Xiaoxu Liu | Engineering | Best Researcher Award

Dr. Xiaoxu Liu | Engineering | Best Researcher Award

Associate Professor at Shenzhen Technology University, China

Dr. Xiaoxu Liu is an accomplished Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. He holds a Ph.D. in Electrical Engineering from the University of Northumbria and specializes in robust fault diagnosis, fault-tolerant control, stochastic systems, and multi-agent systems. Dr. Liu has published extensively in top-tier journals such as IEEE Transactions on Industrial Electronics and Automatica, and has served as Associate Editor for IEEE Transactions on Industrial Informatics. He has led multiple nationally funded research projects, securing over 3 million RMB in grants. His work integrates control theory with data-driven methods, addressing challenges in cyber-physical systems. Recognized as a Shenzhen Overseas High-level Talent, he has received numerous awards for research excellence and student mentorship. With international research experience and significant editorial contributions, Dr. Liu is a prominent figure in intelligent systems and control, demonstrating both academic leadership and impactful research contributions.

Professional Profile 

Scopus Profile

Education

Dr. Xiaoxu Liu possesses a strong and progressive academic background in engineering and applied mathematics. He earned his Ph.D. in Electrical Engineering from the University of Northumbria in the UK (2014–2018), where he specialized in fault-tolerant control systems and robust estimation. Prior to this, he completed a Master’s degree in Operations Research and Cybernetics at Northeastern University (2012–2014), and a Bachelor’s degree in Information and Computing Science at the same university (2008–2012). His educational path reflects a solid foundation in both theoretical and applied aspects of control systems, cybernetics, and intelligent systems. This combination of mathematical rigor and engineering application has laid the groundwork for his interdisciplinary research approach. His international academic journey has also helped him build a global perspective and a collaborative mindset, both of which have been instrumental in his subsequent professional and research achievements.

Professional Experience

Dr. Xiaoxu Liu has built an impressive academic and research career marked by rapid progression and leadership. Since December 2021, he has served as an Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. Before that, he was an Assistant Professor at the same institution from 2018 to 2021. He also held research and teaching positions internationally, including as a Research Associate at the Faculty of Mathematics, City University of Hong Kong, and as a Lecturer at the University of Northumbria. Throughout these roles, Dr. Liu has led cutting-edge research projects, mentored students, and contributed to institutional development. He has acted as the principal investigator for numerous funded research programs, reflecting his capacity to lead independently and strategically. His experience demonstrates not only academic proficiency but also a sustained commitment to advancing intelligent systems research and fostering interdisciplinary collaboration in both teaching and applied engineering contexts.

Research Interest

Dr. Xiaoxu Liu’s research spans several high-impact areas within intelligent systems and control engineering. His primary interests include robust fault diagnosis, fault-tolerant control, stochastic nonlinear systems, and multi-agent systems. He also ocuses on cyber-physical systems and data-driven control, areas highly relevant to Industry 4.0 and autonomous system applications. Dr. Liu’s work often combines theoretical rigor with practical relevance, leveraging modern tools like deep reinforcement learning and Takagi-Sugeno fuzzy models to address real-world challenges such as actuator faults in UAVs or wind turbine resilience. His interdisciplinary approach blends classical control theory with artificial intelligence, enhancing system adaptability and reliability. His research outputs—published in top-tier journals like IEEE Transactions on Industrial Electronics—demonstrate not only novelty but also applicability to emerging technologies. Dr. Liu’s ability to connect robust theory with practical implementations positions him as a thought leader in intelligent manufacturing and autonomous system control.

ward and Honor

Dr. Xiaoxu Liu has received multiple awards that recognize his research excellence, academic leadership, and contributions to engineering education. He was honored as a Shenzhen Overseas High-level Talent in 2019, highlighting his strategic value to China’s academic and technological development. He has earned several Best Paper and Best Presentation Awards from prestigious conferences and journals, such as the IEEE Industrial Electronics Society and Processes. Dr. Liu also received the IEEE IES Student Paper Travel Award and various recognitions for his mentorship of student teams who achieved national-level prizes in robotics and circuit design competitions. These accolades underscore both the quality and impact of his scholarly work and his dedication to student development. His involvement as an Associate Editor for IEEE Transactions on Industrial Informatics and reviewer for top IEEE journals further validates his status as a trusted expert in his field. These honors collectively reflect his rising prominence in the global research community.

Conclusion

In summary, Dr. Xiaoxu Liu stands out as a highly capable and accomplished researcher in the field of intelligent control systems. With a solid educational foundation, diverse professional experience across top institutions, and a research portfolio that blends theoretical innovation with real-world application, he exemplifies academic excellence. His focus on robust fault diagnosis, resilient control systems, and data-driven approaches addresses some of the most pressing challenges in cyber-physical systems and smart manufacturing. Recognized nationally and internationally through numerous awards, editorial roles, and funded projects, Dr. Liu has established himself as a leader in his domain. He continues to advance the field through impactful publications, student mentorship, and collaborative projects. His trajectory reflects not only technical expertise but also a broader commitment to scientific progress and educational excellence. As such, Dr. Liu is highly deserving of recognition through accolades such as the Best Researcher Award.

Publications Top Notes

  • Title: Joint Observer Based Fault Tolerant Control for Discrete-Time Takagi-Sugeno Fuzzy Systems With Immeasurable Premise Variables

    • Authors: Xiaoxu Liu, Risheng Li, Zhiwei Gao, Bowen Li, Tan Zhang

    • Year: 2025

  • Title: Multiagent Formation Control and Dynamic Obstacle Avoidance Based on Deep Reinforcement Learning

    • Authors: Zike Yuan, Chenhao Yao, Xiaoxu Liu, Zhiwei Gao, Wenwei Zhang

    • Year: 2025

  • Title: Fault Estimation for Cyber–Physical Systems with Intermittent Measurement Transmissions via a Hybrid Observer Approach

    • Authors: Jingjing Yan, Chao Deng, Weiwei Che, Xiaoxu Liu

    • Year: 2024

    • Citations: 5

  • Title: Reinforcement Learning-Based Fault-Tolerant Control for Quadrotor UAVs Under Actuator Fault

    • Authors: Xiaoxu Liu, Zike Yuan, Zhiwei Gao, Wenwei Zhang

    • Year: 2024

    • Citations: 12

Shekhar Suman | Engineering | Young Scientist Award

Dr. Shekhar Suman | Engineering | Young Scientist Award

Research Scientist at Borah University of Texas at Tyler, United States

Dr. Shekhar Suman Borah is a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. He holds a Ph.D. in Electronics & Communication Engineering from IIIT Guwahati, with a strong academic foundation in Analog VLSI Design, Memristors, and Signal Processing. His prolific research output includes over 25 publications in reputed journals and conferences, four book chapters, and editorial and peer-review contributions to leading journals. Dr. Borah has also secured research funding for AI-based hardware-software systems and contributed to projects at Bhabha Atomic Research Centre. His work spans advanced circuit design, environmental sensing, and precision agriculture using UAVs. He has delivered invited talks and participated in international conferences across India, the USA, and Japan. A committed IEEE member, Dr. Borah combines technical excellence with interdisciplinary collaboration, positioning him as a promising candidate for awards recognizing young scientific talent.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Shekhar Suman Borah has a strong academic foundation in electronics and communication engineering. He earned his Ph.D. from the Indian Institute of Information Technology (IIIT) Guwahati in 2022, where he specialized in analog signal processing and current-mode circuit design. Prior to this, he completed his M.Tech with First Class from KIIT University, Bhubaneswar, and his B.E. from Visvesvaraya Technological University, Karnataka, also with First Class honors. His academic journey reflects a consistent focus on electronics, signal processing, and circuit design, particularly in analog VLSI systems. During his doctoral studies, he developed expertise in the use of memristors, current-mode building blocks, and oscillator/filter design, forming the basis for much of his later research. His educational trajectory demonstrates both depth and specialization, equipping him with the technical proficiency and theoretical grounding necessary for advanced research and innovation in modern electronics and intelligent systems.

