Khaja Hussain Shaik | Materials Science | Research Excellence Award

Dr. Khaja Hussain Shaik | Materials Science | Research Excellence Award

Gyeongsang National University | South Korea

Dr. Khaja Hussain Shaik is a postdoctoral researcher in materials science and engineering with recognized expertise in nanomaterials, electrochemical energy storage, and optoelectronic materials. He holds doctoral training in electronic engineering with specialization in materials science, complemented by advanced education in chemistry, providing a strong interdisciplinary foundation. His professional experience spans postdoctoral and research scholar roles, contributing to high-impact projects in energy storage materials, nanosensors, and advanced functional materials, along with mentoring and laboratory leadership in academic environments. His research focuses on the design and synthesis of nanostructured oxides, carbon-based composites, and rare-earth-doped materials for supercapacitors, batteries, and photonic devices, resulting in a substantial portfolio of peer-reviewed publications with significant global citation impact. His contributions have advanced charge storage performance, device stability, and functional material design. He has received multiple prestigious research fellowships, dissertation and scholarship honors, and institutional recognitions for research excellence, reflecting sustained academic leadership, innovation, and strong potential for continued high-impact contributions to materials research.

Citation Metrics (Google Scholar)

2400
1800
1200
600
0

2402

64

32

Citations

Documents

h-index


Featured Publications

 

Samiha Chaguetmi | Materials Science | Research Excellence Award

Prof. Samiha Chaguetmi | Materials Science | Research Excellence Award

Professor | University of Skikda | Algeria

Prof. Samiha Chaguetmi, a Professor in the Physics Department at Skikda University in Algeria, is an expert in materials science with a specialization in semiconductor and metallic materials, thin films, and photoactive nanostructures. She holds advanced degrees in materials sciences and semiconductor physics, culminating in a doctoral qualification and subsequent habilitation focused on innovative material systems. Throughout her academic career, she has served as an assistant, lecturer, and senior academic, contributing extensively to teaching in areas such as structural analysis of materials, atomic physics, photovoltaic systems, and characterization methods. Her professional experience spans leadership in laboratory training programs, participation in international research collaborations, and active engagement in multidisciplinary projects involving hydrothermal synthesis, sol-gel processes, chemical bath deposition, magnetron sputtering, electrochemical methods, and advanced thin-film technologies. Prof. Chaguetmi’s research centers on photocatalysis, photo-electrochemical water splitting, and the development of nanostructured materials for energy and environmental applications, supported by expertise in SEM, TEM, XRD, FTIR, Raman spectroscopy, XPS, UV-VIS-DR spectrophotometry, and electrochemical impedance spectroscopy. She has contributed numerous publications to peer-reviewed journals and participated in scientific dissemination through conferences and collaborative programs across prominent international laboratories. Her achievements include recognition through a Research Excellence Award, alongside roles in academic service, mentoring, and scientific review activities. Prof. Chaguetmi is also engaged in professional development through repeated training missions in leading global research institutions, reinforcing her standing as a committed scholar whose work advances the understanding and application of functional materials for sustainable technologies.

Profiles: Scopus | ORCID

Featured Publications

1. Chaperman, L., Chaguetmi, S., Deng, B., Gam-Derrouich, S., Nowak, S., Mammeri, F., & Ammar, S. (2024). Novel synthesis route of plasmonic CuS quantum dots as efficient co-catalysts to TiO₂/Ti for light-assisted water splitting. Nanomaterials, 14(19), 1581.

2. Sobti, N., Chaguetmi, S., Amiour, L., Aouabdia, Y., & Saci, L. (2024). Photocatalytic properties of Mn₂O₃ nanoparticles synthesized via green chemistry method. Journal of Renewable Energies, 28(1).

3. Sobti, N., Chaguetmi, S., Achour, S., Gam-Derouich, S., Decorse, P., Nowak, S., & Ammar, S. (2024). Photoelectrochemical properties of TiO₂ nanofibers coated by copper oxide nanoparticles using sputtering and chemical bath deposition. Journal of Materials Science.

4. Momoli, R., Gandin, A., Ruffo, R., Chaguetmi, S., Mammeri, F., Abbotto, A., Manfredi, N., & Brusatin, G. (2021). Low dye content efficient dye-sensitized solar cells using carbon doped-titania paste from convenient green synthetic process. Inorganica Chimica Acta.

5. Sobti, N., Chaguetmi, S., Achour, S., Chaperman, L., Mammeri, F., & Ammar-Merah, S. (2021). Manganese oxide nanoparticles prepared by olive leaf extract-mediated wet chemistry and their supercapacitor properties. Solid State Sciences.

Prof. Samiha Chaguetmi envisions advancing the field of materials science through innovative research that drives sustainable energy solutions and strengthens the scientific understanding of functional nanomaterials. Her vision focuses on developing high-performance photocatalytic and photoelectrochemical systems, promoting environmentally responsible synthesis routes, and expanding collaborative research networks that bridge local and international scientific communities. She aims to contribute impactful knowledge, mentor future scientists, and support the development of advanced technologies that address global energy and environmental challenges.

Stanica Nedović | Corrosion of Steels | Best Researcher Award

Mr. Stanica Nedović | Corrosion of Steels | Best Researcher Award

Stanica Nedović | University of Montenegro | Montenegro

Mr. Stanica Nedović is a dedicated Doctorandus of Maritime Science at the Maritime Faculty, University of Montenegro, specializing in materials engineering and corrosion science. He holds a University Diploma in Materials Engineering and a Master of Science in Metallurgy and Materials Engineering from the University of Ljubljana, Slovenia. His professional and research experience is centered on the degradation behavior, corrosion resistance, and cavitation erosion of advanced steels in marine environments, contributing to the advancement of materials reliability and sustainability in maritime and industrial applications. Mr. Nedović has authored multiple peer-reviewed publications and presented at international scientific conferences, demonstrating strong analytical and experimental capabilities. His work is characterized by an interdisciplinary approach that integrates materials characterization, mechanical testing, and surface analysis techniques to improve corrosion monitoring and protective strategies. He has collaborated effectively with research teams, contributing to projects aimed at optimizing metal performance in challenging environments. Mr. Nedović has been recognized for his commitment to innovation and research excellence and is regarded as a promising young scientist with growing international visibility. His ongoing contributions highlight both his scientific rigor and his potential for leadership in materials science, corrosion engineering, and maritime technology development.

Profiles: ORCID

Featured Publications

1. Nedović, S., Alil, A., Martinović, S., Dikić, S., Glišić, D., & Volkov-Husović, T. (2025). Novel approach to the surface degradation assessment of 42CrMo4 steel in marine and cavitation erosion environments. Metals.

2. Nedović, S., Alil, A., Martinović, S., Dikić, S., & Volkov-Husović, T. (2025). Influence of pre-corrosion in NaCl solution on cavitation resistance of steel samples (42CrMo4). Metals.

Mr. Stanica Nedović’s research advances the understanding of material degradation and corrosion resistance, offering innovative solutions to enhance the durability of engineering components in harsh marine environments. His work contributes to sustainable industrial practices, improved safety in maritime operations, and the global effort to develop more resilient and efficient materials for future technologies.

Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Prof. Dr. Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Scientific Director | Project Center for Nanotechnology and Advanced Engineering | Greece

Prof. Dr. Athanasios G. Mamalis is the Scientific Director of the Project Center for Nanotechnology and Advanced Engineering, a joint initiative of the Greek National Research Center “Demokritos” and the Russian Kurchatov Institute, and Emeritus Professor, Founder of the Laboratory of Manufacturing Technology at the National Technical University of Athens, Greece. A graduate in Mechanical and Electrical Engineering from the National Technical University of Athens, he earned his M.Sc. and Ph.D. in Mechanical Engineering from the Victoria University of Manchester Institute of Science and Technology. Dr. Mamalis has extensive industrial experience as Chief Engineer and Technical Manager in steelworks across Germany and Greece, complemented by long-standing collaborations with international industry including American, British, German, European, Japanese, Chinese, ex-Soviet, Hungarian, and Greek enterprises. He has held visiting professorships at Cambridge University, Universität Hannover, RWTH Aachen, and Carleton University, and full professorships at Michigan Technological University and the National Technical University of Athens. His research spans mechanics, manufacturing technology, precision and ultraprecision engineering, nanotechnology, ferrous and non-ferrous materials from macro- to nanoscale, powder production, biomechanics, vehicle structural safety, energy, environment, and industrial sustainability, resulting in over 32 books and monographs, 12 textbooks, 630 refereed journal and conference publications, and two patents. He has received numerous global recognitions, including election to several academies of sciences, multiple honorary professorships and doctorates, and fellowships and editorial roles in international scientific organizations and journals, reflecting his exceptional contributions to both theoretical and applied engineering and his enduring impact on global scientific and industrial advancement.

Profiles:  Scopus | ORCID

Featured Publications

1. Electroconsolidation method for fabrication of fine-dispersed high-density ceramics. Nanotechnology Perceptions, 2024.

2. Peculiarities of obtaining nanostructured materials compacted by the method of hot pressing due to the passage of direct electric current. Nanotechnology Perceptions, 2024.

3. Algorithmic foundations of optimization using finite element modeling of high-speed grinding technology in application to 3D micro-level models. Nanotechnology Perceptions, 2024.

4. Computer simulations of static stress-strain states for long-length pressurised pipes with external protective thin nanoengineered coating under nonuniform temperature fields. Nanotechnology Perceptions, 2024.

5. Magnetic shielding materials for electric vehicles. Nanotechnology Perceptions, 2024.

Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award

Ms. Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award

Vincelet Jobikha Arul Swamy | Saveetha Engineering College | India

Ms. Vincelet Jobikha Arul Swamy is an emerging researcher in physics, pursuing her Ph.D. with a specialization in nanomaterials for energy production and advanced glass ceramics for radiation shielding. She has consistently demonstrated academic excellence with distinction in her undergraduate and postgraduate studies and has expanded her expertise through active participation in national and international conferences, workshops, and specialized training. Her innovative contributions include the development of a nanomaterial that enhances solar energy efficiency and the design of novel glass systems for radiation protection, supported by multiple granted patents. She has also presented her findings widely, published in reputed Scopus-indexed journals, and earned recognition for her impactful research. Alongside academics, she has built strong communication and leadership skills through co-curricular achievements. With a focus on interdisciplinary and application-oriented science, she is steadily building a profile of measurable research influence. Her Scopus record reflects 1 citation, 1 document, and an h-index of 1.

Profile: Scopus | ORCID

Featured Publications

1. P. Vinothkumar, B. Yamini, S. Praveenkumar, and A. Vincelet Jobikha, “Synthesis, structural, and optical properties of lead-free Tm3+ ions doped zinc tellurite glass and Ho3+ ions doped zinc borophosphate glass for radiation shielding application,” Radiation Physics and Chemistry, vol. 112955, 2025.

Continue reading “Vincelet Jobikha Arul Swamy | Materials Science | Women Researcher Award”

Nikos Bikiaris | Materials Science | Distinguished Scientist Award

Dr. Nikos Bikiaris | Materials Science | Distinguished Scientist Award

Postdoc researcher | Aristotle University of Thessalonik | Greece

Dr. Nikos Bikiaris is an accomplished researcher specializing in polymer chemistry, nanocomposites, and pharmaceutical technology, with a strong focus on the synthesis and characterization of bio-derived and biodegradable polymers, copolymers, and blends. His work bridges material science and pharmaceutical applications, particularly in the development of novel cosmeceutical formulations. He has gained significant expertise in advanced characterization techniques such as FTIR, NMR, XRD, DSC, TGA, GPC/SEC, and SEM, and his practical skills extend to polymer processing methods like spray drying and melt mixing. Dr. Bikiaris has contributed to numerous national and EU-funded projects, presenting his findings at international scientific conferences, and building a reputation as a collaborative and innovative researcher. His publications in high-impact journals reflect his commitment to advancing sustainable materials with real-world applications. His measurable research impact is demonstrated through Google Scholar metrics: Cited by All 1333, Since 2020 1326; h-index All 13, Since 2020 12; i10-index All 19, Since 2020 18.

Profile: Google Scholar

Featured Publications

1. E. Balla, V. Daniilidis, G. Karlioti, T. Kalamas, M. Stefanidou, N. D. Bikiaris, et al., “Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase,” Polymers, vol. 13, no. 11, p. 1822, 2021.

2. A. Vlachopoulos, G. Karlioti, E. Balla, V. Daniilidis, T. Kalamas, M. Stefanidou, et al., “Poly (lactic acid)-based microparticles for drug delivery applications: An overview of recent advances,” Pharmaceutics, vol. 14, no. 2, p. 359, 2022.

3. N. D. Bikiaris, I. Koumentakou, C. Samiotaki, D. Meimaroglou, D. Varytimidou, et al., “Recent advances in the investigation of poly (lactic acid)(PLA) nanocomposites: Incorporation of various nanofillers and their properties and applications,” Polymers, vol. 15, no. 5, p. 1196, 2023.

4. N. D. Bikiaris, G. Michailidou, M. Lazaridou, E. Christodoulou, E. Gounari, et al., “Innovative skin product emulsions with enhanced antioxidant, antimicrobial and UV protection properties containing nanoparticles of pure and modified chitosan with encapsulated …,” Polymers, vol. 12, no. 7, p. 1542, 2020.

5. N. D. Bikiaris, N. M. Ainali, E. Christodoulou, M. Kostoglou, T. Kehagias, et al., “Dissolution enhancement and controlled release of paclitaxel drug via a hybrid nanocarrier based on mpeg-pcl amphiphilic copolymer and fe-btc porous metal-organic framework,” Nanomaterials, vol. 10, no. 12, p. 2490, 2020.

Mohammed Albadrani | Materials Buildings | Best Researcher Award

Assoc. Prof. Dr. Mohammed Albadrani | Materials Buildings | Best Researcher Award

Vice Dean | Qassim University | Saudi Arabia

Assoc. Prof. Dr. Mohammed Albadrani is a distinguished academic and engineering professional whose expertise spans mechanical, civil, and materials science engineering. Serving in both academic leadership and research capacities, he has contributed significantly to curriculum development, faculty management, and strategic academic planning. His multidisciplinary background strengthens his ability to lead innovative projects that integrate advanced engineering principles with educational excellence. He has also been active in professional training and consultancy, bridging academia and industry through impactful initiatives. His research focuses on advancing materials science and engineering applications, addressing both academic and industrial challenges. Recognized for his contributions, Dr. Albadrani continues to pursue opportunities that enhance innovation, collaboration, and knowledge transfer. His dedication to quality assurance and academic growth highlights his commitment to advancing higher education standards. His measurable research impact, as recorded in Scopus, includes 89 citations by 84 documents, 13 documents, and an h-index of 5.

Profile: Scopus | Google Scholar | ORCID

Featured Publications

1. M. Alharbi, I. Kong, and V. I. Patel, “Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis,” Applied Adhesion Science, vol. 8, no. 1, p. 5, 2020.

2. W. Tong and M. Alharbi, “Comparative evaluation of non-associated quadratic and associated quartic plasticity models for orthotropic sheet metals,” International Journal of Solids and Structures, vol. 128, pp. 133–148, 2017.

3. A. I. Alateyah, M. Alharbi, H. A. El-Hafez, and W. H. El-Garaihy, “The effect of equal-channel angular pressing processing on microstructural evolution, hardness homogeneity, and mechanical properties of pure aluminum,” SAE International Journal of Materials and Manufacturing, vol. 14, no. 2, pp. 113–126, 2021.

4. M. A. Albadrani, “Failure prediction in 3D printed Kevlar/glass fiber-reinforced nylon structures with a hole and different fiber orientations,” Polymers, vol. 14, no. 20, p. 4464, 2022.

5. M. A. Albadrani, “Effects of raster angle on the elasticity of 3D-printed polylactic acid and polyethylene terephthalate glycol,” Designs, vol. 7, no. 5, p. 112, 2023.

Nazim Guseinov | Materials Science | Research and Development Achievement Award

Mr. Nazim Guseinov | Materials Science | Research and Development Achievement Award

Researcher at Al-Farabi Kazakh National university, Kazakhstan

Mr. Nazim Guseinov is a dedicated researcher in nanotechnology with a strong academic background in solid-state physics and extensive professional experience at the National Nanotechnological Laboratory. His expertise lies in electron microscopy, electron spectroscopy, and electron/ion-beam lithography, which he applies to advanced material characterization and nanostructure fabrication. He has made significant contributions to research on carbon nanostructures, thin films, plasmonic nanocomposites, and graphene-based materials, combining both experimental and computational approaches. His work has been widely published in reputable international journals, reflecting consistent productivity and relevance to global scientific progress. Many of his studies address challenges in electronics, renewable energy, and advanced materials, showcasing the practical potential of his research. While his profile could be further strengthened by highlighting patents, leadership roles, and broader international collaborations, his achievements demonstrate a strong record of scientific excellence. Overall, Mr. Guseinov is a valuable contributor to nanoscience and a deserving candidate for recognition.

Professional Profile 

Scopus Profile | ORCID Profile 

Education

Mr. Nazim Guseinov has a strong educational foundation in physics, having completed both his bachelor’s and master’s degrees in solid-state physics at al-Farabi Kazakh National University. His studies provided him with a deep understanding of material properties, electronic structures, and physical phenomena at the atomic and nanoscale levels. This academic background laid the groundwork for his later specialization in nanotechnology, enabling him to combine theoretical knowledge with practical applications. His training emphasized advanced physics concepts, laboratory research, and modern characterization techniques, equipping him with the skills required to explore the behavior of materials at the nanoscale. The progression from undergraduate to postgraduate studies in the same field reflects a consistent dedication to mastering physics as a discipline. His educational journey has directly influenced his research focus, allowing him to bridge fundamental physics with applied nanoscience, and has positioned him well for a long-term career in advanced materials research.

Experience

Mr. Nazim Guseinov has extensive professional experience as a researcher at the National Nanotechnological Laboratory of Open Type in Kazakhstan, where he has been actively engaged since the beginning of his career. His primary responsibilities involve advanced experimental techniques such as electron microscopy and electron spectroscopy for material characterization, as well as electron-beam and ion-beam lithography for fabricating nanostructures. Over the years, he has contributed to the development and study of diverse nanomaterials, including carbon-based structures, thin films, and nanocomposites with potential applications in electronics and energy technologies. His professional role combines fundamental investigations with practical advancements, bridging academic research and applied innovation. By consistently engaging in multidisciplinary projects and co-authoring numerous scientific publications, he has established himself as a reliable and productive member of the scientific community. His long-term commitment to nanotechnology research demonstrates not only expertise in technical skills but also perseverance and dedication to advancing this field.

Research Focus

The core of Mr. Nazim Guseinov’s research lies in nanotechnology, with a particular emphasis on the study and fabrication of carbon nanostructures, thin films, and advanced nanocomposites. He specializes in applying high-resolution techniques such as electron microscopy and electron spectroscopy to investigate structural, electronic, and optical properties of materials at the nanoscale. His work extends to electron-beam and ion-beam lithography, enabling the creation of nanostructures with precision for scientific and industrial applications. He has also contributed to studies on plasmonic nanocomposites, graphene-based systems, and semiconductor materials, showcasing his versatility across multiple branches of nanoscience. His research outputs cover both experimental exploration and computational modeling, reflecting a comprehensive approach to material science. Many of his studies have potential applications in renewable energy, electronics, sensors, and data storage, demonstrating his focus on socially and technologically relevant areas. Overall, his research reflects a balance between advancing fundamental knowledge and exploring innovative practical solutions.

Award and Honor

While specific awards and honors are not listed in detail, Mr. Nazim Guseinov’s academic and research contributions are reflected through his extensive publication record in respected international journals. His involvement in collaborative projects with fellow scientists and contributions to multidisciplinary studies highlight his recognition within the scientific community. The consistent appearance of his work in high-impact publications such as Micromachines, Nanomaterials, and the Journal of Non-Crystalline Solids serves as an acknowledgment of the quality and significance of his research. Furthermore, his long-term role at a national nanotechnology research laboratory indicates institutional trust and recognition of his expertise in advanced materials research. Although additional details on individual awards, conference honors, or patents could further strengthen this section, his sustained academic productivity and contributions already reflect a form of professional distinction. Collectively, his achievements position him as a promising and deserving candidate for research recognition and professional honors.

Publication Top Notes

  • Electrostatic energy analyzer for nanotechnology applications
    Authors: Guseinov, N.R.; Ilyin, A.M.
    Year: 2021
    Citations: 10

  • Experimental investigation of the distribution of energy deposited by FIB in ion-beam lithography
    Authors: Muratov, M.; Myrzabekova, M.; Guseinov, N.; Nemkayeva, R.; Ismailov, D.; Shabelnikova, Y.; Zaitsev, S.
    Year: 2020

  • Organic Resist Contrast Determination in Ion Beam Lithography
    Authors: Shabelnikova, Y.L.; Zaitsev, S.I.; Guseinov, N.; Gabdullin, M.; Muratov, M.M.
    Year: 2020

  • Percolation conductivity in amorphous carbon films modified with palladium nanoparticles
    Authors: Ryaguzov, A.P.; Nemkayeva, R.R.; Guseinov, N.R.; Assembayeva, A.R.; Zaitsev, S.I.
    Year: 2020

  • Photoluminescence quenching of WS₂ nanoflakes upon Ga ion irradiation
    Authors: Bozheyev, F.; Nemkayeva, R.; Guseinov, N.; Kaikanov, M.; Tikhonov, A.
    Year: 2020

  • Computer simulation and first principles study of Ga-doped graphene nanostructures
    Authors: Ilyin, A.M.; Guseinov, N.R.; Kuanyshbekov, T.K.; Beall, G.W.; Tulegenova, M.A.
    Year: 2019

  • Computer simulation of the effect of structural defects on the effectiveness of graphene’s protective properties
    Authors: Tulegenova, M.; Ilyin, A.; Guseinov, N.; Beall, G.; Kuanyshbekov, T.
    Year: 2019

  • Influence of substrate temperature on the formation of titanium carbide film
    Authors: Kaipoldayev, O.E.; Baigarinova, G.A.; Nemkayeva, R.R.; Guseinov, N.R.; Mukhametkarimov, Y.S.; Tauasarov, K.; Prikhodko, O.Y.
    Year: 2019

  • Nanodefects on microcrystals of YAG-based phosphors
    Authors: Tulegenova, A.T.; Lisitsyn, V.M.; Abdullin, K.A.; Guseinov, N.R.
    Year: 2019

  • Study of the structure of amorphous carbon films modified with silicon oxide
    Authors: Ryaguzov, A.P.; Kudabayeva, M.A.; Nemkayeva, R.R.; Guseinov, N.R.; Myrzabekova, M.M.
    Year: 2019

Conclusion

Mr. Nazim Guseinov has built a strong research portfolio focused on nanotechnology, material science, and advanced electronic applications. His publications span high-impact areas such as electron-beam lithography, graphene-based nanostructures, amorphous carbon films, and photonic/electronic material properties. Collaborating with international teams, he has contributed to both experimental and computational studies that advance the understanding of nanostructured materials and their applications in electronics, sensing, and energy. While many of his works are relatively recent and still accumulating citations, the breadth of topics and consistent productivity highlight his role as an active and promising scientist. His research impact is evident through innovative approaches, interdisciplinary collaborations, and practical applications in nanotechnology, positioning him as a valuable contributor to modern materials science.

Qiangguo Li | Materials Science | Best Researcher Award

Prof. Qiangguo Li | Materials Science | Best Researcher Award

Teacher at Xihua University, China

Dr. Qiangguo Li is a dedicated researcher in materials science with a strong record of contributions spanning advanced steels, titanium alloys, magnesium alloys, coatings, and electrocatalysts. His work focuses on understanding microstructural behavior and developing innovative processing techniques to improve mechanical properties, wear resistance, fatigue performance, and corrosion resistance of structural materials. With numerous publications in respected international journals, he has established expertise in both fundamental studies and applied research, demonstrating originality and depth in his investigations. Dr. Li’s interdisciplinary approach has extended his impact to emerging fields such as electrocatalysis, showcasing his adaptability and vision for future technological needs. His consistent role as first or corresponding author highlights his leadership in research projects, while his broad range of collaborations reflects his ability to work across diverse teams. Overall, Dr. Li’s scholarly achievements and innovative contributions underscore his suitability as a leading figure in materials science research.

Professional Profile 

Scopus Profile | ORCID Profile 

Education

Dr. Qiangguo Li built a strong academic foundation in science and engineering through progressive studies at Xihua University and Sichuan University. He earned his bachelor’s degree in biology science, which provided him with a broad understanding of scientific inquiry and experimental methods. He then pursued a master’s degree in materials science, deepening his expertise in the structure and properties of materials. His academic journey culminated with a doctoral degree in materials science from Sichuan University, where he conducted advanced research on steel microstructures and mechanical behavior. This combination of biological science and materials science education equipped him with an interdisciplinary perspective, enabling him to approach research challenges with creativity and rigor. His academic progression reflects both dedication and specialization, positioning him as a well-trained scholar capable of bridging fundamental science with engineering applications in the field of materials research.

Experience

Dr. Li has developed extensive research and teaching experience as a faculty member at Xihua University, where he has actively engaged in both academic instruction and scientific exploration. His professional career is marked by participation in multiple projects focused on advanced steels, titanium alloys, magnesium alloys, and functional coatings. These projects not only contributed to theoretical advancements but also carried practical significance for industries requiring high-performance materials. Through collaborations with fellow researchers, he has built a diverse network of partnerships across related disciplines. His experience includes leadership roles as a first or corresponding author on numerous journal publications, demonstrating his capacity to guide research teams and mentor students. In addition, his involvement in experimental design, microstructural analysis, and materials characterization has provided him with broad technical expertise. Dr. Li’s career reflects a balance of teaching, research, and collaborative engagement, strengthening his role as both an educator and a materials science innovator.

Research Focus

The central focus of Dr. Li’s research lies in the design, processing, and performance evaluation of structural and functional materials. His studies on bainitic steel and quenched and partitioned steels have provided valuable insights into fatigue resistance, wear behavior, and strain hardening mechanisms, contributing to the development of stronger and more durable alloys. He has also explored magnesium and titanium alloys, investigating how microstructural control and elemental additions can enhance mechanical properties and extend industrial applications. Beyond structural alloys, Dr. Li has expanded his research into coatings and electrocatalysts, including novel catalysts for methanol oxidation and oxygen evolution reactions, reflecting his interdisciplinary approach. His work integrates microstructure-property relationships with processing innovations, aiming to develop materials that meet the demands of high-performance engineering environments. This comprehensive research focus demonstrates his ability to combine fundamental understanding with practical advancements, making his contributions highly relevant to both academia and industry.

Award and Honor

While specific awards and honors are not listed in the available profile, Dr. Li’s record of achievements indicates recognition within the academic and research community. His frequent role as first or corresponding author in high-quality international journals demonstrates professional respect for his contributions. The diversity of his collaborative work, extending into areas such as electrocatalysis and coatings, reflects trust from peers who acknowledge his expertise and reliability as a partner. His success in securing and contributing to multiple research projects also highlights recognition of his capability to deliver impactful results. Additionally, his continuous publication record in well-regarded journals suggests acknowledgment of his innovative approaches and scientific rigor. As his career progresses, his growing body of work positions him as a strong candidate for research awards and honors that celebrate innovation, interdisciplinary impact, and leadership in the field of materials science.

Publications Top Notes

  • Title: Effects of Ag and Sc Addition on the Dynamic Recrystallization and Mechanical Properties of As-Extruded Mg-8Sn-4Al Alloys
    Authors: Wandong Li, Xinyu Luo, Xiaopi Geng, Ruichen Yang, Qiangguo Li, Linhui Qiang, Shiqi Xu
    Year: 2024
    Citations: 1

  • Title: Microstructure and mechanical properties of electroless Ni–P–Si3N4–TiN composite coatings
    Authors: Qiangguo Li, Ming Ni, Weigang Huang
    Year: 2024
    Citations: 0

  • Title: Interface modification of TiAlN coated TiCN-based cermet through plasma nitriding
    Year: 2024
    Citations: 3

Conclusion

Dr. Qiangguo Li has established himself as a promising and impactful researcher in the field of materials science, with contributions spanning structural alloys, coatings, and electrocatalysts. His diverse and innovative research demonstrates both depth and breadth, addressing fundamental scientific questions while offering practical solutions for industrial applications. With a consistent record of publications, leadership roles in collaborative studies, and growing recognition through citations, he reflects the qualities of a forward-looking researcher. Continued focus on expanding international collaborations, industry applications, and sustainable material innovations will further strengthen his profile. Overall, Dr. Li’s achievements highlight his suitability for recognition such as the Best Researcher Award and position him as a valuable contributor to advancing materials science research globally.

Costica BEJINARIU | Materials Technology | Best Researcher Award

Prof Dr. Costica BEJINARIU | Materials Technology | Best Researcher Award

Professor, PhD, Eng., „Gheorghe Asachi” Technical University from Iasi, Romania

👨‍🏫 Professor Costica Bejinariu is a distinguished academic with over 35 years of experience in Materials Engineering and Industrial Safety. He currently holds a position as a full professor at Gheorghe Asachi Technical University of Iasi, Romania, and is also a doctoral supervisor. His research interests span across Materials Science, Nanostructured Materials, Safety at Work, and Risk Assessment. Professor Bejinariu has made significant contributions to both national and international research, with numerous projects and publications, and he is highly involved in academic leadership and professional associations.

Profile

Google Scholar

Education

🎓 Professor Bejinariu’s education has laid a strong foundation for his extensive career in Materials Engineering. While details of his personal education journey are not specifically listed, his professional development is highlighted through his role as a doctoral supervisor since 2009, guiding seven completed theses and currently overseeing seven doctoral candidates.

Research Experience

🔬 With over 45 completed and ongoing research projects, Professor Bejinariu has led and contributed to a wide array of initiatives, including industry projects and academic research funded by prominent Romanian grants such as CNMP-PN2, CeEx, and ORIZONT 2000. He has also managed several grants, demonstrating his leadership in both scientific and applied research. His research has focused primarily on Materials Science, particularly the safety and health aspects in engineering and industrial applications.

Research Interests

🧪 Professor Bejinariu’s research spans several crucial domains, including Materials Engineering, Nanostructured Materials, and Safety Engineering. His work in risk assessment and occupational health highlights his dedication to improving workplace safety and public health through advanced material testing and development. He also actively explores sustainable practices in materials technology and engineering, aiming to address industrial and environmental challenges.

Awards

🏆 Professor Bejinariu’s career is marked by numerous honors and achievements, including his membership in prestigious organizations such as the Academy of Romanian Scientists. He has contributed significantly to both the academic and industry sectors through his leadership in research, having been recognized for his innovative approaches and commitment to academic excellence. His research and publications continue to receive global recognition, contributing to his high citation index.

Publications Top Notes

📚 Professor Bejinariu has an impressive record with 277 scientific papers, including over 65 articles indexed in ISI – Web of Science Core Collection and 33 papers in proceedings. His work spans international journals and conferences, with a citation index of over 1500 citations across platforms like Web of Science, Scopus, and Google Scholar. Some of his notable works include his contributions to corrosion resistance and materials surface enhancement. He has also published 30 books/chapters, several of which are internationally recognized.

Citation Metrics:

  • Web of Science: 875 citations
  • Scopus: 1077 citations
  • Google Scholar: 1547 citations