Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Assist. Prof. Dr. Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Faculty Member | Payame Noor University | Iran

Assist. Prof. Dr. Sayyid Ali Banihashemi, Associate Professor in the Department of Industrial Engineering at Payame Noor University, is a recognized scholar specializing in project scheduling, data envelopment analysis, supply chain management, and organizational agility. He holds advanced degrees in industrial engineering with a concentration in operations research and performance evaluation, complemented by rigorous training in quantitative decision-making. His professional experience includes leading academic programs, supervising research initiatives, and contributing to major analytical and optimization projects that support organizational and operational improvement. Dr. Banihashemi’s research portfolio encompasses influential publications, high-impact citations, and methodological advancements that have shaped contemporary practices in project planning efficiency, productivity assessment, and supply chain performance. His scholarly contributions are further reflected in editorial responsibilities for reputable journals, memberships in distinguished professional societies, and certifications in advanced analytical methods. Widely cited and respected in his field, he has earned multiple recognitions for research excellence, academic service, and contributions to the industrial engineering community, establishing him as a dedicated leader committed to advancing theory and practice in operations and performance management.

Profiles: Google Scholar

Featured Publications

1. Dahmardeh, N., & Banihashemi, S. A. (2010). Organizational agility and agile manufacturing. European Journal of Economics, Finance and Administrative Sciences, 27, 178–184.

2. Banihashemi, S. A. (2011). The role of communication to improve organizational process. European Journal of Humanities and Social Sciences, 1(1), 13–24.

3. Banihashemi, S. A., Khalilzadeh, M., Shahraki, A., Malkhalifeh, M. R. M., & others. (2020). Optimization of environmental impacts of construction projects: A time–cost–quality trade-off approach. International Journal of Environmental Science and Technology, 1–16.

4. Banihashemi, S. A., & Khalilzadeh, M. (2021). Time-cost-quality–environmental impact trade-off resource-constrained project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 28(7), 1979–2004.

5. Banihashemi, S. A., Khalilzadeh, M., Antucheviciene, J., & Edalatpanah, S. A. (2023). Identifying and prioritizing the challenges and obstacles of green supply chain management in the construction industry using the fuzzy BWM method. Buildings, 13(1), 38.

Dr. Sayyid Ali Banihashemi’s work advances scientific and industrial practice by integrating optimization, sustainability, and performance evaluation to improve project delivery and supply chain systems. His research supports data-driven decision-making that enhances organizational efficiency, reduces environmental impacts, and strengthens the resilience and agility of modern industries.

Akbar Hojjati Najafabadi | Engineering | Best Industrial Research Award

Dr. Akbar Hojjati Najafabadi | Engineering | Best Industrial Research Award

Faculty at Islamic Azad University Mobarakeh Branch, Iran

Dr. Akbar Hojjati Najafabadi is a distinguished researcher in mechanical engineering with expertise in manufacturing, production, hydraulics, pneumatics, robotics, and assistive technology. His research focuses on the design and development of orthotic and rehabilitation devices for individuals with spinal cord injuries and locomotion disabilities, bridging engineering innovation with healthcare needs. He has contributed significantly to industrial research through academic publications in international journals, authored and translated technical books, and supervised projects that integrate mechanical systems with biomedical applications. Beyond academia, he has executed impactful industrial projects, including the design and installation of specialized machinery in major steel industries, showcasing his ability to translate theory into practice. As a lecturer and research leader, he has guided advanced engineering initiatives and mentored students while promoting applied industrial solutions. Recognized for his pioneering contributions, Dr. Hojjati’s work demonstrates a balance of academic rigor, industrial innovation, and social impact, positioning him as a strong industrial researcher.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Akbar Hojjati Najafabadi holds a strong academic foundation in mechanical engineering, specializing in manufacturing and production. He earned his Ph.D. in Mechanical Engineering from Kashan University, where his doctoral research focused on advanced manufacturing and production processes with applications in assistive technologies. Prior to that, he completed his master’s degree at Iran University of Science and Technology, gaining expertise in industrial systems and applied mechanical design. His undergraduate studies were carried out at Islamic Azad University in Najafabad, providing him with the essential grounding in mechanical and production engineering. He also broadened his international research exposure through a visiting research position at the Friedrich Wilhelm Bessel Institut in Germany. This combination of domestic and international education has allowed him to integrate theoretical knowledge with practical innovation, preparing him to tackle complex industrial and biomedical engineering challenges. His academic journey reflects a continuous pursuit of applied, impactful research.

