the field of microwave photonics and fiber optic sensor technology. Born on October 30, 1960, in Kazan, Tatarstan, Russia, he has made significant contributions to both fundamental and applied aspects of electrodynamics and photonics. With a professional career spanning over four decades, Prof. Morozov has held various high-impact academic and administrative positions at Kazan National Research Technical University named after A.N. Tupolev-KAI. He is known for his leadership in advancing research at the intersection of electronics, photonics, and cyber-physical systems. His work has been central to establishing several key academic departments and research labs, and he is currently the Head of the IT-COM Department. In addition to his academic duties, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems. He is widely respected for both his scientific rigor and leadership in research development.

Professional Profile

Education

Prof. Morozov pursued his early higher education in radiotechnics, graduating as an Engineer in 1983 from the Tupolev Aviation Institute in Kazan. Demonstrating academic excellence and deep technical curiosity, he completed his Ph.D. in 1987, focusing on advanced topics in applied physics and communication systems. Further solidifying his standing in the academic community, he earned the prestigious Doctor of Technology degree in 2004 from Kazan National Research Technical University named after A.N. Tupolev-KAI. His educational journey is characterized by a strong foundation in electronics, microwave engineering, and photonics—fields that have informed his research career. Throughout his academic progression, Prof. Morozov has stayed closely involved with evolving technological disciplines, often integrating cross-disciplinary approaches in his teaching and research. His educational background has equipped him not only with in-depth technical knowledge but also with a strategic vision for technology’s role in science and innovation, particularly within the Russian higher education landscape.

Professional Experience

Prof. Morozov’s professional experience is marked by a series of leadership roles within Kazan National Research Technical University. From 1989 to 1993, he was the Head of the Quantum Electronics and Laser Technology R&D Lab, where he initiated numerous pioneering projects. Later, between 2005 and 2014, he led the TV and Multimedia Systems Department, focusing on advancements in signal processing and integrated media technologies. From 2014 to 2023, he served as the Head of the Radiophotonics and Microwave Technology Department, strengthening the university’s position in cutting-edge research. In parallel, he also directed the R&D Institute of Applied Electrodynamics, Photonics, and Life Systems from 2012 to 2021, where he supervised multidisciplinary research teams. Currently, he is a Professor and Head of the IT-COM Department. His professional path reflects a consistent commitment to innovation, interdisciplinary research, and fostering academic excellence in emerging technological domains.

Research Interests

Prof. Morozov’s research interests lie primarily in microwave photonics, fiber optic sensors, and radiophotonic interrogation techniques. His work bridges theoretical innovation and applied research, especially in high-frequency signal processing, quantum electronics, and cyber-physical system integration. He has contributed significantly to the development of advanced sensing technologies, optical communication systems, and integrated photonic devices. His research also explores the role of photonics in healthcare and smart systems, showing an ability to adapt traditional fields to modern technological challenges. Prof. Morozov has consistently aimed to merge physical sciences with engineering applications, contributing to both national and international scientific communities. His leadership in these areas has resulted in a number of collaborative projects and publications that have advanced the state of the art in photonics and related technologies. He also emphasizes system-level thinking, where electronics, optics, and digital technologies converge to build intelligent and adaptive sensing solutions for next-generation applications.

Awards and Honors

Throughout his illustrious career, Prof. Morozov has received numerous awards and honors recognizing his research excellence and academic contributions. Most notably, he was awarded the Frish Medal by the Russian Optical Society (ROS), a prestigious accolade for contributions to optical science and technology. He holds the Senior Member status in three leading professional organizations—IEEE, SPIE, and OSA—which reflects his recognized expertise and longstanding service to the global scientific community. Beyond personal awards, his editorial roles, including Guest and Board Editor positions with IntechOpen and MDPI journals, highlight his influence on the broader research discourse. Currently, he serves as the Chief Editor of the journal Electronics, Photonics and Cyber-Physical Systems, further solidifying his thought leadership in the field. These honors not only affirm his past achievements but also position him as a central figure in shaping future advancements in photonic systems and applied electrodynamics.

Conclusion

Prof. Oleg G. Morozov is highly suitable for the Best Researcher Award due to his long-standing and impactful career in cutting-edge technologies, particularly in photonics and microwave systems. His leadership roles, academic achievements, and recognition by esteemed global societies reinforce his strong candidacy.

