Pin-Yi Zhao | Energy Storage Materials | Editorial Board Member

Dr. Pin-Yi Zhao | Energy Storage Materials | Editorial Board Member

Researcher | University College London | United Kingdom

Dr Yi Zhao is a highly accomplished clinician–scientist at Imperial College London whose expertise lies at the intersection of surgery and artificial intelligence. With an undergraduate medical degree (MBBS) from Imperial College and further specialization in surgical design, Dr Zhao combines rigorous clinical training with a passion for technology. In professional practice, he works within the NHS and collaborates on research in ultrasound-guided regional anaesthesia, contributing to multidisciplinary projects and consensus-building initiatives. His research focuses on leveraging machine learning and AI to enhance diagnostic accuracy and workflow in surgical and imaging domains, as evidenced by numerous systematic reviews, meta-analyses, and clinical-implementation studies. Dr Zhao has made significant scholarly contributions—including peer-reviewed publications evaluating AI performance in urology, obstetrics and gynaecology, and musculoskeletal imaging—and his work has helped define reporting frameworks for AI in medicine. He is recognized within his community for methodological leadership, participating as an author on international consensus guidelines and as a reviewer for high-impact journals. His professional standing is further underpinned by active membership of clinical and academic societies, certification in both medical practice and AI evaluation, and consistent peer recognition for his role in promoting responsible, evidence-based deployment of surgical AI technologies.

Profiles: Google Scholar

Featured Publications

1. Zhao, Y., Simpson, B. S., Morka, N., Freeman, A., Kirkham, A., Kelly, D., … Ahmed, H. U. (2022). Comparison of multiparametric magnetic resonance imaging with prostate-specific membrane antigen positron-emission tomography imaging in primary prostate cancer diagnosis: A … Cancers, 14(14), 3497.

2. Zhao, Y., Coppola, A., Karamchandani, U., Amiras, D., & Gupte, C. M. (2024). Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: A systematic review and meta-analysis. European Radiology, 34(9), 5954–5964.

3. Thomas, M., Murali, S., Simpson, B. S., Freeman, A., Kirkham, A., Kelly, D., … Zhao, Y. (2023). Use of artificial intelligence in the detection of primary prostate cancer in multiparametric MRI with its clinical outcomes: A protocol for a systematic review and meta-analysis. BMJ Open, 13(8), e074009.

4. Gao, Y., Zhao, Y., Choi, S., Chaurasia, A., Ding, H., Haroon, A., … Wan, S. (2022). Evaluating different quantitative shear wave parameters of ultrasound elastography in the diagnosis of lymph node malignancies: A systematic review and meta-analysis. Cancers, 14(22), 5568.

5. Zhao, Y., Nozdrin, M., Dalla Pria, A., & Bracchi, M. (2021). Nannizziopsis immune reconstitution inflammatory syndrome in a patient with HIV: First reported case. European Journal of Case Reports in Internal Medicine, 8(11), 003021.

Dr. Yi Zhao’s work at the intersection of surgery and artificial intelligence advances precision diagnostics and promotes safer, more effective clinical decision-making. His research contributes to the development of trustworthy, evidence-based AI tools that enhance healthcare delivery and support global innovation in medical imaging and surgical technology.

Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Prof. Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Professor | Universidade Federal de Campina Grande | Brazil

Prof. Helio de Lucena Lira is a distinguished professor at the Universidade Federal de Campina Grande, recognized for his expertise in Materials Engineering with a focus on ceramics. He holds a doctoral degree in Chemistry from the University of Glasgow, a master’s degree in Process Engineering, and a bachelor’s degree in Industrial Chemistry from the Universidade Federal da Paraíba. Over his career, he has held significant academic positions, including full professorship and leadership in both undergraduate and postgraduate programs in Materials Engineering and Chemical Engineering, where he has supervised numerous research projects and guided graduate students. His research centers on the development of ceramic membranes, microfiltration technologies, advanced ceramics, and the sustainable utilization of industrial residues, contributing substantially to materials innovation and environmental applications. Prof. Lira has authored an extensive body of publications that are widely cited in his field, reflecting the impact and relevance of his work. He has been recognized as a productivity fellow by CNPq and has participated in international training programs, enhancing his expertise in fine ceramics. His professional service includes active roles in research development, curriculum leadership, and mentorship, demonstrating a sustained commitment to advancing scientific knowledge and fostering the next generation of engineers and researchers. Prof. Lira’s distinguished career exemplifies excellence in research, education, and professional leadership.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Ceramic membranes production using quartzite waste for treatment of domestic wastewater, International Journal of Applied Ceramic Technology, 2025.

2. Sustainable ceramic membranes from clays and mining wastes by rapid sintering process, Materials Research, 2025.

3. Structure and morphological properties of cobalt-oxide-based (Co3O4) materials as electrodes for supercapacitors: A brief review. Full text unavailable.

4. TiO2 and Ag-TiO2 nanofibrous aerogels by SBS method and freeze-casting: Treatment of contaminated water, Materials Letters, 2024.

5. Development of asymmetric ceramic membranes for dairy wastewater treatment – A comparison between co-sintering and conventional firing process, Journal of Water Process Engineering, 2024.

Alexander Lenshin | Materials Science | Best Researcher Award


Dr. Alexander Lenshin | Materials Science | Best Researcher Award

Leading researcher at Voronezh State University, Russia

Dr. Alexander Sergeevich Lenshin is a distinguished physicist and researcher, holding a Doctorate in Physical and Mathematical Sciences and serving as a leading researcher and associate professor at Voronezh State University. With over 14 years of academic and scientific experience, he has authored more than 100 publications, including numerous papers in high-impact Q1 journals. His research focuses on nanostructured materials, semiconductor heterostructures, and advanced 3D printing technologies. Dr. Lenshin has successfully led prestigious grants from the President of the Russian Federation, RFBR, and RSF, and serves as an expert for the Russian Science Foundation. He actively mentors graduate students and contributes to educational program development. His achievements have earned him regional awards and national recognition, including inclusion in the Strategic Talent Reserve of the Ministry of Science and Higher Education. Committed to both scientific excellence and education, Dr. Lenshin exemplifies the qualities of a leading researcher and academic innovator.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Alexander Sergeevich Lenshin received his foundational education at Voronezh State University, where he completed his Bachelor’s degree in 2004 and Master’s degree in 2006 in physics-related disciplines. He earned his Candidate of Physical and Mathematical Sciences (Ph.D. equivalent) in 2009 and his Doctor of Sciences degree in 2021 from the same institution, signifying a high level of academic excellence in the Russian academic hierarchy. His academic journey reflects a consistent commitment to deepening his expertise in physics and materials science. Beyond his formal education, Dr. Lenshin has completed numerous advanced training and professional development programs, including qualifications in semiconductor device project management, digital science and technology, labor safety, and strategic leadership. These programs have further enhanced his interdisciplinary competence and administrative capacity in the scientific and academic community. His academic foundation is both rigorous and diverse, equipping him for leadership roles in research and higher education.

Professional Experience

Dr. Lenshin has amassed over 14 years of experience in higher education and scientific research. He is currently a leading researcher and associate professor at Voronezh State University, where he teaches core physics courses and specialized subjects such as additive technologies in microelectronics. His professional activities span teaching, research supervision, curriculum development, and administrative contributions. He has mentored graduate and postgraduate students and actively promotes their participation in national and international scientific conferences. In addition to his academic duties, he plays a vital role in institutional development by contributing to the design of postgraduate training programs in physical sciences. His service also includes judging student science tournaments and mentoring innovation leagues, showcasing his dedication to student engagement and scientific outreach. Dr. Lenshin’s career is characterized by a balance of teaching, mentorship, and high-level scientific inquiry, making him a well-rounded academic professional and a key figure in advancing physics education and research.

Research Interest

Dr. Alexander Lenshin’s research focuses on the physics and engineering of low-dimensional nanostructures, advanced materials, and semiconductor heterostructures. His work includes the study of porous silicon, GaN/SiC-based hybrid structures, and polylactide-based polymers, with applications in microelectronics, photonics, and optoelectronics. He is particularly interested in the morphological, optical, and structural characterization of materials using methods such as Raman spectroscopy, molecular beam epitaxy, and various nano-fabrication techniques. A key theme in his research is understanding and controlling the physical properties of hybrid systems to optimize their functional performance in real-world applications. His interdisciplinary approach merges materials science with applied physics and nanoengineering. Dr. Lenshin’s scientific contributions are evidenced by more than 100 published works, many in top-tier journals, and his leadership in several funded research projects. His research stands at the forefront of modern materials science and has implications for next-generation electronic and photonic devices.

Award and Honor

Dr. Alexander Lenshin has received multiple prestigious awards in recognition of his scientific and educational contributions. He was a recipient of the Young Scientists and Specialists Award of the Voronezh Region in 2022 and previously won the Government of Voronezh Region Prize for Scientific Development in 2013. In 2018, he was awarded an honorary diploma by the city administration for his long-standing contributions to science and education. Dr. Lenshin has twice secured the highly competitive Presidential Grants of the Russian Federation, emphasizing his national standing as a researcher. He has also led projects supported by the Russian Foundation for Basic Research (RFBR) and the Russian Science Foundation (RSF). His role as an expert for the RSF and guest editor for the journal Coatings (MDPI, Scopus Q2) further highlights his influence within the scientific community. In 2024, he was included in the Ministry of Science and Higher Education’s Strategic Talent Reserve, a notable distinction for leadership in science and education.

Conclusion

Dr. Alexander Sergeevich Lenshin is an accomplished physicist, researcher, and educator whose career reflects a deep commitment to advancing science and higher education. With a strong academic foundation, extensive teaching experience, and a prolific research record in advanced materials and nanostructures, he exemplifies scientific leadership. His success in securing competitive research grants and mentoring the next generation of scientists underscores his influence in both national and institutional contexts. Recognized with multiple regional and governmental awards, Dr. Lenshin has demonstrated excellence in both individual and collaborative scientific endeavors. His inclusion in the Strategic Talent Reserve signals national confidence in his potential for higher leadership roles in science and technology policy. As a researcher, mentor, and academic innovator, he embodies the values and qualifications deserving of top honors such as the Best Researcher Award. Dr. Lenshin’s trajectory continues to make significant contributions to the field of physical sciences and the broader research community.

Publications Top Notes

  • Examining the morphology and surface composition of a nanostructured tin film on porous silicon
    Authors: Ksenia B. Kim, Alexander S. Lenshin, Sergei S. Chernenko, Sabukhi Ilich ogly Niftaliev, Andrey I. Chukavin
    Year: 2024
    Citation: DOI: 10.1364/JOT.91.000675

  • Microstructural and hydrophilic properties of polyethylene terephthalate glycol polymer samples with different 3D printing patterns
    Authors: Alexander S. Lenshin, Vera E. Frolova, Sergey A. Ivkov, Evelina P. Domashevskaya
    Year: 2024
    Citation: DOI: 10.17308/kcmf.2024.26/11810

  • Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy
    Authors: P. V. Seredin, N. A. Kurilo, Ali O. Radam, N. S. Builov, D. L. Goloshchapov, S. A. Ivkov, A. S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/10978

  • Comparative studies of nanoscale columnar AlxGa1-xN/AlN heterostructures grown by plasma-assisted molecular-beam epitaxy on cSi, porSi/cSi and SiC/porSi/cSi substrates
    Authors: P.V. Seredin, D.L. Goloshchapov, N.A. Kurilo, Ali Obaid Radam, V.M. Kashkarov, A.S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.1016/j.optmat.2023.114451

  • Structure and composition of a composite of porous silicon with deposited copperAuthors: Alexander S. Lenshin, Kseniya B. Kim, Boris L. Agapov, Vladimir M. Kashkarov, Anatoly N. Lukin, Sabukhi I. Niftaliyev
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/11259

  • Characteristics of the formation and composition of AlxGa1-xN/AlN/por-Si/Si(111) heterostructures grown using a porous silicon buffer layer
    Authors: Alexander S. Lenshin, Pavel V. Seredin, Dmitry S. Zolotukhin, Artemy N. Belyukov, Andrey M. Mizerov, Igor A. Kasatkin, et al.
    Year: 2022
    Citation: DOI: 10.17308/kcmf.2022.24/9055

  • Application of Sorption Analysis in the Study of Various Nanomaterials Used in Electronics Depending on their Composition and Production Conditions
    Authors: A. S. Lenshin, E. V. Maraeva
    Year: 2022
    Citation: DOI: 10.32603/1993-8985-2022-25-1-47-53

  • Features of the two-stage formation of macroporous and mesoporous silicon structures
    Authors: Alexander S. Lenshin, Anatoly N. Lukin, Yaroslav A. Peshkov, Sergey V. Kannykin, Boris L. Agapov, Pavel V. Seredin, Evelina P. Domashevskaya
    Year: 2021
    Citation: DOI: 10.17308/kcmf.2021.23/3300

  • Influence of electrochemical etching modes in single- and two-stage formation of porous silicon on oxidation of its surface layers under natural conditions
    Authors: Alexander S. Lenshin, Konstantin A. Barkov, Natalya G. Skopintseva, Boris L. Agapov, Evelina P. Domashevskaya
    Year: 2019
    Citation: DOI: 10.17308/kcmf.2019.21/2364

Zixuan Chen | Materials Science | Best Researcher Award

Prof. Zixuan Chen | Materials Science | Best Researcher Award

Lecture at University of Shanghai for Science and Technology, China

Dr. Zixuan Chen is a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology, with a Ph.D. in Materials Engineering. His research focuses on high-performance and multifunctional composite materials, durability of fiber-reinforced composites, and micro-/nano-material applications. With international academic experience in South Korea and China, Dr. Chen has contributed to several high-impact projects, including national R&D programs and joint military-industry initiatives. He has published extensively in top-tier journals such as Composites Science and Technology and Materials & Design, with multiple Q1 publications. As a reviewer for international journals and a member of the Chinese Society of Theoretical and Applied Mechanics, he actively engages with the academic community. Dr. Chen also mentors graduate students and contributes to research-driven education. His strong publication record, applied research contributions, and growing academic leadership mark him as a promising and impactful researcher in the field of advanced composite materials.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Zixuan Chen has a solid academic foundation in materials engineering. He began his graduate studies with a Master’s degree from the Department of Materials Engineering at Dalian Maritime University (2014–2016). Following this, he pursued a Ph.D. at Korea Maritime and Ocean University (2016–2019), where he engaged in intensive research on carbon fiber composites, contributing to international collaborative projects. His doctoral training emphasized advanced materials science and engineering, blending theoretical knowledge with applied research experience in high-performance composites. During his time in Korea, Dr. Chen worked closely with the Industry-Academia Cooperation Foundation and Korean Air, further reinforcing his practical expertise in cutting-edge material systems. His academic journey across leading institutions in China and Korea has equipped him with strong international perspectives and a deep understanding of the field, which continues to inform his research in composite materials and their applications in various industrial sectors.

Professional Experience

Dr. Zixuan Chen’s professional trajectory reflects steady growth in academia and research. From 2019 to 2022, he served as a Postdoctoral Fellow at Tongji University’s Mechanics Postdoctoral Station, where he participated in key national programs focusing on green composite materials and sustainable engineering solutions. Since November 2022, he has been a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology. In this role, he has continued to expand his research on advanced composite materials while mentoring graduate students. His work spans both fundamental and applied research, including involvement in strategic military-industry projects such as vibration and shock control systems. Dr. Chen’s hands-on experience in project development, collaboration with industrial partners, and contributions to national initiatives demonstrate his capacity for impactful research. His current position also emphasizes teaching excellence, academic service, and shaping the next generation of engineers in the field of materials science and mechanical engineering.

Research Interest

Dr. Zixuan Chen’s research interests lie at the intersection of advanced materials science and mechanical engineering, with a focus on high-performance fiber-reinforced composites. His work emphasizes the development, functionalization, and structural design of micro- and nano-materials for composite applications. He is particularly interested in enhancing the durability, strength, and multifunctionality of these materials, making them suitable for use in aerospace, defense, and environmental sustainability sectors. Dr. Chen also explores green composite solutions, contributing to national efforts in biomass fiber development and rural technology advancement. His interdisciplinary approach incorporates structural optimization, intelligent material applications, and experimental design techniques to address real-world engineering challenges. His research has consistently been published in high-impact Q1 journals, highlighting both innovation and practical relevance. Through collaboration with academia and industry, Dr. Chen aims to bridge the gap between laboratory research and scalable engineering solutions that contribute to sustainable development and high-tech material design.

Award and Honor

While specific named awards are not listed in the available profile, Dr. Zixuan Chen’s academic achievements and recognitions are evident through his scholarly output and roles. He has published multiple high-impact papers in prestigious Q1 journals such as Composites Science and Technology, Materials & Design, and ACS Applied Nano Materials, a notable indicator of peer recognition. As a reviewer for several international scientific journals, he is actively engaged in academic quality assurance and thought leadership within his field. Furthermore, his membership in the Chinese Society of Theoretical and Applied Mechanics reflects professional recognition at the national level. His involvement in prominent national R&D programs and military-industry collaborations also signifies trust and recognition by government and institutional stakeholders. These cumulative accomplishments serve as indirect honors, demonstrating that Dr. Chen is a respected and valuable contributor to his field. As his career progresses, formal accolades are likely to follow his continued research excellence and leadership.

Conclusion

In summary, Dr. Zixuan Chen is an emerging academic and researcher whose expertise in composite materials and engineering mechanics is marked by both depth and breadth. With a strong educational background and international experience, he has developed a research profile that spans high-performance materials, green technology, and military-industrial applications. His prolific publication record in top-tier journals and active engagement in national research programs reflect both competence and impact. As a Lecturer and Master’s supervisor, he also plays an important role in mentoring students and advancing engineering education. Though still in the early stages of his independent academic career, Dr. Chen exhibits the qualities of a top researcher—intellectual curiosity, interdisciplinary capability, and a drive to contribute meaningful innovations to society. Given his consistent output and growing leadership, he is well-positioned to make significant future contributions to the field and is a strong candidate for recognition through awards like the Best Researcher Award.

Publications Top Notes

  • Title: Comprehensive effects of isomeric doping on electrospun PVDF films: Towards smart wiper systems enabled by piezoelectric nanogenerators and machine learning
    Authors: Zixuan Chen, Huancheng Yang, Huijie Yu, Yao Lu, Wenchao Gao
    Year: 2025

  • Title: Fire-insulation properties of recycled aggregate concrete, its application in composite concrete structures, and concrete-concrete interface effects: a review
    Authors: Zixuan Chen, Jianzhuang Xiao
    Year: Not specified

  • Title: Electrophoretic deposition of non-conductive halloysite nanotubes onto glass fabrics with improved interlaminar properties of glass/epoxy composites (Book Chapter)
    Authors: Tianyu Yu, Zixuan Chen, Soojeong Park, Yunhae Kim
    Year: Not specified

Francisco Carrasco-Marin l Materials Science | Best Researcher Award

Prof. Dr. Francisco Carrasco-Marin l Materials Science | Best Researcher Award

Full Prof at University of Granada, Spain

Prof. Francisco Carrasco-Marín, a Full Professor at the University of Granada, is a leading researcher in advanced carbon materials, heterogeneous catalysis, and environmental technologies. With over 236 publications (70% in Q1 journals), two international patents, and an h-index of 51 (Scopus), his work has attracted more than 10,000 citations, reflecting strong scientific impact. He has supervised 19 Ph.D. theses and coordinated numerous international collaborations, hosting researchers from around the world. His research focuses on sustainable materials for energy storage, water purification, and CO₂ conversion. Prof. Carrasco-Marín has led or participated in 50 research projects, significantly contributing to innovation and application-driven science. A dedicated academic leader, he has served as Ph.D. program coordinator and president of the Doctoral School Management Committee at the University of Granada. His achievements, leadership in scientific societies, and international outreach position him as a distinguished figure in the field of inorganic and environmental chemistry.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Prof. Francisco Carrasco-Marín completed his degree in Chemical Sciences at the University of Granada in 1984 and earned his Ph.D. in Chemical Sciences from the same institution in 1988, graduating with the highest distinction, “Cum Laude,” and receiving the Extraordinary Doctorate Award. His early academic excellence was further strengthened by a prestigious postdoctoral fellowship at Pennsylvania State University (USA) from 1989 to 1990, where he specialized in materials science and engineering. His education reflects a strong foundation in chemistry, advanced materials, and research methodology, preparing him for a distinguished academic and research career. Throughout his academic training, he consistently focused on the development and application of carbon-based materials, catalysis, and environmental technologies. His educational journey has been instrumental in shaping his interdisciplinary expertise across chemistry, materials science, and environmental applications, which continues to influence his ongoing research and professional contributions.

Professional Experience

Prof. Francisco Carrasco-Marín has built an impressive professional trajectory spanning over three decades. After his postdoctoral training, he became an Associate Professor at the University of Jaén in 1993 before joining the University of Granada in 1994, where he was promoted to Full Professor in 2009. He has been an active member and, later, Chair of the UGR-Carbon Research Group, contributing to pioneering work in polyfunctional carbon-based materials. He has coordinated major national and international research projects, evaluated research proposals for organizations across Spain, Argentina, Mexico, and Saudi Arabia, and organized significant international scientific events. His leadership extends to academic administration, serving as Coordinator of the Ph.D. Program in Chemistry and President of the Doctoral School Management Committee. Additionally, he has mentored numerous international scholars, fostering strong global collaborations. His professional experience showcases a perfect blend of teaching, research, leadership, and innovation.

Research Interest

Prof. Francisco Carrasco-Marín’s research interests lie primarily in the fields of advanced carbon materials, heterogeneous catalysis, environmental decontamination, and electrochemical energy storage. His work explores the design and synthesis of carbon aerogels and xerogels, 3D-printed catalytic materials, and eco-friendly adsorbents derived from agricultural waste. In recent years, his research has pivoted towards sustainable technologies, including the photocatalytic and electrocatalytic conversion of CO₂ into hydrocarbons and the development of supercapacitor electrodes. His interdisciplinary approach integrates materials chemistry, nanotechnology, and environmental engineering to solve pressing challenges in clean energy and water purification. Additionally, he has advanced the use of artificial intelligence in adsorption processes and pioneered novel microreactors for wastewater treatment. His research has both theoretical depth and practical application, positioning him as a leader in sustainable material science and environmental remediation technologies, and contributing significantly to the global effort toward green technologies.

Award and Honor

Throughout his distinguished career, Prof. Francisco Carrasco-Marín has received numerous awards and recognitions for his contributions to science and academia. Early in his career, he received the Extraordinary Doctorate Award from the University of Granada, recognizing his outstanding doctoral work. He has been consistently ranked among the top researchers at the University of Granada, notably occupying the 56th global position at the university and third in Inorganic Chemistry as of 2020. His leadership roles in scientific societies, such as Vice President of the Spanish Carbon Group and board member of the Royal Spanish Society of Chemistry’s Specialized Adsorption Group, highlight the esteem of his peers. He has also been invited to evaluate research projects for prestigious international organizations like FONCyT, Colciencias, ANEP, and CONACYT. His awards and honors reflect his excellence in research, mentorship, and international collaboration, consolidating his reputation as a highly respected figure in the global scientific community.

Conclusion

Prof. Francisco Carrasco-Marín’s career reflects a profound commitment to research excellence, education, and scientific innovation. With a robust academic background, extensive professional experience, impactful research contributions, and numerous accolades, he stands out as a leader in materials chemistry and environmental technology. His interdisciplinary research, spanning advanced carbon materials to sustainable energy solutions, addresses some of the most critical challenges of our time. His mentorship of young researchers and leadership in international collaborations demonstrate his dedication to nurturing future generations of scientists. Prof. Carrasco-Marín’s achievements make him a highly deserving candidate for any recognition, including a Best Researcher Award. His career embodies a rare combination of scientific rigor, practical innovation, and academic leadership, contributing significantly to the advancement of chemistry and environmental science globally.

Publications Top Notes

  • Title: Chemometric modeling of the adsorption mechanism of Cu(II) in aqueous solution onto functionalized materials: Integrating artificial neural networks and porous structure characterization
    Authors: Warren-Vega, W.M.; Cornejo-León, S.; Zárate-Guzmán, A.I.; Carrasco-Marín, F.; Romero-Cano, L.A.
    Year: 2025
    Citations: 0

  • Title: Bifunctional catalysts based on carbon-coated manganese microspheres applied in the heterogeneous electro-fenton process for tetracycline degradation
    Authors: Fajardo-Puerto, E.; Elmouwahidi, A.; Amaro-Gahete, J.; Pérez-Cadenas, A.F.; Carrasco-Marín, F.
    Year: 2025
    Citations: 0

  • Title: Biobased Carbon-Fungus Materials for Remediation of Produced Water in Unconventional Oil Reservoirs
    Authors: Zapata, K.; Rosales, S.; Carrasco-Marín, F.; Franco, C.A.; Cortés, F.B.
    Year: 2025
    Citations: 0

  • Title: Chemical and structural changes of asphaltenes during oxygen chemisorption at low and high-pressure
    Authors: Médina, O.E.; Moncayo-Riascos, I.; Heidari, S.; Cortés, F.B.; Franco, C.A.
    Year: 2025
    Citations: 1

  • Title: Synthesis of porous carbon xerogel adsorbents with tailored hierarchical porosity and morphology for the selective removal of sulfamethoxazole from water
    Authors: Ortiz-Ramos, U.; Bailón-García, E.; Pérez-Cadenas, A.F.; Leyva-Ramos, R.; Carrasco-Marín, F.
    Year: 2024
    Citations: 0

  • Title: Corrigendum to ‘3D printing in photocatalysis: methods and capabilities for the improved performance’
    Authors: Aguirre-Cortés, J.M.; Moral-Rodríguez, A.I.; Bailón-García, E.; Pérez-Cadenas, A.F.; Carrasco-Marín, F.
    Year: 2024
    Citations: 0

  • Title: Optimization of hydrochar synthesis conditions for enhanced Cd(II) and Pb(II) adsorption in mono and multimetallic systems
    Authors: González-Fernández, L.A.; Medellín-Castillo, N.A.; Navarro-Frómeta, A.E.; Sanchez-Polo, M.; Carrasco-Marín, F.
    Year: 2024
    Citations: 4

  • Title: Enhanced Photodegradation of Sulfamethoxazole Through Cutting-Edge Titania-Zirconia-Based Materials
    Authors: Bensmaine, Z.; El-Korso, S.; Moral-Rodríguez, A.I.; Carrasco-Marín, F.; Bailón-García, E.
    Year: 2024
    Citations: 0

  • Title: Size-miniaturization of TiO2-ZrO2 coupled semiconductors to develop highly efficient visible-driven photocatalysts for the degradation of drugs in wastewater
    Authors: Aguirre-Cortés, J.M.; Munguía-Ubierna, Á.; Moral-Rodríguez, A.I.; Carrasco-Marín, F.; Bailón-García, E.
    Year: 2024
    Citations: 2

  • Title: Transforming Petrochemical Processes: Cutting-Edge Advances in Kaolin Catalyst Fabrication (Review Article)
    Authors: Al-Ameri, O.B.; Alzuhairi, M.A.; Bailón-García, E.; Carrasco-Marín, F.; Amaro-Gahete, J.
    Year: 2024
    Citations: 0

Shu-Long Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Shu-Long Li | Materials Science | Best Researcher Award

Specially appointed Associate Researcher at Chengdu University, China

Dr. Shu-Long Li, born in November 1989 in Chengdu, China, is an associate research fellow at the Institute for Advanced Study, Chengdu University. He completed his undergraduate degree at China West Normal University in 2013, before pursuing a Ph.D. at Southwest Jiaotong University, where he graduated in June 2021. Dr. Li’s academic journey includes a valuable international experience as a Visiting Ph.D. student at the National University of Singapore between 2019 and 2020. His academic background and experience make him a well-rounded researcher in his field. His current role involves both independent research and collaboration with international institutions, furthering his expertise and contributions to the scientific community. Dr. Li’s work focuses on advanced studies with potential applications in various domains, with the aim of bridging research gaps and promoting technological innovations. His academic career reflects a commitment to continuous learning and contributing to significant scientific advancements.

Professional Profile

Education

Dr. Shu-Long Li’s educational journey began at China West Normal University, where he earned a Bachelor of Science (B.S.) degree in 2013. Following his undergraduate studies, Dr. Li pursued a Ph.D. at Southwest Jiaotong University, one of China’s well-regarded institutions for research, where he completed his doctoral studies in June 2021. His academic path was enriched by an international research experience when he was a Visiting Ph.D. student at the National University of Singapore from 2019 to 2020. This international exposure broadened his academic horizon and allowed him to collaborate with leading researchers and access state-of-the-art resources. Dr. Li’s strong academic foundation has paved the way for his ongoing work at Chengdu University, where he continues to refine his research skills and contribute to the scientific community through his specialized knowledge in his field.

Professional Experience

Dr. Shu-Long Li’s professional career has been marked by a series of roles that demonstrate his growing expertise and influence in research. He is currently an Associate Research Fellow at the Institute for Advanced Study, Chengdu University, a position he has held since October 2021. In this role, Dr. Li is responsible for conducting independent research, mentoring junior researchers, and collaborating with both national and international scholars. His work at the Institute contributes to the advancement of research in his field, particularly in cutting-edge technologies and methodologies. Prior to this, Dr. Li’s research experience included his doctoral work at Southwest Jiaotong University, where he was involved in high-impact projects. His international experience as a Visiting Ph.D. student at the National University of Singapore further enriched his professional background, allowing him to gain a global perspective on scientific research.

Research Interests

Dr. Shu-Long Li’s research interests are primarily focused on advanced scientific and engineering topics that address current challenges in technology and innovation. His work involves exploring new methodologies and applications that can have a significant impact in various fields. Dr. Li is particularly interested in areas that integrate scientific discovery with practical technological advancements, with an emphasis on creating solutions to real-world problems. His international academic experience has broadened his scope, allowing him to explore collaborative opportunities and apply interdisciplinary approaches to his research. By contributing to research that bridges theoretical studies and practical applications, Dr. Li aims to influence both academia and industry. His research interests remain dynamic, reflecting a keen drive to engage in projects that push the boundaries of current knowledge and contribute to the technological advancements of the future.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Shu-Long Li’s academic achievements and professional growth indicate a promising trajectory toward recognition in his field. His doctoral research at Southwest Jiaotong University and his subsequent work at Chengdu University suggest a level of dedication and impact that could eventually lead to significant academic or professional awards. His international exposure, particularly his time as a Visiting Ph.D. student at the National University of Singapore, further indicates a researcher who is respected among global academic communities. In the future, it is likely that his work will be recognized through awards or accolades, reflecting his growing influence in scientific research. As Dr. Li continues his research, he will likely gain more recognition, potentially securing honors that reflect his contribution to his discipline.

Conclusion

Dr. Shu-Long Li demonstrates a strong academic background with a Ph.D. and an associate research fellow position, as well as international research exposure. However, more details on his research output, impact, and any previous awards or notable accomplishments would be needed to fully assess his candidacy for the Best Researcher Award. His future potential as a researcher seems promising, but more evidence of his contributions to the academic community is necessary to strengthen his case for the award.

Publications Top Noted

  • Title: Synthesis and superconductivity of high-quality FeSe0.98 single crystals
    Author(s): Zhiwei Wen, Tao Jia, Yusen Xiao, Yong Zhao, Yongliang Chen
    Year: 2025
    Citations: 0

  • Title: Flux dynamics, anisotropy in Jc and vortex phase diagram of H+-intercalated FeSe single crystal
    Author(s): Zhiwei Wen, Tao Jia, Yusen Xiao, Cuihua Cheng, Yong Zhao
    Year: 2024
    Citations: 1

  • Title: High catalytic activity and abundant active sites in M2C12 monolayer for nitrogen reduction reaction
    Author(s): Shulong Li, Yutao Chen, Guo Tian, Yong Zhao, Liyong Gan
    Year: 2024
    Citations: 0

 

Prof. Dr. Yawen Huang | Materials Science | Best Research Article Award

Prof. Dr. Yawen Huang | Materials Science | Best Research Article Award

Academician/Research Scholar at Southwest University of Science and Technology, China

Yawen Huang is a distinguished professor and doctoral supervisor at the State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology. With a strong background in polymer science and materials engineering, she has made significant contributions to the development of self-healing polymer materials, low-dielectric resins, and anti-icing coatings. Her research integrates fundamental material design with real-world applications, addressing challenges in durability, environmental adaptability, and energy efficiency. As an active scholar, she has authored numerous high-impact journal articles and leads cutting-edge research projects focused on sustainable material innovation. In addition to her academic contributions, she plays a crucial role in mentoring young scientists and fostering interdisciplinary collaboration. Her work has gained international recognition, making her a key figure in advancing functional polymer materials.

Professional Profile

Education

Yawen Huang earned her doctoral degree in materials science and engineering from a prestigious institution, where she specialized in polymer chemistry and composite materials. Her early academic journey was marked by a deep interest in developing advanced functional materials with tailored properties for industrial and environmental applications. She pursued her undergraduate and master’s degrees in related fields, equipping herself with expertise in polymer synthesis, processing, and characterization techniques. During her Ph.D. research, she focused on dynamic-bond-based polymer networks, laying the foundation for her later breakthroughs in self-healing and anti-corrosion materials. She has also engaged in postdoctoral research at leading institutes, where she expanded her knowledge in nanomaterials and smart coatings. Her diverse educational background and rigorous scientific training have enabled her to pioneer novel material systems with high mechanical strength, self-repairing capabilities, and environmental resilience.

Professional Experience

Yawen Huang currently serves as a professor at Southwest University of Science and Technology, where she is also a doctoral supervisor at the State Key Laboratory of Environment-friendly Energy Materials. Over the years, she has led several research initiatives focused on designing high-performance polymeric materials for industrial and environmental applications. Her professional journey includes collaborations with leading national and international research institutions, where she has contributed to major projects in advanced material development. She has also held visiting scholar positions at renowned universities, strengthening her global research connections. Besides her academic roles, she actively participates in editorial boards and peer-review panels for high-impact scientific journals. Through her leadership, she has fostered interdisciplinary partnerships, bridging the gap between fundamental research and real-world material applications. Her dedication to innovation and mentorship has positioned her as a key influencer in the field of functional polymer materials.

Research Interests

Yawen Huang’s research focuses on the development of self-healing polymers, low-dielectric materials, and anti-icing coatings, with applications in energy, aerospace, and environmental sustainability. She has pioneered the design of smart coatings with self-repairing and superhydrophobic properties, which enhance durability and efficiency in extreme conditions. Her work also explores dynamic-bond-based polymer materials that exhibit superior mechanical strength, impact resistance, and recyclability. Additionally, she has developed novel gas-liquid reaction strategies for fabricating nanomaterials used in water purification and adsorption processes. Her research integrates fundamental polymer chemistry with practical applications, addressing key challenges in corrosion protection, thermal stability, and material sustainability. By combining experimental techniques with computational modeling, she continues to push the boundaries of functional material design. Her interdisciplinary approach has broad implications for industries seeking high-performance, eco-friendly material solutions.

Awards and Honors

Yawen Huang has received several prestigious awards and honors in recognition of her groundbreaking contributions to material science. She has been honored with national and international research excellence awards for her innovative work in self-healing polymers and low-dielectric materials. Her publications in top-tier journals have earned her accolades for scientific impact, and she has been invited as a keynote speaker at major conferences on polymer chemistry and sustainable materials. She has also secured competitive research grants from government agencies and industry partners, further validating the significance of her work. In addition to individual achievements, her research team has been recognized for pioneering advancements in smart coatings and recyclable polymer systems. Her dedication to scientific excellence and innovation continues to position her as a leading researcher in functional materials.

Conclusion

Yawen Huang is a strong contender for the Best Research Article Award, given their innovative contributions to self-healing and low-dielectric materials, high-quality journal publications, and leadership in research. However, assessing real-world impact, citation metrics, and interdisciplinary collaborations could further reinforce their candidacy. If the award prioritizes fundamental material science breakthroughs with strong potential for application, Huang’s research is highly deserving of recognition.

Publications Top Noted

  • Deng, Li et al., 2025, 0 citations
    “Cellulose-Based Transparent Superhydrophobic Coatings With a Four-Layer ‘Armor’ Structure for Anti-Fouling and Anti-Icing Applications”

  • Zhang, Weiliang et al., 2024, 0 citations
    “Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/aramid nanofibers ‘grape’ structure”

  • Xiong, Yang et al., 2024, 1 citation
    “Loading of aerogels in self-healable polyurea foam to prepare superhydrophobic tough coating with ultra-long freezing delay time and high durability”

  • Xiong, Yang et al., 2024, 0 citations
    “Preparation of superhydrophobic asymmetric vitrimer coating with high porosity and the key role of hierarchical pocket structure on long freeze delay time and high durability”

  • Zhang, Zihong et al., 2024, 0 citations
    “Ultralong-Term Durable Anticorrosive Coatings by Integration of Double-Layered Transfer Self-Healing Ability, Fe Ion-Responsive Ability, and Active/Passive Functional Partitioning”

  • Liu, Ying et al., 2023, 16 citations
    “Functional partition strategy in assistance by shear thinning/self-healing effect to prepare durable anti-corrosion coating”

  • Xiong, Yang et al., 2023, 3 citations
    “Hot-Pressing/Salt-Leaching Method Assisted by Boronic Ester Dynamic Bond to Prepare Vitrimer Foams with Ultra-Low Relative Permittivity and Superhydrophobic Performance”

  • Liang, Hengfei et al., 2023, 4 citations
    “Self-healable and transparent PDMS-g-poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications”

  • Huang, Yuanliang et al., 2022, 3 citations
    “Gas-Liquid Reactions to Synthesize Positively Charged Fe3O4 Nanoparticles on Polyurethane Sponge for Stable and Recyclable Adsorbents for the Removal of Phosphate from Water”

  • Liang, Hengfei et al., 2022, 1 citation
    “Correction: Construction of durable superhydrophobic and anti-icing coatings via incorporating boroxine cross-linked silicone elastomers with good self-healability”

 

Wenjing Yang | Materials Science and Engineering | Best Researcher Award

Dr. Wenjing Yang | Materials Science and Engineering | Best Researcher Award

Research Associate, Inner Mongolia Metal Material Research Institute, China

Wenjing Yang is a dedicated Research Associate at the Inner Mongolia Metal Material Research Institute. With a passion for materials science and engineering, she has focused her career on the welding and processing of metal materials. After earning her doctorate from Northeastern University, Wenjing has continued to innovate in her field, contributing to the advancement of materials engineering through her research and professional experience.

Profile

Scopus

Evaluation of Wenjing Yang for the “Best Researcher Award”

Strengths for the Award:

Innovative Contributions: Wenjing Yang has made significant contributions to the field of Materials Science and Engineering, particularly in the area of metal welding and processing. The development of the double-sided friction stir processing (DFSP) technique is noteworthy, as it addresses common issues in traditional friction stir processing by eliminating the heat-affected zone (HAZ) and thermo-mechanically affected zone (TMAZ). This innovation has the potential to improve the mechanical properties of metal joints significantly.

Research Impact: The citation index of Yang’s work, particularly the articles cited 25 and 27 times, indicates a growing recognition and impact within the scientific community. The research on achieving high strength and ductility in aluminum alloys through DFSP has been well-received, reflecting the importance and relevance of the work.

Diverse Research Output: Yang has published multiple peer-reviewed articles in reputable journals, including “Materials Science and Engineering A” and “Heliyon.” This demonstrates a consistent output of high-quality research in the field.

Novel Theoretical Contributions: Yang’s work on the Cavity Growth Mechanism Map (CGMM) is another highlight. This theoretical framework for understanding superplastic deformation in aluminum alloys adds depth to the understanding of material behavior under specific conditions, contributing to the broader field of materials science.

Areas for Improvement:

Citation Index: While some of Yang’s work has been well-cited, there are publications with low or no citations. Increasing the visibility and impact of these papers through better dissemination, collaboration, or focusing on trending research topics could enhance overall citation metrics.

Collaborations and Professional Engagement: The absence of documented collaborations, industry projects, and professional memberships might be seen as a gap in Yang’s profile. Building a network through collaborations and professional organizations could strengthen research impact and provide additional opportunities for innovation.

Broader Research Scope: While Yang has made significant contributions to specific areas within materials science, expanding the research scope to include interdisciplinary studies or applications in other industries could increase the relevance and applicability of the research.

Education 🎓

Wenjing Yang completed her doctoral studies at Northeastern University, specializing in Materials Science and Engineering. Her academic background has equipped her with a strong foundation in the study and application of metal materials, particularly in the context of welding and processing technologies.

Professional Experience 🏢

Since November 2021, Wenjing Yang has been working at the Inner Mongolia Metal Material Research Institute. In her role as a Research Associate, she has been instrumental in leading several key research projects. Her work primarily revolves around developing innovative methods for the welding and processing of metal materials, significantly contributing to the institute’s research output.

Research Interests 🔍

Wenjing Yang’s research interests are centered around Materials Science and Engineering, with a particular focus on welding techniques and the processing of dissimilar metals. She has proposed novel methods, such as double-sided friction stir processing (DFSP) and a multi-layer plug and bolt connection for dissimilar metal butt joints, aimed at enhancing the mechanical properties and impact resistance of metal materials.

Awards and Recognitions 🏆

Wenjing Yang is a candidate for the Best Researcher Award at the World Top Scientists Awards. Her innovative contributions to the field of materials engineering, particularly her work on the Cavity Growth Mechanism Map (CGMM) for aluminum alloys, have earned her recognition within the scientific community.

Publications Top Notes📚

2024Improve the impact property in a novel butt joint of Ti/Al dissimilar metals – Published in Heliyon.

2021Parametric optimization for friction stir processing in Al-Zn-Mg-Cu alloy – Published in Materials and Manufacturing Processes.

Cited by: 25

2016Improvement of microstructure and mechanical properties of 7050-T7451 aluminum by a novel double-sided friction stir processing – Published in Materials Science Forum.

Cited by: 1

2017Achieving High Strength and Ductility in Double-Sided Friction Stir Processing 7050-T7451 Aluminum Alloy – Published in Materials Science and Engineering A.

Cited by: 27

2022Morphology Evolution of Cavity and Energy Dissipation during Superplastic Deformation of 7B04 Al-alloy – Published in Chinese Journal of Materials Research.

Cited by: 1

2024Effect of Sc on wettability of ER5356 welding wires and porosity of deposited metal – Published in ACS Omega.

Conclusion:

Wenjing Yang is a strong candidate for the “Best Researcher Award,” given the innovative contributions to the field of materials science, particularly in metal welding and processing. The development of new techniques like DFSP and theoretical contributions like the CGMM demonstrate a high level of expertise and innovation. However, there is room for growth in terms of expanding research collaborations, increasing professional engagement, and improving the citation impact across all publications. With continued focus and strategic enhancements, Yang’s research could have an even greater influence on the field.