Experience

Dr. Hojjati has built a distinguished career in both academia and industry, serving as a lecturer in mechanical engineering at Islamic Azad University, Mobarakeh Branch, for over two decades. His teaching portfolio includes advanced hydraulics, robotics, industrial measurements, machining, and materials strength, equipping future engineers with cutting-edge knowledge. Beyond teaching, he has taken leadership roles such as group manager of the mechanical engineering department and head of the Advanced Engineering Research Center, where he spearheaded innovative industrial research projects. His applied expertise extends to significant industrial collaborations, including the design, development, and installation of specialized machinery for large-scale steel industries. He has also implemented research-based prototypes such as robotic orthoses, pneumatic muscle-driven devices, and CNC-based robotic systems. This combination of academic leadership, practical industrial implementation, and applied research highlights his commitment to bridging the gap between education, industry, and innovation. His experience exemplifies a balance of teaching, research, and industrial application.

Research Focus

Dr. Hojjati’s research primarily centers on the integration of mechanical engineering with assistive and rehabilitation technologies. His work emphasizes the design and development of orthotic systems, exoskeletons, and assistive devices aimed at improving mobility for individuals with spinal cord injuries and lower-limb disabilities. He has investigated mechanical and motor-driven systems for sit-to-stand transitions, gait improvement, and locomotion rehabilitation, with several prototypes demonstrating practical benefits in healthcare applications. His studies also extend to robotics, hydraulics, and pneumatics, with innovative applications of fluidic muscles and electromechanical drives in rehabilitation devices. In addition to biomedical engineering, he has explored industrial automation, machining performance, and intelligent monitoring systems for robotics. His extensive publication record in international journals, along with ongoing research into exoskeleton technologies, reflects his commitment to applied, impactful innovations. Overall, his research focus merges industrial engineering expertise with biomedical solutions, showcasing his dedication to developing technologies that improve human life and industrial practices.

Award and Honor

Dr. Hojjati has been recognized for his pioneering contributions to industrial and applied research with distinctions that reflect both academic and practical excellence. He was honored as a Pioneer Investigator by Islamic Azad University, highlighting his leadership in advancing engineering education and research. His inventive spirit is demonstrated by his patented Surface Quick Modeling Machine, certified by the General Bureau of Industrial Possessions and Corporations Records, marking a significant contribution to industrial innovation. Alongside this, his published works in highly regarded international journals and conference presentations have further solidified his standing as a recognized researcher in mechanical and biomedical engineering fields. His authored and translated books on pneumatics, robotics, mechatronics, and industrial systems showcase his commitment to knowledge dissemination and professional development. These awards and honors underscore his role as a respected academic and industrial innovator, reflecting a career dedicated to advancing engineering solutions with real-world impact.

Publications Top Notes

  • Title: Mechanical design and simulation of a saddle-assistive device for sit-to-stand transfer in healthy subjects
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2017
    Citations: 8

  • Title: The effect of saddle-assistive device on improving the gait parameters of patients with the lower limbs weakness: a pilot study
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2020
    Citations: 2

  • Title: Machining performance on AISI 304 steel in the milling machine with mechanical and hydraulic spindle
    Authors: M Shirazi, A Hojjati Najafabadi, S Amini
    Year: 2024
    Citations: 1

  • Title: Using a saddle-assistive device equipped with mechanical orthosis for walking of the person with incomplete spinal cord injury
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2021
    Citations: 1

  • Title: Improving sit-to-stand transition by the saddle-assistive device in the spinal cord injury: A case study
    Authors: A Hojjati Najafabadi, S Amini, F Farahmand
    Year: 2021
    Citations: 1

  • Title: Novel design and comprehensive mechanical analysis of a cost-effective manual patient lifting system with worm gear mechanism
    Authors: A Hojjati Najafabadi, M Ahmadi Bani
    Year: 2025

  • Title: Innovative Enhancements in Surface Quality and Hardness of Aluminium Alloy 2024 through an Optimized Burnishing Process
    Authors: AH Najafabadi
    Year: 2024

  • Title: Development of the Burnishing Process: Moving Towards Increasing the Quality and Surface Hardness of Aluminum alloy 2024
    Authors: AH Najafabadi
    Year: 2023

  • Title: Comparison of anterior and posterior wheeled walkers based on body weight support in improving gait function a subjects with spinal cord injury: A case study
    Authors: AH Najafabadi, MA Bani, V Pourmoghadam
    Year: 2022

  • Title: Design of patient lifting device based on the use of a worm gears mechanism in the protection of the caregiver
    Authors: AH Najafabadi
    Year: 2022

  • Title: Rapid welding of aluminum for marking on hot steel
    Authors: HB Soroush Baladi, Akbar Hojjati Najafabadi, Mohammad Reza Khanzadeh
    Year: 2022

Conclusion

Dr. Akbar Hojjati Najafabadi’s publication record reflects a strong and consistent focus on applied industrial and biomedical engineering research. His contributions span from early work in assistive device design to recent advancements in machining processes, patient lifting systems, and rehabilitation technologies. The research demonstrates both technical depth and practical application, particularly in developing innovative solutions for spinal cord injury rehabilitation and industrial manufacturing improvements. While some of his works have already gained citations and recognition in reputable journals, others represent emerging areas with potential for broader impact. The combination of interdisciplinary research, industrial collaboration, and continuous innovation positions him as a significant contributor to industrial research. His work not only advances scientific knowledge but also provides tangible benefits to healthcare and industry, reinforcing his suitability for recognition such as the Best Industrial Research Award.

Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Prof. Vassilis Kostopoulos | Engineering | Best Researcher Award

Professor at University of Patras, Greece

Professor Vassilis Kostopoulos is a distinguished Greek academic in Mechanical Engineering, currently serving at the University of Patras. With a PhD in Applied Mechanics, he has built a prolific career specializing in composite materials, aerospace structures, non-destructive evaluation, and nano-engineering. He has published over 260 peer-reviewed journal papers, authored several books, and amassed more than 8,800 citations with an h-index of 48. As principal investigator in 85 international research projects funded by bodies like the EU, ESA, and NSF, he has made significant contributions to advanced materials and aerospace research. He has served on multiple European advisory bodies (ACARE, Clean Sky), editorial boards, and has supervised 34 PhD and 185 MSc theses. His work has earned international recognition through patents and awards, including the TRA VISIONS Senior Scientist Award. Widely respected for his innovation, mentorship, and research leadership, he exemplifies excellence in academic and applied engineering research.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile 

Education

Professor Vassilis Kostopoulos received his Diploma in Mechanical Engineering from the National Technical University of Athens in 1980. He later pursued a Ph.D. in Applied Mechanics at the University of Patras, completed in 1987, with a focus on wave propagation, scattering, and non-destructive testing of composite materials. His academic formation established a robust foundation in mechanics, materials science, and engineering physics. Over the years, he expanded his expertise through advanced training, collaborations, and international academic exposure. His educational background underpins his deep theoretical and applied understanding of composite materials and aerospace engineering. In addition to his own education, he has contributed extensively to the academic growth of students through comprehensive undergraduate and graduate-level teaching in subjects such as dynamics, elasticity, and thermomechanical behavior of advanced materials. His educational journey has continuously evolved in parallel with his research and teaching responsibilities, ensuring a solid, interdisciplinary academic foundation.

Professional Experience

Professor Kostopoulos holds a long-standing faculty position at the University of Patras, where he previously served as Director of the Applied Mechanics and Vibrations Laboratory. He has also held visiting positions at prestigious institutions, including JRC Petten in the Netherlands and, more recently, the University of Delaware and George Emil Palade University in Romania. Beyond academia, he has actively contributed to European aviation and aerospace research policy through roles with ACARE, Clean Sky, and Clean Aviation Joint Undertakings. He has been a national delegate and evaluator for several EU framework programs (FP6, FP7) and other international research agencies. His editorial and peer review responsibilities span over 60 international journals. These roles highlight his influence across both academic and policy-making spheres. As a mentor, advisor, evaluator, and leader in multi-institutional projects, Professor Kostopoulos has consistently demonstrated professional excellence and leadership, further reinforcing his global academic reputation in the field of mechanical and aerospace engineering.