Publications Top Notes

  • Title: Superstructured Addressable Fiber Bragg Structures

    • Authors: B. Valeev, R.A. Makarov, T.A. Agliullin, A.Z. Sakhabutdinov, O.G. Morozov

    • Year: 2025

    • Citations: 0

  • Title: OAM Mode Propagation and Supercontinuum Generation in a Nested Photonic Crystal Fiber

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: 2025

    • Citations: 0

  • Title: A Design of Nested Photonic Crystal Fiber for OAM Mode Propagation (Conference Paper)

    • Authors: S. Punia, A. Saharia, Y. Ismail, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Microscopic Temperature Sensor Based on End-Face Fiber-Optic Fabry–Perot Interferometer

    • Authors: M. Chesnokova, D.I. Nurmuhametov, R.S. Ponomarev, O.G. Morozov, R.A. Makarov

    • Year: 2024

    • Citations: 2

  • Title: Design and Performance Analysis of a Novel Hoop-Cut SPR-PCF Sensor for High Sensitivity and Broad Range Sensing Applications

    • Authors: S. Mittal, A. Saharia, Y. Ismail, M. Tiwari, S. Kumar

    • Year: 2024

    • Citations: 12

  • Title: Ontology of Addressed Fiber Bragg Structures as a New Type of Sensor Elements (Conference Paper)

    • Authors: O.G. Morozov, A.Z. Sakhabutdinov

    • Year: Not specified

    • Citations: 0

  • Title: A Six-Core Microstructured Fiber for Sensing Applications (Conference Paper, repeated thrice)

    • Authors: A. Agarwal, S. Mittal, S. Punia, G.L. Singh, M. Tiwari

    • Year: Not specified

    • Citations: 0

  • Title: Modeling of Multi-Layer Fiber-Optic Fabry–Perot Interferometer as a Sensing Element of Humidity, Pressure and Temperature

    • Authors: A.Z. Sakhabutdinov, T.A. Agliullin, B. Valeev, O.G. Morozov, S.M. Hussein

    • Year: Not specified

    • Citations: 0

 

Mengyao Li | Engineering | Best Researcher Award

Dr. Mengyao Li | Engineering | Best Researcher Award

Student at Nanyang Technological University Singapore

Mengyao Li is a dedicated researcher specializing in electromagnetic fields, metasurfaces, and frequency-selective structures. With a strong academic foundation and a passion for advancing next-generation communication and radar technologies, Li has made significant contributions to the field of low-RCS antenna-radome systems, lens antennas, and THz reconfigurable intelligent surfaces. His research focuses on innovative solutions that enhance wave manipulation, beamforming, and scattering control, making a direct impact on applications in wireless communication and stealth technology. As a Ph.D. candidate at Nanyang Technological University (NTU), Singapore, under the guidance of Prof. Shen Zhongxiang (IEEE Fellow), Li has published extensively in top-tier journals and continues to explore novel electromagnetic solutions. His work not only bridges theoretical advancements with practical applications but also aligns with the future demands of 6G wireless networks and advanced sensing technologies, solidifying his position as an emerging expert in the field.

Professional Profile

Education

Mengyao Li began his academic journey with a B.S. in Electrical Engineering from the Communication University of China, Beijing, specializing in Telecommunication Engineering. Graduating in 2020 with a GPA of 3.59/4.0, he ranked among the top 8% of students and was recognized as an Outstanding Graduate of Beijing. His undergraduate research focused on reconfigurable frequency-selective absorbers, laying a strong foundation for his future work. In January 2021, he pursued a Ph.D. in Electrical and Electronic Engineering at Nanyang Technological University, Singapore, specializing in Electromagnetic Fields and Microwave Technology. Under the supervision of Prof. Shen Zhongxiang, his doctoral research centers on low-RCS integrated radome and antenna systems, aiming to develop advanced solutions for stealth technology and wireless communication. Throughout his academic career, Li has demonstrated strong analytical skills and research capabilities, contributing to the advancement of electromagnetic and antenna engineering.

Professional Experience

As a Ph.D. researcher at Nanyang Technological University, Mengyao Li has been actively engaged in cutting-edge research in the field of electromagnetic wave manipulation, metasurfaces, and antenna systems. His professional work focuses on designing low-RCS antennas, frequency-selective structures, and THz reconfigurable intelligent surfaces, contributing to innovations in stealth technology and high-frequency communication. Collaborating with leading academics and industry experts, he has developed practical solutions for beam manipulation, conformal lens antennas, and ultra-wideband absorptive structures. His research has been published in top IEEE journals, showcasing his ability to bridge theoretical concepts with practical engineering applications. In addition to research, he actively mentors junior researchers, contributes to technical discussions, and engages in academic collaborations to advance antenna and metamaterial technologies. His expertise and technical acumen make him a promising figure in the field of advanced electromagnetic applications.