Professional Experience

Dr. Borah currently serves as a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. Previously, he was a Research Associate at the Bhabha Atomic Research Centre (BARC), Mumbai, contributing to projects in the Radiation Safety Systems Division. He has over five years of academic teaching assistance experience in labs related to analog VLSI, communication systems, and integrated circuits. His role in grant-funded projects—particularly an AI-based tutoring tool for hardware-software co-design—underscores his engagement in interdisciplinary research. He has collaborated with several international researchers and contributed to publications across areas such as memristive circuits, environmental sensing, UAV applications, and edge computing. His growing leadership in research, combined with a solid background in academic and national research institutions, marks him as a well-rounded scientist with both applied and theoretical expertise across diverse sectors in electronics and intelligent system design.

Research Interest

Dr. Borah’s research interests lie at the intersection of analog VLSI design, current-mode circuits, memristors, signal processing, and computer vision. He is particularly focused on designing energy-efficient, electronically tunable circuits using novel components like current differencing buffered amplifiers (CDBAs) and memristors. His recent work explores the integration of these devices into edge-computing architectures, environmental sensing systems, and wearable electronics. He is also involved in precision agriculture using AI and UAVs for tasks like weed detection and disease assessment, showcasing his multidisciplinary reach. Dr. Borah has a strong inclination toward practical applications of circuit theory, demonstrated by his contributions to automation, energy-efficient design, and AI-driven solutions. His ability to translate theoretical models into real-world engineering solutions makes his work impactful, especially in the context of smart devices and intelligent sensing systems. This diverse and innovative portfolio reflects both his technical depth and adaptability to emerging technological trends.

Award and Honor

Dr. Shekhar Suman Borah has received several awards that highlight his academic excellence and research impact. In 2020, he won the Best Paper Award at the Springer International Conference on Communication, Circuits, and Systems (iC3S) for his innovative work on grounded negative inductance simulation. Earlier in his academic career, he was awarded the SDR Scholarship in 2010 for academic excellence and the prestigious Anandoram Barooah Award by the Government of Assam in 2009 for securing First Class with Distinction in his 10th grade. These accolades reflect both early promise and sustained contributions to his field. His participation as a peer reviewer for reputed journals and conferences like IEEE and MDPI further underscores his professional standing. Additionally, his invited talks at prominent institutions and media appearances demonstrate recognition beyond academia. Collectively, these honors validate Dr. Borah’s trajectory as a high-performing researcher with significant potential for further contributions.

Conclusion

Dr. Shekhar Suman Borah stands out as a highly qualified young researcher with a well-rounded portfolio in education, research, and professional engagement. His academic background is strong and focused, his research contributions are diverse and impactful, and his professional roles demonstrate both leadership and collaboration. He has made meaningful strides in analog circuit design, memristive technologies, and intelligent sensing systems, with applications in agriculture, environmental monitoring, and wearable technology. His ability to secure research funding, contribute to peer-reviewed literature, and deliver invited talks reflects his growing recognition in the field. Dr. Borah’s consistent track record of innovation, coupled with his dedication to both academic excellence and real-world problem-solving, makes him a strong contender for recognition such as the Young Scientist Award. His work promises continued contributions to cutting-edge technologies in electronics and intelligent systems, positioning him as a rising figure in the global scientific community.

Publications Top Notes

  • Title: MOSFET-Based Memristor for High-Frequency Signal Processing
    Authors: M. Ghosh, A. Singh, S.S. Borah, J. Vista, A. Ranjan, S. Kumar
    Year: 2022
    Citations: 46

  • Title: Electronically tunable higher-order quadrature oscillator employing CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh, A. Ranjan
    Year: 2021
    Citations: 23

  • Title: Resistorless memristor emulators: Floating and grounded using OTA and VDBA for high-frequency applications
    Authors: M. Ghosh, P. Mondal, S.S. Borah, S. Kumar
    Year: 2022
    Citations: 20

  • Title: Third order quadrature oscillator and its application using CDBA
    Authors: M. Ghosh, S.S. Borah, A. Singh, A. Ranjan
    Year: 2021
    Citations: 17

  • Title: Simple Grounded Meminductor Emulator Using Transconductance Amplifier
    Authors: A. Singh, B. S, S., G. M.
    Year: 2021
    Citations: 12

  • Title: A novel memristive neural network circuit and its application in character recognition
    Authors: X. Zhang, X. Wang, Z. Ge, Z. Li, M. Wu, S.S. Borah
    Year: 2022
    Citations: 11

  • Title: CMOS CDBA Based 6th Order Inverse Filter Realization for Low-Power Applications
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2020
    Citations: 9

  • Title: Three Novel Configurations of Second Order Inverse Band Reject Filter Using a Single Operational Transresistance Amplifier
    Authors: S. Banerjee, S.S. Borah, M. Ghosh, P. Mondal
    Year: 2019
    Citations: 8

  • Title: Emerging Technologies for Automation in Environmental Sensing
    Authors: S.S. Borah, A. Khanal, P. Sundaravadivel
    Year: 2024
    Citations: 5

  • Title: Single VDTA Based Grounded Memristor Model and Its Applications
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 5

  • Title: Current Differencing Buffered Amplifier Based Memristive Quadrature Oscillator
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2021
    Citations: 4

  • Title: Higher order multifunction filter using current differencing buffered amplifier (CDBA)
    Authors: S.S. Borah, M. Ghosh, A. Ranjan
    Year: 2022
    Citations: 3

  • Title: A Novel Low-Power Electronically Tunable Higher-Order Quadrature Oscillator using CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2021
    Citations: 3

  • Title: CDBA Based Quadrature Sinusoidal Oscillator with Non-interactive Control
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 3

  • Title: Design of Thinned Linear Antenna Array using Particle Swarm Optimization (PSO) Algorithm
    Authors: S.S. Borah, A. Deb, J.S. Roy
    Year: 2019
    Citations: 3

Vassilios Sikavitsas | Chemical Engineering | Best Researcher Award

Prof. Vassilios Sikavitsas | Chemical Engineering | Best Researcher Award 

Professor at University of Oklahoma, United States

Professor Vassilios I. Sikavitsas is a distinguished researcher and educator in biomedical and chemical engineering at the University of Oklahoma. With a Ph.D. in Chemical Engineering from SUNY Buffalo and postdoctoral experience at Rice University, his work focuses on tissue engineering, cancer therapeutics, and bioreactor technologies. He has authored numerous high-impact publications and holds patents related to bone tissue engineering and scaffold design. Recognized multiple times as Best Professor by chemical engineering students, he has also mentored award-winning graduate researchers. His research bridges fundamental science and clinical application, notably in cancer exosome-based therapies and dynamic in vitro tumor models. Sikavitsas actively contributes to the scientific community through editorial board service and memberships in leading professional societies such as AIChE, BMES, and TERMIS. His commitment to interdisciplinary innovation, student development, and translational impact positions him as a leading figure in his field and a strong candidate for the Best Researcher Award.

Professional Profile

Google Scholar
Scopus Profile

Education

Professor Vassilios I. Sikavitsas holds a strong academic foundation in chemical engineering. He earned his Ph.D. (2000) and M.S. (1995) in Chemical Engineering from the State University of New York at Buffalo, where he built his expertise in biomaterials and tissue engineering. Prior to his graduate studies in the United States, he obtained a Diploma in Chemical Engineering from Aristotle University of Thessaloniki, Greece, in 1991. His educational trajectory reflects a progressive focus on biomedical applications within engineering, which laid the groundwork for his future research in regenerative medicine and bioreactor technologies. This combination of classical chemical engineering training and biomedical specialization has enabled him to operate at the intersection of engineering and life sciences, a hallmark of his interdisciplinary research. The international scope of his education also contributes to his broad perspective on engineering challenges and biomedical innovation.

Professional Experience

Professor Sikavitsas has built a distinguished academic career at the University of Oklahoma, where he currently serves as a Professor in the School of Chemical, Biological, and Materials Engineering and is affiliated with the Institute of Biomedical Engineering, Science, and Technology. He joined the university as an Assistant Professor in 2002 and was progressively promoted to Associate Professor in 2008 and Full Professor in 2015. His academic journey began with a postdoctoral research appointment in the Department of Bioengineering at Rice University from 2000 to 2002, where he deepened his expertise in tissue engineering. Throughout his academic appointments, he has established a dynamic and productive research laboratory, collaborated across disciplines, and contributed significantly to curriculum development in bioengineering. In addition to his academic duties, he serves on editorial boards and remains active in professional societies, enhancing his engagement with the broader scientific and engineering communities.

Research Interest

Professor Sikavitsas’s research is centered around tissue engineering, regenerative medicine, cancer biology, and bioreactor design. He specializes in the development of 3D biomimetic scaffolds, dynamic in vitro tumor models, and bone tissue constructs using advanced flow perfusion systems. His work investigates the role of mechanical stimulation and surface modifications in cell differentiation and tissue regeneration. In recent years, he has expanded into cutting-edge cancer research, exploring exosome-based drug delivery systems and tumor-immune interactions. His interdisciplinary projects bridge chemical engineering principles with biomedical applications, contributing to both fundamental understanding and clinical translation. Notable innovations include US patents on scaffold technology and tissue construct production. With an emphasis on bioreactor modeling and oxygen transport optimization, his work has practical implications in both regenerative therapies and anti-cancer strategies. His lab’s ability to combine experimental and computational methods distinguishes his contributions in the field of biomedical engineering.

Award and Honor

Professor Sikavitsas has received numerous awards and recognitions that reflect his excellence in research, teaching, and mentorship. He has been honored multiple times as the “Best Chemical Engineering Professor” by senior undergraduate students at the University of Oklahoma, recognizing his dedication to teaching and student engagement. As a research advisor, he has mentored students who have won prestigious accolades, including the Biomedical Engineering Society’s Best Dissertation Award and several Best Poster Awards at regional and national conferences. His achievements are further highlighted by multiple editorial board appointments in respected journals like the Journal of Functional Biomaterials and Scientifica (tissue engineering section). Additionally, his professional affiliations with AIChE, BMES, the Biomaterials Society, and TERMIS underscore his standing in the scientific community. These recognitions demonstrate his well-rounded excellence as a researcher, educator, and mentor, making him a strong role model and leader in his academic field.

Conclusion

Professor Vassilios I. Sikavitsas is a highly accomplished researcher and educator whose work bridges chemical engineering and biomedical science. His academic background, combined with over two decades of professional experience, has positioned him as a leader in tissue engineering, regenerative medicine, and cancer therapeutic research. His innovative work on bioreactors, scaffolds, and cancer exosomes has resulted in numerous peer-reviewed publications, patents, and awards. Equally committed to mentorship and education, he has been recognized for excellence in teaching and for guiding students toward national-level accolades. His involvement in editorial boards and leading scientific societies demonstrates a commitment to the advancement of science and engineering at large. Professor Sikavitsas’s sustained contributions to both research and academic service, along with his interdisciplinary impact, make him a compelling candidate for honors such as the Best Researcher Award. His career reflects a balance of innovation, collaboration, and academic leadership.

Publications Top Notes

  • Title: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner
    Authors: GN Bancroft, VI Sikavitsas, J Van Den Dolder, TL Sheffield, CG Ambrose, et al.
    Year: 2002
    Citations: 901

  • Title: Biomaterials and bone mechanotransduction
    Authors: VI Sikavitsas, JS Temenoff, AG Mikos
    Year: 2001
    Citations: 815

  • Title: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces
    Authors: VI Sikavitsas, GN Bancroft, HL Holtorf, JA Jansen, AG Mikos
    Year: 2003
    Citations: 595

  • Title: Formation of three‐dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor
    Authors: VI Sikavitsas, GN Bancroft, AG Mikos
    Year: 2002
    Citations: 541

  • Title: Design of a flow perfusion bioreactor system for bone tissue-engineering applications
    Authors: GN Bancroft, VI Sikavitsas, AG Mikos
    Year: 2003
    Citations: 529

  • Title: In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation
    Authors: N Datta, QP Pham, U Sharma, VI Sikavitsas, JA Jansen, AG Mikos
    Year: 2006
    Citations: 521

  • Title: Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch‐based three‐dimensional scaffolds
    Authors: ME Gomes, VI Sikavitsas, E Behravesh, RL Reis, AG Mikos
    Year: 2003
    Citations: 468

  • Title: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells
    Authors: N Datta, HL Holtorf, VI Sikavitsas, JA Jansen, AG Mikos
    Year: 2005
    Citations: 388

  • Title: Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds
    Authors: VI Sikavitsas, GN Bancroft, JJ Lemoine, MAK Liebschner, M Dauner, et al.
    Year: 2005
    Citations: 247

  • Title: Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh
    Authors: J van den Dolder, GN Bancroft, VI Sikavitsas, PHM Spauwen, JA Jansen, et al.
    Year: 2003
    Citations: 205

  • Title: Pre‐culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential
    Authors: H Castano‐Izquierdo, J Álvarez‐Barreto, J Dolder, JA Jansen, AG Mikos, et al.
    Year: 2007
    Citations: 203

  • Title: Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications
    Authors: NR Richbourg, NA Peppas, VI Sikavitsas
    Year: 2019
    Citations: 196

  • Title: Flow perfusion improves seeding of tissue engineering scaffolds with different architectures
    Authors: JF Alvarez-Barreto, SM Linehan, RL Shambaugh, VI Sikavitsas
    Year: 2007
    Citations: 171

  • Title: Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells
    Authors: H Castano, EA O’Rear, PS McFetridge, VI Sikavitsas
    Year: 2004
    Citations: 158

  • Title: Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue‐engineered constructs using a rat cranial critical size defect model
    Authors: VI Sikavitsas, J Dolder, GN Bancroft, JA Jansen, AG Mikos
    Year: 2003
    Citations: 150

Charly Julien Nyobe | Civil Engineering | Best Paper Award

Dr. Charly Julien Nyobe | Civil Engineering | Best Paper Award

Chercheur at Ecole Normale Supérieure d’Enseignement Technique de Douala-Cameroun, Cameroon.

Charly Julien Nyobe 🎓 is a dedicated Cameroonian researcher and educator specializing in civil engineering, biomechanics, and material sciences. Born on March 11, 1985, in Garoua-Boulaï, he has pursued an extensive academic career, earning two PhDs and multiple engineering degrees. With a passion for structural mechanics, wood engineering, and impact mechanics, he actively contributes to cutting-edge research on sustainable construction materials. Currently, he teaches at the University of Douala and collaborates on international projects. An expert in statistical analysis, finite element methods, and material characterization, Nyobe is committed to advancing engineering solutions for real-world challenges. 🚀📚

Professional Profile:

Scopus

ORCID

Google Scholar

Suitability for the Award

Dr. Charly Julien Nyobe is a highly accomplished researcher in civil engineering, biomechanics, and material sciences, with extensive expertise in structural mechanics, wood engineering, and impact mechanics. His strong academic background, dual PhDs, and consistent research contributions demonstrate a deep commitment to advancing engineering knowledge, particularly in sustainable construction materials. His ability to bridge experimental, numerical, and theoretical methods in engineering makes him a strong contender for the Best Paper Award.

Education & Experience 📚

Doctorate (PhD) in Mechanical Engineering – Université Gustave Eiffel, France (2022 – Ongoing)
Doctorate (PhD) in Civil Engineering – École Nationale Supérieure Polytechnique de Yaoundé, Cameroon (2023)
Master’s in Civil Engineering – University of Douala, Cameroon (2015)
DIPET II (Master’s equivalent) in Civil Engineering – ENSET Douala, Cameroon (2011)
DIPET I (Bachelor’s equivalent) in Civil Engineering – ENSET Douala, Cameroon (2009)
DEUG in Computer Science – University of Yaoundé I, Cameroon (2006)
Baccalauréat in Mathematics & Physics – Lycée d’Obala, Cameroon (2003)

💼 Work Experience:
✔️ Lecturer – University of Douala (2018 – Present)
✔️ Visiting Lecturer – École Supérieure de La Salle (2018 – 2022)
✔️ Lecturer – Institute of Technology, Douala (2018 – 2020)
✔️ Civil Engineering Teacher – Lycée Polyvalent de Bonabéri (2012 – 2018)

Professional Development 🚀

Charly Julien Nyobe is constantly engaged in professional development to stay at the forefront of engineering innovations. In 2023, he trained in LS-Dyna at IUT Lyon 1, France, refining his expertise in impact simulation and finite element modeling. Additionally, he enhanced his scientific visualization skills through an Inkscape training at the University of Lyon. As a member of the GDR Science du Bois (France) since 2019, he actively participates in collaborative research, focusing on wood mechanics, structural engineering, and impact analysis. His interdisciplinary approach blends experimental, numerical, and theoretical methods for innovative engineering solutions. 🌍🛠️📊

Research Focus 🔬

Dr. Nyobe’s research is centered on civil engineering, wood mechanics, and impact mechanics. His work spans mechanical characterization of materials, structural resilience, and numerical modeling. He is passionate about sustainable construction, particularly the use of tropical woods in engineering applications. His studies explore Monte Carlo simulations, Weibull statistical models, and multi-scale mechanical classification of materials. He also delves into shock mechanics, investigating crash simulations and road safety barriers using advanced software like LS-Dyna. His research contributes to eco-friendly building solutions, aiming to optimize wood-based engineering materials for durability and resilience. 🌳🏗️⚙️

Awards & Honors 🏆

🏅 2023 – PhD in Civil Engineering with “Très Honorable” distinction 🏛️
🏅 2015 – Master’s degree with “Très Bien” distinction 🎓
🏅 2011 – DIPET II with “Très Bien” distinction 🏗️
🏅 2009 – DIPET I with “Très Bien” distinction 🏢
🏅 2006 – DEUG in Computer Science with “Assez Bien” distinction 💻
🏅 2003 – Baccalauréat in Mathematics & Physics with “Assez Bien” distinction 📏

Publication Top Notes

  • Moisture content-mechanical property relationships for two okan (Cylicodiscus gabunensis) substitutes

    • Authors: Nyobe Charly Julien, Oum Lissouck René, Nyobe Nicolas Stephane, Goumgang Tassile Rolande, Ayina Ohandja Louis Max
    • Publication Year: 2025
    • DOI: 10.1080/17480272.2025.2476659
  • Mode I cracking of three tropical species from Cameroon: the case of bilinga, dabema, and padouk wood

    • Authors: Rosmi Biyo’o, Achille Bernard Biwole, Rostand Moutou Pitti, Charly Julien Nyobe, Benoit Ndiwe, Emile Jonathan Onana, Emmanuel Yamb
    • Publication Year: 2024
    • DOI: 10.1080/17480272.2024.2314750
  • Effect of slope of grain on mechanical properties of some tropical wood species

    • Authors: Charly Julien Nyobe, Nicolas Stéphane Nyobe, Jean Bertin Nkibeu, René Oum Lissouck, Louis Max Ayina Ohandja
    • Publication Year: 2024
    • DOI: 10.1080/17480272.2024.2356047
  • A Review on Methods for Determining the Vibratory Damping Ratio

    • Authors: Nkibeu Jean Bertin, Charly Julien Nyobe, Moussa Sali, Madja Doumbaye Jerémie
    • Publication Year: 2023
    • DOI: 10.4236/ojce.2023.132015
  • Determination of the Vibratory Damping Ratio: A Methodological Review

    • Authors: Nkibeu Jean Bertin, Charly Julien Nyobe, Moussa Sali, Madja Doumbaye Jerémie
    • Publication Year: 2023
    • DOI: 10.9734/bpi/rader/v9/1804g
  • Variability of the mechanical strength of Congo Basin timbers

    • Author: Charly Julien Nyobe
    • Publication Year: 2021
    • DOI: 10.1080/17480272.2021.1912173

Peng Gu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Peng Gu | Engineering | Best Researcher Award

associate professor at donghua university, China

Dr. Gu Peng is an accomplished researcher specializing in ultra-precision manufacturing and intelligent processing equipment. He is currently an Associate Professor at Donghua University, following his postdoctoral research at Shanghai Jiao Tong University under the mentorship of esteemed scholars. His work focuses on advanced machining technologies, contributing to national and international research projects. With multiple high-impact publications, patents, and awards, Dr. Gu has established himself as a leading expert in precision engineering. His contributions extend beyond academia through industry collaborations, making significant advancements in manufacturing automation. He actively serves as a reviewer for top SCI journals and is recognized as an expert in China’s leading technology committees. His academic excellence, combined with his research leadership and industrial impact, positions him as a key figure in the field of intelligent manufacturing and ultra-precision machining.

Professional Profile

Education

Dr. Gu Peng obtained his Bachelor’s degree in Mechanical Design, Manufacturing, and Automation from Hefei University of Technology in 2016, graduating ranked first in his class. He pursued a Master’s-Doctoral continuous program in Mechanical Engineering at Tongji University, where he demonstrated outstanding research potential and academic excellence. During his doctoral studies, he participated in an international training program at Politecnico di Torino, Italy, expanding his expertise in advanced manufacturing technologies. His dedication to research earned him multiple national scholarships and institutional awards, including the Outstanding Doctoral Student Award at Tongji University. His education laid a solid foundation for his expertise in precision engineering, manufacturing automation, and optical surface processing.

Professional Experience

Dr. Gu Peng began his professional career as a Postdoctoral Researcher at Shanghai Jiao Tong University (2022-2024), where he worked on ultra-precision machining under the guidance of renowned scholars. In 2024, he joined Donghua University as an Associate Professor, leading projects on intelligent manufacturing technologies. He has played a critical role in multiple national research projects, including the National Natural Science Foundation of China (NSFC) Youth Fund and key industrial research initiatives. In addition to his academic roles, he has been an expert consultant for major industrial projects, contributing to the development of advanced machining equipment for aerospace, optics, and semiconductor industries. His professional experience bridges cutting-edge research and practical industrial applications, ensuring his work has both theoretical and real-world impact.

Research Interests

Dr. Gu Peng’s research focuses on ultra-precision machining, intelligent manufacturing, and automation technologies. He specializes in high-precision grinding and polishing techniques for complex optical surfaces, including microstructure arrays and freeform surfaces. His work also explores the integration of intelligent control systems and AI-driven manufacturing processes, improving efficiency and accuracy in high-performance manufacturing industries. As the Principal Investigator of multiple national research projects, he is pioneering new methodologies for ultra-precision machining, particularly in single-point oblique axis grinding and laser-assisted cutting. His research has direct applications in aerospace, semiconductor manufacturing, and high-precision optics, making significant contributions to the field.

Awards and Honors

Dr. Gu Peng has received numerous national and institutional awards for his academic excellence and research contributions. He was a recipient of the Shanghai Super Postdoctoral Fellowship, the National Scholarship for Undergraduate and Doctoral Students, and multiple Outstanding Graduate Awards from Tongji University. He has also been recognized in national technology competitions, securing top prizes in innovation and mathematical modeling contests. In addition to his academic accolades, he serves as a reviewer for leading SCI journals, including the Journal of Manufacturing Technology and Applied Surface Technology. His contributions to ultra-precision machining and automation technology have established him as a highly respected figure in both academic and industrial research communities.

Conclusion

Dr. Gu Peng is highly suitable for the Best Researcher Award, given his strong publication record, leadership in high-level research projects, and national recognition. With continued efforts in international collaborations, student mentorship, and diversification of research, he could further solidify his standing as a leading researcher in the field of ultra-precision manufacturing.

Publications Top Noted

  • Author: Gu, P., Zhu, C., Sun, Y., Wang, D., & Shi, Z.

    • Year: 2025
    • Title: Evaluation and Prediction of Wrapping Deformation in Sheet Part Grinding
    • Journal: Experimental Techniques
    • Citations: 0
  • Author: Sun, C., Gu, P., Wan, H., Lin, J., & Min, J.

    • Year: 2025
    • Title: Enhancements of Physical Microstructure and Chemical Activation on Interfacial Bonding Strength of Carbon Fiber Reinforced Polymer
    • Journal: Composites Part A: Applied Science and Manufacturing
    • Citations: 0

 

Nurul Musfirah Mazlan | Engineering | Best Researcher Award

Dr. Nurul Musfirah Mazlan | Engineering | Best Researcher Award

Lecturer At School Of Aerospace Engineering, Universiti Sains Malaysia, Malaysia

Dr. Nurul Musfirah Mazlan is a dedicated lecturer and researcher specializing in Aerospace Propulsion and Biofuels. She is currently a DS51 Lecturer at Universiti Sains Malaysia (USM), where she contributes to both teaching and research in the field of aerospace engineering. With a strong academic background and an extensive supervision portfolio of postgraduate and undergraduate students, she has played a vital role in advancing research related to sustainable aviation fuels and propulsion systems. Dr. Nurul Musfirah is also an active member of The American Society of Mechanical Engineers (ASME) and the Board of Engineers Malaysia (BEM), demonstrating her commitment to professional excellence. Her research focuses on alternative fuel technologies, nanoparticles as fuel additives, and propulsion system optimization, contributing significantly to green aviation efforts. Through her dedication to academia and innovation, she continues to make an impact in the aerospace engineering field.

Professional Profile

Education

Dr. Nurul Musfirah Mazlan obtained her Doctor of Philosophy (PhD) from Cranfield University, UK, specializing in Aerospace Propulsion and Biofuels. Her doctoral research focused on sustainable aviation fuels, particularly investigating the combustion performance of biofuels and alternative energy sources in aerospace applications. Prior to her PhD, she completed her undergraduate and master’s degrees in engineering, equipping her with a strong foundation in thermodynamics, propulsion systems, and fuel technologies. Her academic journey has been driven by a passion for developing environmentally friendly solutions for the aerospace industry, with a focus on reducing carbon emissions and improving fuel efficiency. Throughout her education, she has worked on multiple experimental and computational research projects, collaborating with international researchers to advance knowledge in alternative propulsion technologies. Her educational background has provided her with a solid expertise in combustion analysis, computational fluid dynamics (CFD), and aerospace fuel innovations.

Professional Experience

Dr. Nurul Musfirah Mazlan is currently serving as a Lecturer (DS51) at Universiti Sains Malaysia (USM), where she teaches undergraduate and postgraduate courses related to aerospace propulsion, thermodynamics, and fuel technologies. Over the years, she has actively supervised numerous PhD, MSc, and undergraduate students, guiding research in biofuels, propulsion systems, and nanotechnology applications in aerospace. While she does not have direct industry experience before joining USM, her work significantly contributes to practical aerospace applications through collaborations with academic and research institutions. In addition to teaching, she is involved in curriculum development, laboratory research, and mentoring students in experimental and computational studies. Her multidisciplinary approach allows her to bridge the gap between theory and real-world aerospace engineering challenges, making her a valuable academician and researcher in the field of sustainable aviation technology.

Research Interest

Dr. Nurul Musfirah Mazlan’s research focuses on Aerospace Propulsion, Biofuels, and Sustainable Energy Technologies. Her primary areas of interest include the development and performance analysis of biojet fuels, nano-additives for combustion efficiency, and solid rocket propulsion systems. She has conducted extensive research on Hydrotreated Vegetable Oil (HVO) blended with Jet-A fuel, evaluating its engine performance, emission characteristics, and sustainability. Additionally, her work explores computational fluid dynamics (CFD) simulations to study the interaction of alternative fuels with turbine blades and combustion systems. She is also interested in experimental and modeling approaches for improving rocket propulsion efficiency and reducing emissions in aircraft engines. By integrating nanotechnology with fuel research, Dr. Nurul Musfirah aims to develop greener and more efficient propulsion solutions for the aviation and aerospace industry, contributing to global efforts toward sustainable aviation fuel development.

Awards and Honors

Dr. Nurul Musfirah Mazlan has received several recognitions and honors for her contributions to aerospace propulsion and alternative fuel research. While specific awards are not listed in the provided details, her academic and research achievements are evident through her supervision of high-impact projects, international collaborations, and contributions to sustainable aviation research. Her role as a supervisor for multiple PhD and MSc students working on innovative propulsion technologies is a testament to her expertise and dedication to academia. Additionally, her involvement with The American Society of Mechanical Engineers (ASME) and the Board of Engineers Malaysia (BEM) highlights her professional standing and recognition in the engineering community. As she continues to push the boundaries of biofuel and propulsion research, she is well-positioned to receive further recognition for her groundbreaking contributions to the aerospace industry.

Conclusion

Dr. Nurul Musfirah Mazlan is a strong candidate for the Best Researcher Award, given her extensive research contributions in aerospace propulsion and biofuels, graduate supervision, and technical expertise. Her work aligns with sustainable aviation efforts, making her research highly relevant. To further strengthen her case, industry collaborations, securing more grants, and taking leadership roles in global research organizations would enhance her profile.

Publications Top Noted

1. Spray Behaviour of Hydro-Treated Ester Fatty Acids Fuel Made from Used Cooking Oil at Low Injection Pressures

  • Authors: Azam, Q., Sulaiman, S.Z., Abdul Razak, N.A., & Mazlan, N.M.
  • Year: 2024
  • Journal: Aeronautical Journal
  • Citations: 1

2. Influence of Oxyhydrogen Gas Retrofit into Two-Stroke Engine on Emissions and Exhaust Gas Temperature Variations

  • Authors: Kamarudin, R., Ang, Y.Z., Topare, N.S., Baig, R.U., Sultan, S.M., & Mazlan, N.M.
  • Year: 2024
  • Journal: Heliyon
  • Citations: 2

3. Analysis Study of Thermal and Exergy Efficiency in Double-Layers Porous Media Combustion Using Different Sizes of Burner: A Comparison

  • Authors: Ismail, N.C., Abdullah, M.Z., Mazlan, N.M., Rusdi, M.S.B., & Kamarudin, R.
  • Year: 2024
  • Journal: Pertanika Journal of Science and Technology
  • Citations: 0

4. Effect of NCO/OH Ratio and Binder Content with Micro-AP on HTPB/AP/Al-Based Propellants Mechanical Properties

  • Authors: Adnana, Z., & Mazlan, N.M.
  • Year: 2024
  • Journal: Advances in Materials Research (South Korea)
  • Citations: 0

 

Yongho Lee | Engineering | Best Researcher Award

Dr. Yongho Lee | Engineering | Best Researcher Award

Researcher at Kwangwoon University, South Korea

Yongho Lee, born on November 15, 1991, is an accomplished researcher and engineer specializing in RF communication, antenna design, and semiconductor technologies. With a strong foundation in electrical engineering, he has contributed significantly to cutting-edge research in areas such as CMOS RF transmitters, phased arrays, and wireless communication systems. Currently, he is a postdoctoral researcher at UCLA, California, after having completed a similar position at Kwangwoon University, Seoul, Korea. Throughout his academic and professional journey, Yongho has demonstrated exceptional skills in advanced tools like Virtuoso, SpectreRF, and Matlab, as well as expertise in programming languages such as C++, Python, and C#. His work is recognized for its innovative approach to solving complex problems, particularly in the realm of high-frequency communications and antenna systems. As a mentor and lecturer, he has also demonstrated a passion for teaching and guiding the next generation of engineers in microelectronics. With a drive for both academic excellence and practical technological advancements, Yongho continues to make valuable contributions to his field, gaining international recognition for his achievements.

Professional Profile

Education

Yongho Lee’s academic journey began with a Bachelor of Science degree from Daejin University in Pocheon, Korea, where he laid the groundwork for his future studies in electrical engineering. Afterward, he pursued a Master of Science degree at Kwangwoon University, Seoul, Korea, where his focus shifted toward advanced research in RF and semiconductor technologies. This foundation prepared him for his doctoral studies at the same institution, where he earned a Ph.D. in 2023. Throughout his academic career, Yongho has gained in-depth knowledge of complex topics such as phased-array antennas, RF IC design, and wireless communication systems. His educational path has been marked by a strong emphasis on both theoretical principles and practical applications. He further honed his skills during his time as a postdoctoral researcher, applying his knowledge to real-world projects at renowned institutions like UCLA and Kwangwoon University. With a solid academic foundation and a drive for innovation, Yongho continues to excel in his field, pushing the boundaries of current research in RF technologies.

Professional Experience

Yongho Lee has had a distinguished professional career with extensive experience in both academia and industry. His most recent position as a postdoctoral researcher at UCLA, California, allowed him to delve into advanced projects in RF communication and semiconductor technologies. Prior to this, he served as a postdoctoral researcher at Kwangwoon University, Seoul, Korea, where he contributed significantly to multiple high-profile projects, including the development of RF transmitters, antennas, and phase shifters. Additionally, Yongho gained practical industry experience during an internship at Kings Information & Network Co., Ltd. in Hanam, Korea, where he was involved in various technology development projects. His work experience spans both theoretical research and the practical application of cutting-edge technologies, providing him with a well-rounded skill set. Throughout his career, he has demonstrated a keen ability to bridge the gap between academic research and real-world technological solutions, making him a highly valued contributor to his field.

Research Interests

Yongho Lee’s primary research interests lie in the fields of RF communication, antenna design, and semiconductor technologies, with a focus on high-frequency applications such as 60GHz and 220GHz wireless systems. His research has significantly contributed to the development of advanced CMOS RF transmitters, phased-array antennas, and frequency synthesizers, with an emphasis on low power consumption, miniaturization, and improved performance. He has also worked extensively on the development of novel calibration techniques for RF systems and the integration of advanced antennas for mobile communication and satellite receiver applications. Another key area of his research is the design of high-performance, low-cost RF components for next-generation wireless devices, including Bluetooth and IoT technologies. Yongho’s work not only advances theoretical knowledge but also aims to address practical challenges in wireless communication, including signal integrity, power efficiency, and system integration. His diverse research portfolio reflects a strong commitment to pushing the boundaries of current technology and solving real-world problems in communication systems.

Awards and Honors

Throughout his career, Yongho Lee has earned several accolades in recognition of his exceptional contributions to research and engineering. His achievements in the development of advanced RF communication systems and antenna designs have earned him recognition both within academic circles and in the industry. In particular, his work on the 220GHz 16nm CMOS phased array and his innovations in the development of low-profile phased-array antennas for satellite receivers have garnered significant attention. Although specific awards and honors are not listed in his profile, his involvement in highly funded and impactful research projects speaks to the level of recognition he has received within the scientific community. His research contributions continue to influence the development of next-generation wireless communication systems, further solidifying his standing as a leading researcher in his field. Moving forward, his continued work and potential future awards will undoubtedly add to his growing reputation as a prominent figure in RF and semiconductor research.

Conclusion

Yongho Lee is highly qualified for the “Best Researcher Award,” with his strong academic credentials, advanced technical expertise, and significant contributions to research and teaching. To further enhance his candidacy, a more detailed track record of published research and a stronger public presence in the research community could solidify his standing as an influential researcher.

Publications Top Noted

  • Article

    • Title: A 28 GHz GaN 6-Bit Phase Shifter MMIC with Continuous Tuning Calibration Technique
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Journal: Sensors (Switzerland), 2024
    • Citations: 0 citations
  • Conference Paper

    • Title: A 28 GHz 5-Bit Phase Shifter MMIC with 5.4° RMS Phase Error in GaN HEMT Process
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Citations: 1 citation
    • Source Information: Not available

 

Kaili Wang | Engineering | Best Researcher Award

Ms. Kaili Wang | Engineering | Best Researcher Award

Student at NB U, China

MS Kaili Wang is a distinguished researcher in the field of gene editing and molecular diagnostics, specializing in nucleic acid detection for agricultural biotechnology. She is affiliated with Ningbo University, School of Food Science and Engineering, China, and collaborates with Zhejiang Academy of Agricultural Sciences and the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products. With a keen interest in genetic modification detection, her research focuses on improving the precision and sensitivity of detection methods for gene-edited organisms. Her recent work on droplet digital PCR (ddPCR) for MSTN gene-edited cattle has contributed significantly to the field of regulatory science and food safety. Dedicated to advancing biotechnology applications, she plays a crucial role in shaping methodologies for genetic monitoring, ensuring consumer safety, and fostering global discussions on gene editing and its implications.

Professional Profile

Education

MS Kaili Wang pursued her higher education in biotechnology, molecular biology, and food science, which provided a strong foundation for her research career. She earned her degrees from prestigious Chinese institutions, including Ningbo University, where she specialized in food science and genetic detection methods. Her academic training emphasized molecular diagnostics, genetic engineering, and PCR-based technologies, equipping her with the expertise necessary to develop innovative detection methods for genetically modified organisms (GMOs). Throughout her education, she engaged in interdisciplinary research, gaining hands-on experience in genetic modification analysis, nucleic acid quantification, and regulatory science. Her studies were complemented by rigorous laboratory work and collaborations with leading scientists in the field. This educational background has enabled her to contribute significantly to the advancement of gene-editing detection technologies, ensuring accuracy, sensitivity, and reliability in molecular diagnostics.

Professional Experience

With extensive experience in genetic research and molecular diagnostics, MS Kaili Wang has worked as a researcher at Ningbo University and in collaboration with Zhejiang Academy of Agricultural Sciences. She has been instrumental in developing innovative nucleic acid detection methods for gene-edited organisms, particularly using droplet digital PCR (ddPCR). Her work focuses on the safety assessment, traceability, and detection of genetically modified products, making a significant impact in the field of food safety and agricultural biotechnology. She has contributed to multiple high-impact research projects, collaborating with government agencies, regulatory bodies, and scientific institutions to establish robust methodologies for genetic monitoring. Her professional expertise extends to training young researchers, publishing peer-reviewed articles, and presenting her findings at international conferences related to gene editing and food safety. Her work plays a critical role in ensuring the accurate detection and regulation of gene-edited agricultural products.

Research Interests

MS Kaili Wang’s primary research interests lie in gene editing, nucleic acid detection, food safety, and molecular diagnostics. She is particularly focused on developing and optimizing PCR-based techniques, including ddPCR, qPCR, and CRISPR-based detection methods. Her research aims to enhance the specificity, sensitivity, and reliability of gene-editing detection, ensuring consumer safety and regulatory compliance. She is also deeply interested in the traceability of genetically modified organisms (GMOs) and their impact on food production, security, and public health. Through her work, she seeks to bridge the gap between scientific advancements and regulatory frameworks, contributing to the development of robust detection technologies that can be applied on a global scale. By integrating biotechnology with food safety regulations, she aims to provide innovative solutions for ensuring transparency in agricultural biotechnology and fostering public trust in gene-edited products.

Awards and Honors

Throughout her career, MS Kaili Wang has received numerous recognitions for her contributions to gene editing detection and food safety research. She has been honored with awards from academic institutions, regulatory bodies, and biotechnology organizations for her innovative work in nucleic acid quantification and molecular diagnostics. Her research on ddPCR-based detection of MSTN gene-edited cattle has gained international recognition, positioning her as a leading scientist in genetic monitoring and food safety regulation. She has been invited as a keynote speaker at scientific conferences, sharing her expertise on gene editing detection methodologies. Additionally, she has received grants and funding from government agencies to further her research in gene-editing detection and its application in regulatory science. Her dedication and contributions to biotechnology and food safety continue to make a profound impact, earning her a reputation as a pioneering researcher in the field.

Conclusion

MS Kaili Wang’s research is highly innovative and impactful, making significant contributions to gene editing detection and food safety monitoring. The work demonstrates scientific excellence, regulatory relevance, and technical robustness, making them a strong candidate for the Best Researcher Award. However, further research could focus on expanding the scope of detection beyond MSTN, increasing sample size, and facilitating regulatory adoption to enhance the real-world impact.

Publications Top Noted

Author: Kaili Wang, Yi Ji, Cheng Peng, Xiaofu Wang, Lei Yang, Hangzhen Lan, Junfeng Xu, Xiaoyun Chen
Year: 2025
Citation: Wang, K.; Ji, Y.; Peng, C.; Wang, X.; Yang, L.; Lan, H.; Xu, J.; Chen, X. (2025). “A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR.” Biology, 14(2), Article 0203. DOI: 10.3390/biology14020203.
Source: Multidisciplinary Digital Publishing Institute (MDPI)

 

Masoud Deyranlou | Engineering | Best Researcher Award

Mr. Masoud Deyranlou | Engineering | Best Researcher Award

Optical Network Engineer at Islamic Azad University, Iran

Masoud Deyranlou is an experienced Optical Network Engineer and researcher with over a decade of expertise in optical transmission systems and telecommunications infrastructure. His work spans high-level and low-level design of large-scale networks, specializing in advanced optical technologies like DWDM, ROADM, ASON, and SDN. Throughout his career, he has played a pivotal role in major telecommunication projects, contributing to the innovation and optimization of optical networking solutions. His research primarily focuses on the integration of optical transmission with emerging technologies, bridging the gap between theoretical advancements and practical implementations. With a strong background in both industry and academia, he has contributed to scientific literature and technological advancements in optical communications. His dedication to the field is evident through his numerous publications and technical contributions, making him a key figure in the development of modern optical networking solutions.

Professional Profile

ORCID Profile

Education

Masoud Deyranlou holds a Master of Science in Electrical Engineering – Telecommunications from Islamic Azad University (2007-2010), where he gained expertise in satellite communications, fiber optics, and coding theory. Prior to that, he earned his Bachelor of Science in Electrical Engineering from the same institution, developing a strong foundation in electromagnetics and optical transmission networks. His academic journey began with an Associate Degree in Industrial Electricity from Technical and Vocational University, where he built fundamental technical skills in electrical systems and automation. Throughout his education, he demonstrated exceptional academic performance, excelling in key subjects such as Satellite Communication (19.5/20), Coding Theory (18.5/20), and Electromagnetics (18/20). His education provided him with the theoretical knowledge and practical expertise necessary for his career in telecommunications, allowing him to integrate cutting-edge research with real-world optical network applications.

Professional Experience

Masoud Deyranlou has accumulated over 10 years of professional experience in the field of optical network engineering, working on large-scale telecommunication infrastructure projects. He currently serves as an Optical Network Design Engineer, where he is responsible for High-Level Design (HLD) and Low-Level Design (LLD) of complex optical transmission networks. His expertise spans across various cutting-edge technologies, including T-SDN, DWDM, ROADM, ASON, and WSON, enabling efficient and high-capacity data transmission. Throughout his career, he has actively contributed to the deployment of metro and long-haul optical networks, ensuring optimized performance and reliability. His ability to integrate research-driven solutions with practical applications has made him a valuable asset in the industry. His deep understanding of software-defined networking (SDN) and embedded systems further enhances his ability to develop next-generation optical communication networks, positioning him as a key expert in the field.

Research Interest

Masoud Deyranlou’s research focuses on advanced optical transmission networks, with a particular interest in Radio over Fiber (RoF), Free Space Optics (FSO), and Software-Defined Networks (SDN). His work explores the development of high-speed, low-latency optical communication systems, including novel approaches for adaptive coherent free-space optical communication in urban environments. He is also deeply involved in researching submarine fiber networks, aiming to enhance global telecommunication infrastructure through innovative optical networking solutions. His publications in renowned journals reflect his expertise in dual-polarization 10Gbps RoF systems, wavelength reuse technologies, and next-generation optical transmission mechanisms. By integrating theoretical advancements with practical implementations, he contributes to the continuous evolution of telecommunications technology. His research aligns with the growing need for more efficient, scalable, and resilient optical network architectures, driving innovation in global communications.

Awards and Honors

Masoud Deyranlou has been recognized for his outstanding contributions to the field of optical communications, earning accolades for his research and professional achievements. His work has been published in esteemed journals such as the Journal of Modern Optics and the AUT Journal of Electrical Engineering, showcasing his innovative research in optical transmission systems. Additionally, his high academic performance, particularly his perfect GRE Quantitative Score (170/170), highlights his strong analytical and problem-solving skills. His participation in major telecommunication infrastructure projects has also been acknowledged within the industry, cementing his reputation as a leading expert in optical networking. While he continues to build on his research portfolio, his contributions to advancing adaptive optical communication technologies and high-speed data transmission networks have earned him recognition as a top researcher in his field.

Conclusion

Masoud Deyranlou is a highly qualified candidate for the Best Researcher Award based on his strong technical expertise, research output, and industry experience. However, to further enhance his eligibility, he should focus on publishing in high-impact journals, engaging in international collaborations, securing research grants, and pursuing patents or innovations. If the award criteria emphasize a balance between academic excellence and industry impact, he is a strong contender.

Publications Top Noted

  • Adaptive coherent free space optics system for urban deployment: a case study in Tehran

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2025
    • Journal: Journal of Modern Optics
    • DOI: 10.1080/09500340.2025.2459887
    • Citation: Deyranlou, M., & Maleki Javan, A. (2025). Adaptive coherent free space optics system for urban deployment: a case study in Tehran. Journal of Modern Optics, 1–12.
    • ISSN: 0950-0340, 1362-3044
  • A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2020
    • Journal: AUT Journal of Electrical Engineering
    • DOI: 10.22060/eej.2020.16603.5292
    • Citation: Deyranlou, M., & Maleki Javan, A. (2020). A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal. AUT Journal of Electrical Engineering, 52(1), 9–18.

 

Fred Lang | Engineering | Best Researcher Award

Mr. Fred Lang | Engineering | Best Researcher Award

President at Exergetic Systems Limited, United States

Fred D. Lang, P.E., P.Eng., is a distinguished power plant engineer with over 50 years of experience in energy systems, nuclear safety, and thermal performance monitoring. Renowned across North America and Europe, he has significantly contributed to power plant engineering through software innovation, advanced testing methodologies, and novel monitoring techniques. As the President of Exergetic Systems Limited, he has developed industry-transforming tools for power plant efficiency and safety. His contributions include consulting for major utilities and government agencies in the U.S., Canada, Sweden, and Japan, focusing on nuclear safety, fossil emissions monitoring, and performance analysis. Lang’s expertise spans simulation, plant design, exergy analysis, and fuel efficiency optimization, making him a leader in the energy sector. His commitment to research and technological advancements has led to groundbreaking methodologies that enhance power plant performance and operational safety, earning him a reputation as an innovator in the field.

Professional Profile

Education

Fred D. Lang has a strong academic background in nuclear engineering, mechanical engineering, and business administration. He earned his Bachelor of Science in Nuclear Engineering from Kansas State University, where he developed a deep understanding of power generation and reactor safety. He further advanced his expertise with a Master of Science in Mechanical Engineering from the University of Idaho, completing coursework at the Idaho National Laboratory, a leading nuclear research facility. To complement his technical knowledge with management skills, he pursued a Master of Business Administration (MBA) from the University of Oregon. In addition to his formal degrees, Lang holds several professional certifications, including a California Energy Auditor Certificate (#5872). He is a licensed Professional Engineer (P.E.) in California for mechanical and nuclear engineering and an active P.Eng. in British Columbia (#54236). His diverse educational background has provided him with the expertise to drive innovation in power plant engineering.

Professional Experience

Fred D. Lang has had an illustrious career spanning over five decades in power plant engineering. He is the President of Exergetic Systems Limited, a company specializing in power plant performance monitoring and efficiency solutions. Previously, he founded and led Exergetic Systems, Inc., which for nearly 40 years served major utilities across North America with software and engineering services. Lang is known as the “Father of PEPSE,” a widely used power plant simulation software. His expertise includes thermodynamic analysis, emissions monitoring, and nuclear safety systems. He has conducted hundreds of power plant studies and has been involved in 33 thermal performance evaluation projects, each lasting several months. His professional experience also includes consulting for Babcock & Wilcox, Exxon Nuclear (now Framatome), and government agencies in Sweden and Japan on critical nuclear safety issues. His work has shaped modern approaches to fuel monitoring, efficiency testing, and safety in power generation.

Research Interests

Fred D. Lang’s research focuses on power plant thermodynamics, nuclear safety, emissions monitoring, and exergy analysis. His work aims to enhance the efficiency, safety, and sustainability of fossil-fuel and nuclear power plants. A major area of his research is the development of advanced monitoring techniques, such as the Input/Loss Method, which allows real-time determination of fuel chemistry, calorific value, and heat rate in coal-fired power plants. Another significant contribution is the NCV Method, a groundbreaking approach to nuclear reactor monitoring, neutron flux measurement, and coolant flow analysis, which improves nuclear safety. Lang has also developed innovative instrumentation for emissions testing, heat balance analysis, and fuel efficiency optimization. His research integrates software development, thermodynamic modeling, and real-world application, ensuring that power plants operate more efficiently while reducing environmental impact. His findings have led to significant improvements in plant performance and fuel economy worldwide.

Awards and Honors

Fred D. Lang has received numerous accolades for his contributions to power plant engineering and nuclear safety. He holds 38 patents, including 22 in the U.S. and 16 in Canada, Australia, and Europe, covering innovations in power plant instrumentation, Rankine cycle modifications, and emissions monitoring technologies. His pioneering Input/Loss Method and NCV Method have been recognized as transformative advancements in the energy sector. Lang has been invited by major utilities and government agencies to develop new technologies, including a 2021 invitation to design a novel nuclear plant monitoring system. His software tools, such as PEPSE, EX-FOSS, and THERM, are used by leading power utilities worldwide. In addition to his technical achievements, he has been honored for his mentorship and leadership in the engineering field. His work has redefined power plant efficiency, fuel monitoring, and nuclear safety standards, earning him a reputation as a pioneer in the industry.

Conclusion

Fred D. Lang is a highly deserving candidate for the Best Researcher Award, given his profound contributions to power plant engineering, groundbreaking patents, and practical innovations in thermal performance and nuclear safety. While strengthening academic publications and mentorship efforts could further solidify his influence, his technical advancements have already had a significant impact on the industry. His work represents a paradigm shift in power plant monitoring and nuclear reactor safety, making him a strong contender for this recognition.

Publications Top Noted

  • Lang, F. D. (Year Unknown). “Verified Knowledge of Nuclear Power Plants Using the NCV Method.” Conference Paper. Citations: 0

  • Lang, F. D., Mason, D., & Rodgers, D. A. T. (Year Unknown). “Effects on Boiler Efficiency Standards and Computed Coal Flow Given Variable Ambient Oxygen and Humidity.” Conference Paper. Citations: 0