Research Interest

Professor Kostopoulos’s research spans a wide array of cutting-edge engineering topics, primarily centered on composite materials and aerospace structures. His key interests include the design, optimization, and damage assessment of lightweight composite structures, with particular attention to fatigue, fracture, and high strain rate behavior. He is also deeply involved in non-destructive inspection and structural health monitoring, nano-augmentation of materials, anisotropic elasticity, and additive manufacturing. His work extends into space technologies, such as microsatellites, as well as UAVs and aeronautic applications. In recent years, he has ventured into biomechanics and bioengineering, focusing on implant design and fatigue in biomedical components. His interdisciplinary approach links advanced mechanics with real-world applications in aerospace, defense, and biomedical engineering. Notably, his integration of life cycle and cost analysis into material design reflects a forward-thinking approach. His comprehensive, problem-solving research focus continues to shape innovations in engineering science across multiple domains.

Award and Honor

Professor Kostopoulos has received numerous prestigious awards recognizing his innovation, mentorship, and scientific impact. Notably, he was honored with the 1st Senior Scientist Award at the TRA VISIONS 2020 Researcher Competition, a major European recognition in transport and aerospace research. In 2024, under his supervision, the UPOGEE student team won the Special Award in the ESA Student Aerospace Challenge. Other honors include the Communication Award and Innovation Award at ESA educational events and UK competitions, as well as high placements in international contests such as iGEM and the CubeSat Mission Contest in China. His influence in mentoring award-winning student teams underscores his commitment to academic development. Additionally, he holds 3 European, 1 U.S., and 7 national patents, further highlighting his innovative contributions. These accolades reflect his leadership in research, education, and industry collaboration, establishing him as a prominent figure in European and global engineering research communities.

Conclusion

In conclusion, Professor Vassilis Kostopoulos is an exemplary academic and researcher whose career embodies excellence in education, professional service, and scientific innovation. With over four decades of impactful research in composite materials and aerospace engineering, he has significantly advanced both the theoretical and applied aspects of the field. His extensive publication record, international collaborations, high-level policy engagement, and commitment to student mentorship make him a model of academic leadership. His work not only contributes to cutting-edge technologies in space, defense, and aviation but also addresses sustainability, cost-effectiveness, and health applications. Recognized globally through awards, patents, and editorial roles, he maintains a dynamic presence in the research community. As a result, he is not only a deserving candidate for high-level research awards but also a vital contributor to the future of engineering science. His legacy continues to inspire innovation, education, and international collaboration in multiple scientific domains.

Publications Top Notes

  • Title: Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe
    Authors: S. Attia, P. Eleftheriou, F. Xeni, R. Morlot, C. Ménézo, V. Kostopoulos, M. Betsi, …
    Year: 2017
    Citations: 378

  • Title: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes
    Authors: V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, A. Paipetis
    Year: 2010
    Citations: 361

  • Title: The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery
    Authors: T.H. Loutas, D. Roulias, E. Pauly, V. Kostopoulos
    Year: 2011
    Citations: 283

  • Title: Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes
    Authors: P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Paipetis
    Year: 2009
    Citations: 271

  • Title: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements
    Authors: T.H. Loutas, G. Sotiriades, I. Kalaitzoglou, V. Kostopoulos
    Year: 2009
    Citations: 230

  • Title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    Authors: G. Georgoulas, T. Loutas, C.D. Stylios, V. Kostopoulos
    Year: 2013
    Citations: 187

  • Title: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission
    Authors: V. Kostopoulos, T.H. Loutas, A. Kontsos, G. Sotiriadis, Y.Z. Pappas
    Year: 2003
    Citations: 161

  • Title: On the fatigue life prediction of CFRP laminates using the electrical resistance change method
    Authors: A. Vavouliotis, A. Paipetis, V. Kostopoulos
    Year: 2011
    Citations: 157

  • Title: Finite element analysis of impact damage response of composite motorcycle safety helmets
    Authors: V. Kostopoulos, Y.P. Markopoulos, G. Giannopoulos, D.E. Vlachos
    Year: 2002
    Citations: 151

  • Title: Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Health monitoring of carbon/carbon, woven reinforced composites: Damage assessment by using advanced signal processing techniques. Part II: Acousto-ultrasonics monitoring
    Authors: T.H. Loutas, V. Kostopoulos
    Year: 2009
    Citations: 142

  • Title: Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures
    Authors: A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, V. Kostopoulos
    Year: 2011
    Citations: 140

  • Title: Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms
    Authors: T.H. Loutas, V. Kostopoulos, C. Ramirez-Jimenez, M. Pharaoh
    Year: 2006
    Citations: 140

  • Title: Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements
    Authors: T.H. Loutas, A. Panopoulou, D. Roulias, V. Kostopoulos
    Year: 2012
    Citations: 135

  • Title: On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species
    Authors: C. Kostagiannakopoulou, T.H. Loutas, G. Sotiriadis, A. Markou, …
    Year: 2015
    Citations: 125

Shekhar Suman | Engineering | Young Scientist Award

Dr. Shekhar Suman | Engineering | Young Scientist Award

Research Scientist at Borah University of Texas at Tyler, United States

Dr. Shekhar Suman Borah is a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. He holds a Ph.D. in Electronics & Communication Engineering from IIIT Guwahati, with a strong academic foundation in Analog VLSI Design, Memristors, and Signal Processing. His prolific research output includes over 25 publications in reputed journals and conferences, four book chapters, and editorial and peer-review contributions to leading journals. Dr. Borah has also secured research funding for AI-based hardware-software systems and contributed to projects at Bhabha Atomic Research Centre. His work spans advanced circuit design, environmental sensing, and precision agriculture using UAVs. He has delivered invited talks and participated in international conferences across India, the USA, and Japan. A committed IEEE member, Dr. Borah combines technical excellence with interdisciplinary collaboration, positioning him as a promising candidate for awards recognizing young scientific talent.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Shekhar Suman Borah has a strong academic foundation in electronics and communication engineering. He earned his Ph.D. from the Indian Institute of Information Technology (IIIT) Guwahati in 2022, where he specialized in analog signal processing and current-mode circuit design. Prior to this, he completed his M.Tech with First Class from KIIT University, Bhubaneswar, and his B.E. from Visvesvaraya Technological University, Karnataka, also with First Class honors. His academic journey reflects a consistent focus on electronics, signal processing, and circuit design, particularly in analog VLSI systems. During his doctoral studies, he developed expertise in the use of memristors, current-mode building blocks, and oscillator/filter design, forming the basis for much of his later research. His educational trajectory demonstrates both depth and specialization, equipping him with the technical proficiency and theoretical grounding necessary for advanced research and innovation in modern electronics and intelligent systems.

Professional Experience

Dr. Borah currently serves as a Post-Doctoral Research Associate at the Centre of Robotics & Intelligent Systems, University of Texas at Tyler, USA. Previously, he was a Research Associate at the Bhabha Atomic Research Centre (BARC), Mumbai, contributing to projects in the Radiation Safety Systems Division. He has over five years of academic teaching assistance experience in labs related to analog VLSI, communication systems, and integrated circuits. His role in grant-funded projects—particularly an AI-based tutoring tool for hardware-software co-design—underscores his engagement in interdisciplinary research. He has collaborated with several international researchers and contributed to publications across areas such as memristive circuits, environmental sensing, UAV applications, and edge computing. His growing leadership in research, combined with a solid background in academic and national research institutions, marks him as a well-rounded scientist with both applied and theoretical expertise across diverse sectors in electronics and intelligent system design.

Research Interest

Dr. Borah’s research interests lie at the intersection of analog VLSI design, current-mode circuits, memristors, signal processing, and computer vision. He is particularly focused on designing energy-efficient, electronically tunable circuits using novel components like current differencing buffered amplifiers (CDBAs) and memristors. His recent work explores the integration of these devices into edge-computing architectures, environmental sensing systems, and wearable electronics. He is also involved in precision agriculture using AI and UAVs for tasks like weed detection and disease assessment, showcasing his multidisciplinary reach. Dr. Borah has a strong inclination toward practical applications of circuit theory, demonstrated by his contributions to automation, energy-efficient design, and AI-driven solutions. His ability to translate theoretical models into real-world engineering solutions makes his work impactful, especially in the context of smart devices and intelligent sensing systems. This diverse and innovative portfolio reflects both his technical depth and adaptability to emerging technological trends.

Award and Honor

Dr. Shekhar Suman Borah has received several awards that highlight his academic excellence and research impact. In 2020, he won the Best Paper Award at the Springer International Conference on Communication, Circuits, and Systems (iC3S) for his innovative work on grounded negative inductance simulation. Earlier in his academic career, he was awarded the SDR Scholarship in 2010 for academic excellence and the prestigious Anandoram Barooah Award by the Government of Assam in 2009 for securing First Class with Distinction in his 10th grade. These accolades reflect both early promise and sustained contributions to his field. His participation as a peer reviewer for reputed journals and conferences like IEEE and MDPI further underscores his professional standing. Additionally, his invited talks at prominent institutions and media appearances demonstrate recognition beyond academia. Collectively, these honors validate Dr. Borah’s trajectory as a high-performing researcher with significant potential for further contributions.

Conclusion

Dr. Shekhar Suman Borah stands out as a highly qualified young researcher with a well-rounded portfolio in education, research, and professional engagement. His academic background is strong and focused, his research contributions are diverse and impactful, and his professional roles demonstrate both leadership and collaboration. He has made meaningful strides in analog circuit design, memristive technologies, and intelligent sensing systems, with applications in agriculture, environmental monitoring, and wearable technology. His ability to secure research funding, contribute to peer-reviewed literature, and deliver invited talks reflects his growing recognition in the field. Dr. Borah’s consistent track record of innovation, coupled with his dedication to both academic excellence and real-world problem-solving, makes him a strong contender for recognition such as the Young Scientist Award. His work promises continued contributions to cutting-edge technologies in electronics and intelligent systems, positioning him as a rising figure in the global scientific community.

Publications Top Notes

  • Title: MOSFET-Based Memristor for High-Frequency Signal Processing
    Authors: M. Ghosh, A. Singh, S.S. Borah, J. Vista, A. Ranjan, S. Kumar
    Year: 2022
    Citations: 46

  • Title: Electronically tunable higher-order quadrature oscillator employing CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh, A. Ranjan
    Year: 2021
    Citations: 23

  • Title: Resistorless memristor emulators: Floating and grounded using OTA and VDBA for high-frequency applications
    Authors: M. Ghosh, P. Mondal, S.S. Borah, S. Kumar
    Year: 2022
    Citations: 20

  • Title: Third order quadrature oscillator and its application using CDBA
    Authors: M. Ghosh, S.S. Borah, A. Singh, A. Ranjan
    Year: 2021
    Citations: 17

  • Title: Simple Grounded Meminductor Emulator Using Transconductance Amplifier
    Authors: A. Singh, B. S, S., G. M.
    Year: 2021
    Citations: 12

  • Title: A novel memristive neural network circuit and its application in character recognition
    Authors: X. Zhang, X. Wang, Z. Ge, Z. Li, M. Wu, S.S. Borah
    Year: 2022
    Citations: 11

  • Title: CMOS CDBA Based 6th Order Inverse Filter Realization for Low-Power Applications
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2020
    Citations: 9

  • Title: Three Novel Configurations of Second Order Inverse Band Reject Filter Using a Single Operational Transresistance Amplifier
    Authors: S. Banerjee, S.S. Borah, M. Ghosh, P. Mondal
    Year: 2019
    Citations: 8

  • Title: Emerging Technologies for Automation in Environmental Sensing
    Authors: S.S. Borah, A. Khanal, P. Sundaravadivel
    Year: 2024
    Citations: 5

  • Title: Single VDTA Based Grounded Memristor Model and Its Applications
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 5

  • Title: Current Differencing Buffered Amplifier Based Memristive Quadrature Oscillator
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2021
    Citations: 4

  • Title: Higher order multifunction filter using current differencing buffered amplifier (CDBA)
    Authors: S.S. Borah, M. Ghosh, A. Ranjan
    Year: 2022
    Citations: 3

  • Title: A Novel Low-Power Electronically Tunable Higher-Order Quadrature Oscillator using CDBA
    Authors: S.S. Borah, A. Singh, M. Ghosh
    Year: 2021
    Citations: 3

  • Title: CDBA Based Quadrature Sinusoidal Oscillator with Non-interactive Control
    Authors: A. Singh, S.S. Borah, M. Ghosh
    Year: 2020
    Citations: 3

  • Title: Design of Thinned Linear Antenna Array using Particle Swarm Optimization (PSO) Algorithm
    Authors: S.S. Borah, A. Deb, J.S. Roy
    Year: 2019
    Citations: 3

Rajani Alugonda | Engineering | Best Researcher Award

Mrs. Rajani Alugonda | Engineering | Best Researcher Award

Assistant Professor at JNTUK Kakinda, India

Smt. Rajani Alugonda is an accomplished academician and researcher in the field of Electronics and Communication Engineering. With over 14 years of teaching experience, she has significantly contributed to the academic and research landscape. She is currently serving as an Assistant Professor in the Department of ECE at JNTU College of Engineering, Kakinada. Throughout her career, she has actively participated in various academic and administrative roles, reflecting her commitment to institutional development and student mentorship. Her research contributions in signal processing and communication are well-recognized in national and international journals. She has been involved in organizing and attending faculty development programs, conferences, and workshops, fostering a strong academic network. Beyond academics, she has played key roles in hostel administration, examination management, and extracurricular activities, highlighting her leadership skills.