Research Interests

Mengyao Li’s research interests lie at the intersection of electromagnetic wave engineering, metasurfaces, and reconfigurable intelligent surfaces (RIS), with a strong emphasis on low-RCS antenna-radome systems, lens antennas, and THz wireless communication. His work on low-scattering antenna structures contributes to stealth and radar applications, while his innovative metasurface designs enable advanced beam steering and polarization control. Additionally, he explores MEMS-based THz metasurfaces, which hold promise for 6G wireless networks and high-frequency communication systems. His research on frequency-selective structures and transmissive antennas bridges the gap between traditional electromagnetic theory and modern reconfigurable technologies. By integrating material science, physics, and advanced fabrication techniques, Li’s research aims to create high-performance, miniaturized, and dynamically tunable electromagnetic structures, making a significant impact on next-generation wireless technologies and radar systems.

Awards and Honors

Throughout his academic journey, Mengyao Li has received multiple recognitions for his research excellence. As an Outstanding Graduate of Beijing, he was acknowledged for his academic performance and early contributions to telecommunication engineering. His Ph.D. research at NTU has been supported by prestigious funding, reflecting the significance of his work in low-RCS antenna systems and metasurface engineering. His journal publications in IEEE Transactions on Antennas and Propagation and IEEE Antennas Wireless Propagation Letters further highlight his research impact in the field. Li’s innovative contributions to reconfigurable intelligent surfaces and frequency-selective radomes have been well-received in the academic community, earning him invitations to collaborate with leading researchers. With his strong research background and growing influence in electromagnetic wave control and antenna design, he continues to make valuable contributions to the field, positioning himself as a rising expert in advanced electromagnetics and wireless technology.

Conclusion

Mengyao Li is a strong candidate for the Best Researcher Award, with a solid publication record, cutting-edge research contributions, and expertise in emerging electromagnetic technologies. However, improving the real-world impact, conference visibility, and interdisciplinary collaboration could further solidify the case for this award. If these areas are strengthened, Mengyao Li could become a leading figure in electromagnetic and metasurface research.

Publications Top Noted

  • Y. Ding, M. Li, J. Su, Q. Guo, H. Yin, Z. Li, J. Song – 2020 – 70 citations
    “Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch.”
    IEEE Transactions on Antennas and Propagation 69 (3), 1493-1504

  • M. Li, L. Zhou, Z. Shen – 2021 – 30 citations
    “Frequency selective radome with wide diffusive bands.”
    IEEE Antennas and Wireless Propagation Letters 21 (2), 327-331

  • M. Li, Z. Shen – 2023 – 13 citations
    “Low-RCS transmitarray based on 2.5-D cross-polarization converter.”
    IEEE Transactions on Antennas and Propagation 71 (7), 5828-5837

  • M. Li, Z. Shen – 2023 – 5 citations
    “Integrated diffusive antenna array of low backscattering.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li, Z. Shen – 2022 – 3 citations
    “Hybrid Frequency Selective Rasorber Combining 2-D and 3-D Resonators.”
    2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, J. Su – 2020 – 1 citation
    “Wideband frequency-selective absorber based on metal cross ring.”
    2020 IEEE MTT-S International Microwave Workshop Series on Advanced

  • M. Li, Z. Shen – 2024 – Not yet cited
    “Hybrid Rasorber Based on 3-D Bandpass Frequency-Selective Structures.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li – 2024 – Not yet cited
    “Integrated radome and antenna systems of low radar cross section.”
    Nanyang Technological University (Ph.D. Dissertation)

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Highly Selective Third-Order Bandpass Frequency Selective Surface.”
    2023 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Transmission Phase Controllable Rasorber Using All-Metal Cross-Polarization Converter.”
    2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, Z. Shen – 2022 – Not yet cited
    “Low-RCS Transmitarray Using Phase Controllable Absorptive Frequency-Selective Structure.”
    2022 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2021 – Not yet cited
    “RCS Reduction of Slot Antenna Array Using Coding Metasurfaces.”
    2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI