Khaja Hussain Shaik | Materials Science | Research Excellence Award

Dr. Khaja Hussain Shaik | Materials Science | Research Excellence Award

Gyeongsang National University | South Korea

Dr. Khaja Hussain Shaik is a postdoctoral researcher in materials science and engineering with recognized expertise in nanomaterials, electrochemical energy storage, and optoelectronic materials. He holds doctoral training in electronic engineering with specialization in materials science, complemented by advanced education in chemistry, providing a strong interdisciplinary foundation. His professional experience spans postdoctoral and research scholar roles, contributing to high-impact projects in energy storage materials, nanosensors, and advanced functional materials, along with mentoring and laboratory leadership in academic environments. His research focuses on the design and synthesis of nanostructured oxides, carbon-based composites, and rare-earth-doped materials for supercapacitors, batteries, and photonic devices, resulting in a substantial portfolio of peer-reviewed publications with significant global citation impact. His contributions have advanced charge storage performance, device stability, and functional material design. He has received multiple prestigious research fellowships, dissertation and scholarship honors, and institutional recognitions for research excellence, reflecting sustained academic leadership, innovation, and strong potential for continued high-impact contributions to materials research.

Citation Metrics (Google Scholar)

2400
1800
1200
600
0

2402

64

32

Citations

Documents

h-index


Featured Publications

 

Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Prof. Dr. Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Scientific Director | Project Center for Nanotechnology and Advanced Engineering | Greece

Prof. Dr. Athanasios G. Mamalis is the Scientific Director of the Project Center for Nanotechnology and Advanced Engineering, a joint initiative of the Greek National Research Center “Demokritos” and the Russian Kurchatov Institute, and Emeritus Professor, Founder of the Laboratory of Manufacturing Technology at the National Technical University of Athens, Greece. A graduate in Mechanical and Electrical Engineering from the National Technical University of Athens, he earned his M.Sc. and Ph.D. in Mechanical Engineering from the Victoria University of Manchester Institute of Science and Technology. Dr. Mamalis has extensive industrial experience as Chief Engineer and Technical Manager in steelworks across Germany and Greece, complemented by long-standing collaborations with international industry including American, British, German, European, Japanese, Chinese, ex-Soviet, Hungarian, and Greek enterprises. He has held visiting professorships at Cambridge University, Universität Hannover, RWTH Aachen, and Carleton University, and full professorships at Michigan Technological University and the National Technical University of Athens. His research spans mechanics, manufacturing technology, precision and ultraprecision engineering, nanotechnology, ferrous and non-ferrous materials from macro- to nanoscale, powder production, biomechanics, vehicle structural safety, energy, environment, and industrial sustainability, resulting in over 32 books and monographs, 12 textbooks, 630 refereed journal and conference publications, and two patents. He has received numerous global recognitions, including election to several academies of sciences, multiple honorary professorships and doctorates, and fellowships and editorial roles in international scientific organizations and journals, reflecting his exceptional contributions to both theoretical and applied engineering and his enduring impact on global scientific and industrial advancement.

Profiles:  Scopus | ORCID

Featured Publications

1. Electroconsolidation method for fabrication of fine-dispersed high-density ceramics. Nanotechnology Perceptions, 2024.

2. Peculiarities of obtaining nanostructured materials compacted by the method of hot pressing due to the passage of direct electric current. Nanotechnology Perceptions, 2024.

3. Algorithmic foundations of optimization using finite element modeling of high-speed grinding technology in application to 3D micro-level models. Nanotechnology Perceptions, 2024.

4. Computer simulations of static stress-strain states for long-length pressurised pipes with external protective thin nanoengineered coating under nonuniform temperature fields. Nanotechnology Perceptions, 2024.

5. Magnetic shielding materials for electric vehicles. Nanotechnology Perceptions, 2024.

Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Prof. Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Professor | Universidade Federal de Campina Grande | Brazil

Prof. Helio de Lucena Lira is a distinguished professor at the Universidade Federal de Campina Grande, recognized for his expertise in Materials Engineering with a focus on ceramics. He holds a doctoral degree in Chemistry from the University of Glasgow, a master’s degree in Process Engineering, and a bachelor’s degree in Industrial Chemistry from the Universidade Federal da Paraíba. Over his career, he has held significant academic positions, including full professorship and leadership in both undergraduate and postgraduate programs in Materials Engineering and Chemical Engineering, where he has supervised numerous research projects and guided graduate students. His research centers on the development of ceramic membranes, microfiltration technologies, advanced ceramics, and the sustainable utilization of industrial residues, contributing substantially to materials innovation and environmental applications. Prof. Lira has authored an extensive body of publications that are widely cited in his field, reflecting the impact and relevance of his work. He has been recognized as a productivity fellow by CNPq and has participated in international training programs, enhancing his expertise in fine ceramics. His professional service includes active roles in research development, curriculum leadership, and mentorship, demonstrating a sustained commitment to advancing scientific knowledge and fostering the next generation of engineers and researchers. Prof. Lira’s distinguished career exemplifies excellence in research, education, and professional leadership.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Ceramic membranes production using quartzite waste for treatment of domestic wastewater, International Journal of Applied Ceramic Technology, 2025.

2. Sustainable ceramic membranes from clays and mining wastes by rapid sintering process, Materials Research, 2025.

3. Structure and morphological properties of cobalt-oxide-based (Co3O4) materials as electrodes for supercapacitors: A brief review. Full text unavailable.

4. TiO2 and Ag-TiO2 nanofibrous aerogels by SBS method and freeze-casting: Treatment of contaminated water, Materials Letters, 2024.

5. Development of asymmetric ceramic membranes for dairy wastewater treatment – A comparison between co-sintering and conventional firing process, Journal of Water Process Engineering, 2024.