Professional Profile

Google Scholar

Education

Smt. Rajani Alugonda holds a B.Tech degree in Electronics and Communication Engineering from KITS, Singapur, obtained in 2005. She pursued her M.Tech in Control Systems at JNTU College of Engineering, Anantapur, where she graduated with First Class with Distinction in 2011. Currently, she is pursuing her Ph.D. in Signal Processing and Communication from Jawaharlal Nehru Technological University, Kakinada. Her educational background provides her with a strong foundation in advanced communication systems and signal processing, equipping her with the knowledge to conduct high-quality research. Her academic journey demonstrates her commitment to continuous learning and professional growth.

Professional Experience

With over 14 years and 6 months of teaching experience, Smt. Rajani Alugonda has mentored numerous students and guided multiple postgraduate research projects. She has successfully supervised 24 M.Tech theses and is currently guiding three ongoing projects. Apart from her teaching responsibilities, she has held key administrative positions such as Deputy Warden for the Girls Hostel, Officer In-Charge of Examinations, and Coordinator for various institutional initiatives, including the Startup Cell and IQAC. These responsibilities have helped her develop a well-rounded professional profile, balancing academic rigor with institutional development. Her involvement in student mentorship and academic leadership showcases her dedication to education and research.

Research Interest

Her research interests lie in the areas of signal processing and communication, focusing on developing innovative solutions for communication technologies. She has authored 26 international journal articles and presented her research in 24 international conferences, showcasing her active engagement in the research community. Her work aims to advance knowledge in digital signal processing, wireless communication, and emerging communication technologies. By continuously updating her research methodologies and exploring new frontiers, she contributes to the evolution of the field. She actively participates in faculty development programs, research collaborations, and industry interactions to stay updated with the latest advancements.

Awards and Honors

Throughout her career, Smt. Rajani Alugonda has demonstrated academic excellence and leadership, earning recognition in various capacities. She is a member of prestigious professional bodies such as MIETE and LISTE, which acknowledge her contributions to the field. Her active participation in academic conferences, workshops, and training programs has strengthened her research credibility. While specific awards and honors have not been explicitly mentioned, her extensive research output and institutional contributions highlight her academic standing. Her leadership roles in academia, including her involvement in examination management, extracurricular coordination, and research mentorship, reinforce her eligibility for academic accolades and future awards.

Conclusion

Smt. Rajani Alugonda exhibits notable strengths in teaching, research, and academic leadership. Finalizing her Ph.D. and enhancing the impact of her research publications would further solidify her candidacy for the Best Researcher Award.

Publications Top Noted

  • Modeling and simulation of lithium-ion battery with hysteresis for industrial applications

    • Author: S Bangaru, R Alugonda, P Palacharla
    • Year: 2013
    • Citations: 14
  • A Review on Various Speech Enhancement Techniques

    • Author: SSVS A. Rajani
    • Year: 2016
    • Citations: 4
  • Speed Control of Induction Motor Using Fuzzy Logic Approach

    • Author: AR M. Nageswara Rao
    • Year: 2013
    • Citations: 4*
  • Denoising of ECG Signal Using UFIR Smoothing With Notch Filter

    • Author: NP A. Rajani
    • Year: 2021
    • Citations: 1
  • ECG Signal Denoising Using EMD with Notch Filter and Morphology Filter

    • Author: MSAIV A. Rajani
    • Year: 2021
    • Citations: 1
  • Hysteresis Characterization Check of Lithium-Ion Battery Model under Dynamic Simulation Runs

    • Author: S Bangaru, R Alugonda
    • Year: 2013
    • Citations: 1
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • Diagnosis of Bradycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Diagnosis of Tachycardia Arrhythmia Using MEMD And Convolutional Neural Networks

    • Author: AR Charugalla Pavan Kumar
    • Year: 2022
    • Citations:
  • Denoising of ECG Signal Using Empirical Mode Decomposition With Dual Tree Complex Wavelet Transform

    • Author: PM A. Rajani
    • Year: 2022
    • Citations:
  • A Novel Method of QRS Detection Using Adaptive Multilevel Thresholding With Statistical False Peak Elimination

    • Author: VS A. Rajani
    • Year: 2022
    • Citations: