Nurul Musfirah Mazlan | Engineering | Best Researcher Award

Dr. Nurul Musfirah Mazlan | Engineering | Best Researcher Award

Lecturer At School Of Aerospace Engineering, Universiti Sains Malaysia, Malaysia

Dr. Nurul Musfirah Mazlan is a dedicated lecturer and researcher specializing in Aerospace Propulsion and Biofuels. She is currently a DS51 Lecturer at Universiti Sains Malaysia (USM), where she contributes to both teaching and research in the field of aerospace engineering. With a strong academic background and an extensive supervision portfolio of postgraduate and undergraduate students, she has played a vital role in advancing research related to sustainable aviation fuels and propulsion systems. Dr. Nurul Musfirah is also an active member of The American Society of Mechanical Engineers (ASME) and the Board of Engineers Malaysia (BEM), demonstrating her commitment to professional excellence. Her research focuses on alternative fuel technologies, nanoparticles as fuel additives, and propulsion system optimization, contributing significantly to green aviation efforts. Through her dedication to academia and innovation, she continues to make an impact in the aerospace engineering field.

Professional Profile

Education

Dr. Nurul Musfirah Mazlan obtained her Doctor of Philosophy (PhD) from Cranfield University, UK, specializing in Aerospace Propulsion and Biofuels. Her doctoral research focused on sustainable aviation fuels, particularly investigating the combustion performance of biofuels and alternative energy sources in aerospace applications. Prior to her PhD, she completed her undergraduate and master’s degrees in engineering, equipping her with a strong foundation in thermodynamics, propulsion systems, and fuel technologies. Her academic journey has been driven by a passion for developing environmentally friendly solutions for the aerospace industry, with a focus on reducing carbon emissions and improving fuel efficiency. Throughout her education, she has worked on multiple experimental and computational research projects, collaborating with international researchers to advance knowledge in alternative propulsion technologies. Her educational background has provided her with a solid expertise in combustion analysis, computational fluid dynamics (CFD), and aerospace fuel innovations.

Professional Experience

Dr. Nurul Musfirah Mazlan is currently serving as a Lecturer (DS51) at Universiti Sains Malaysia (USM), where she teaches undergraduate and postgraduate courses related to aerospace propulsion, thermodynamics, and fuel technologies. Over the years, she has actively supervised numerous PhD, MSc, and undergraduate students, guiding research in biofuels, propulsion systems, and nanotechnology applications in aerospace. While she does not have direct industry experience before joining USM, her work significantly contributes to practical aerospace applications through collaborations with academic and research institutions. In addition to teaching, she is involved in curriculum development, laboratory research, and mentoring students in experimental and computational studies. Her multidisciplinary approach allows her to bridge the gap between theory and real-world aerospace engineering challenges, making her a valuable academician and researcher in the field of sustainable aviation technology.

Research Interest

Dr. Nurul Musfirah Mazlan’s research focuses on Aerospace Propulsion, Biofuels, and Sustainable Energy Technologies. Her primary areas of interest include the development and performance analysis of biojet fuels, nano-additives for combustion efficiency, and solid rocket propulsion systems. She has conducted extensive research on Hydrotreated Vegetable Oil (HVO) blended with Jet-A fuel, evaluating its engine performance, emission characteristics, and sustainability. Additionally, her work explores computational fluid dynamics (CFD) simulations to study the interaction of alternative fuels with turbine blades and combustion systems. She is also interested in experimental and modeling approaches for improving rocket propulsion efficiency and reducing emissions in aircraft engines. By integrating nanotechnology with fuel research, Dr. Nurul Musfirah aims to develop greener and more efficient propulsion solutions for the aviation and aerospace industry, contributing to global efforts toward sustainable aviation fuel development.

Awards and Honors

Dr. Nurul Musfirah Mazlan has received several recognitions and honors for her contributions to aerospace propulsion and alternative fuel research. While specific awards are not listed in the provided details, her academic and research achievements are evident through her supervision of high-impact projects, international collaborations, and contributions to sustainable aviation research. Her role as a supervisor for multiple PhD and MSc students working on innovative propulsion technologies is a testament to her expertise and dedication to academia. Additionally, her involvement with The American Society of Mechanical Engineers (ASME) and the Board of Engineers Malaysia (BEM) highlights her professional standing and recognition in the engineering community. As she continues to push the boundaries of biofuel and propulsion research, she is well-positioned to receive further recognition for her groundbreaking contributions to the aerospace industry.

Conclusion

Dr. Nurul Musfirah Mazlan is a strong candidate for the Best Researcher Award, given her extensive research contributions in aerospace propulsion and biofuels, graduate supervision, and technical expertise. Her work aligns with sustainable aviation efforts, making her research highly relevant. To further strengthen her case, industry collaborations, securing more grants, and taking leadership roles in global research organizations would enhance her profile.

Publications Top Noted

1. Spray Behaviour of Hydro-Treated Ester Fatty Acids Fuel Made from Used Cooking Oil at Low Injection Pressures

  • Authors: Azam, Q., Sulaiman, S.Z., Abdul Razak, N.A., & Mazlan, N.M.
  • Year: 2024
  • Journal: Aeronautical Journal
  • Citations: 1

2. Influence of Oxyhydrogen Gas Retrofit into Two-Stroke Engine on Emissions and Exhaust Gas Temperature Variations

  • Authors: Kamarudin, R., Ang, Y.Z., Topare, N.S., Baig, R.U., Sultan, S.M., & Mazlan, N.M.
  • Year: 2024
  • Journal: Heliyon
  • Citations: 2

3. Analysis Study of Thermal and Exergy Efficiency in Double-Layers Porous Media Combustion Using Different Sizes of Burner: A Comparison

  • Authors: Ismail, N.C., Abdullah, M.Z., Mazlan, N.M., Rusdi, M.S.B., & Kamarudin, R.
  • Year: 2024
  • Journal: Pertanika Journal of Science and Technology
  • Citations: 0

4. Effect of NCO/OH Ratio and Binder Content with Micro-AP on HTPB/AP/Al-Based Propellants Mechanical Properties

  • Authors: Adnana, Z., & Mazlan, N.M.
  • Year: 2024
  • Journal: Advances in Materials Research (South Korea)
  • Citations: 0

 

Ananya Kuri | Engineering | Best Researcher Award

Ms. Ananya Kuri | Engineering | Best Researcher Award

Scientist | R&D Project Manager at Siemens AG, Germany

Ananya Kuri is an accomplished R&D Project Manager at Siemens AG, specializing in electrical power engineering and grid stability. With over 10 years of experience in the power systems sector, she has played a pivotal role in dynamic performance analysis, inverter-based resource modeling, and power grid optimization. Ananya holds a Ph.D. from FAU Erlangen (dissertation under review) and an M.Sc. in Electrical Power Engineering from RWTH Aachen University. She is known for her leadership in managing complex projects, mentoring teams, and collaborating with global customers. Her expertise lies in enhancing power system stability, modeling and analyzing power plants, and supporting grid compliance efforts. Ananya’s work spans across consulting, R&D, and training, with significant contributions to Siemens’ technology in power systems and microgrids. Her professional journey reflects a blend of innovation, technical excellence, and strong industry engagement, making her a respected figure in the energy sector.

Professional Profile

Education

Ananya Kuri’s academic credentials lay a solid foundation for her extensive career in power systems engineering. She holds a Ph.D. in Electrical Engineering from FAU Erlangen, where her dissertation is currently under review. Prior to this, she completed her M.Sc. in Electrical Power Engineering from RWTH Aachen University, one of Germany’s premier technical institutions. During her time at RWTH Aachen, Ananya developed a deep understanding of electrical power technologies and systems, which has been pivotal in her professional journey. Her B.Eng. in Electrical and Electronics Engineering from M.S. Ramaiah Institute of Technology in Bangalore, India, provided her with early insights into power systems, further shaping her technical expertise. Throughout her academic tenure, Ananya demonstrated a strong commitment to research, resulting in multiple published works and contributions to cutting-edge developments in the power systems domain, paving the way for her successful professional career.

Professional Experience

Ananya Kuri’s professional experience spans a decade of working with Siemens AG, where she has made significant contributions in both consulting and research roles. She began her career as a Senior Power Systems Consultant and Portfolio Element Owner in Siemens’ Digital Grid, focusing on transmission systems, inverter-based resources, and power grid stability. Her technical expertise was key in the modeling and analysis of various Siemens power systems products, including the Power Plant Controller and Microgrid Controller. Ananya has also held leadership roles as an R&D Project Manager, where she led projects like ENSURE Phase 3 for inverter-based resources and kurSyv for corrective system management in distribution networks. She has mentored teams, managed global consulting projects, and played an integral role in Siemens’ advancements in grid compliance, ensuring Siemens’ power systems meet the evolving needs of modern electrical grids. Her extensive work with international clients and R&D initiatives highlights her strong professional impact.

Research Interests

Ananya Kuri’s research interests lie primarily in the areas of power system stability, grid integration, and inverter-based technologies. Her work revolves around enhancing the dynamic performance of power grids, with a focus on transient stability, small-signal analysis, and frequency regulation. Ananya is particularly interested in the modeling and control of inverter-based resources, as these technologies are crucial in supporting the transition to renewable energy sources and the modernization of grid infrastructures. Her research also extends to the development of advanced control strategies for microgrids and power plants, aiming to improve grid stability and resilience. She is actively involved in R&D projects that address the operational challenges of integrating renewable energy into power systems, such as enhanced inverter control techniques. Ananya’s contributions to power system modeling, grid compliance studies, and dynamic simulations aim to drive innovations in power system operations and support the reliable and efficient operation of future grids.

Awards and Honors

Ananya Kuri’s outstanding contributions to the field of power systems engineering have earned her recognition within both the academic and professional communities. She has been actively involved in global research and development initiatives and has contributed to numerous successful consulting projects. Although specific awards are not mentioned, her leadership roles in industry-standard working groups like CIGRE and IEC, along with her involvement in over 35 working groups and 17+ published works, underscore her high standing in the industry. Ananya’s influence extends beyond her immediate work at Siemens, as she is recognized as a key member of international committees shaping the future of power system operations and standards. Her expertise in developing Siemens’ key products, such as the SICAM Power Plant Controller and Microgrid Controller, also highlights her significant contributions to the global energy sector. These honors and recognitions reflect her impact as a thought leader in electrical power engineering.

Conclusion

Ananya Kuri is highly suitable for the Best Researcher Award based on her extensive experience, leadership in R&D, technical expertise, and contributions to global research projects. Her work in inverter control strategies, grid stability, and model development for Siemens’ products directly addresses the challenges facing modern power systems. The only area for improvement would be completing her Ph.D. and further enhancing her public engagement. Overall, she represents the qualities of a forward-thinking researcher with significant industry impact.

Publications Top Noted

Title: Power Dispatch Capacity of a Grid-Forming Control Based on Phase Restoring Principle
Authors: A. Kuri, Ananya; R. Zurowski, Rainer; G. Mehlmann, Gert; M. Luther, Matthias
Journal: IEEE Systems Journal
Year: 2023
Citations: 3

 

Arvind Chaurasiya | Engineering | Best Researcher Award

Mr. Arvind Chaurasiya | Engineering | Best Researcher Award

Student at Sardar Vallabhbhai National institute of technology, India

Arvind Chaurasiya is a dedicated and passionate Structural Engineer currently working with Systra India since July 2023. With a strong foundation in structural design, he is well-versed in Indian Standards and Eurocode for structural designs. Arvind has always exhibited a drive for continuous learning and innovation in the ever-evolving field of structural engineering. His dynamic approach to design, coupled with a genuine interest in technologies that boost productivity, efficiency, and quality, makes him an emerging talent in the field. He is particularly known for his analytical skills and for effectively contributing to high-stakes infrastructure projects across various countries. Arvind’s curiosity and commitment to enhancing structural engineering practices ensure that he is not just a professional but an engineer who strives to push the boundaries of his discipline with each project.

Professional Profile

Education

Arvind Chaurasiya completed his education with a Bachelor’s degree in Civil Engineering, which laid the foundation for his career in structural engineering. Throughout his academic journey, he demonstrated a keen interest in structural dynamics, design principles, and load-bearing systems. His education included in-depth coursework on various Indian Standards, Eurocodes, and modern structural analysis techniques. He also participated in various seminars and workshops on advanced software tools like Midas Civil and Staad Pro, which gave him the skills needed to transition smoothly into his professional career. Arvind’s educational background not only provided him with a solid technical base but also instilled in him a passion for lifelong learning, driving him to continuously explore new technologies and approaches in structural design.

Professional Experience

Arvind’s professional experience includes working on several high-profile international projects that have honed his skills in structural design and analysis. Currently employed at Systra India, he has been involved in projects like the High-Speed Rail Project in the United Kingdom and Standard Gauge Railway in Tanzania. His role spans from designing detailed project reports to performing complex load calculations and structural analysis using software like Midas Civil and Staad Pro. Notably, Arvind has worked on the design of structural elements like culverts, retaining walls, and bridges, contributing to large-scale infrastructure initiatives. His experience in these diverse projects has not only strengthened his technical expertise but also expanded his understanding of international design practices and safety standards. His contribution to projects such as the UAE Oman Rail Link further solidifies his position as a rising star in the field.

Research Interests

Arvind’s primary research interest lies in improving the efficiency and sustainability of structural designs. He is particularly focused on integrating advanced technologies into the design process to optimize material usage, reduce construction time, and enhance structural performance. Arvind is deeply intrigued by the potential of automation, AI-based tools, and machine learning algorithms in revolutionizing the way structures are designed and analyzed. His goal is to explore innovative ways of designing energy-efficient, eco-friendly, and cost-effective infrastructure systems that align with the growing emphasis on sustainable development. Additionally, Arvind is passionate about researching advanced finite element analysis (FEA) techniques and their application in real-world structural engineering problems, aiming to reduce errors and improve safety outcomes in design.

Awards and Honors

Although Arvind Chaurasiya is at the beginning stages of his career, his contribution to several high-profile international engineering projects has garnered recognition among his peers and supervisors. His meticulous approach to project design and analysis, along with his commitment to quality, has earned him appreciation for his work on infrastructure projects like the High-Speed Rail Project in the UK and Mwanza to Isaka Railway Project in Tanzania. Though still early in his career, Arvind’s ongoing focus on developing innovative structural designs and utilizing cutting-edge technologies has positioned him as a promising candidate for future awards and honors. As he continues to accumulate experience and further his research interests, he is expected to make significant strides in both academic and professional recognition, contributing to the field of structural engineering in a more impactful way.

Conclusion

Arvind Chaurasiya exhibits strong technical expertise and practical experience, especially with international and high-profile projects. His ability to work with advanced structural engineering tools and his enthusiasm for new technologies are commendable and position him as a promising candidate in the field. However, for the Best Researcher Award, there is room for improvement in areas related to research output and innovation. To be fully suitable for such an award, Arvind would benefit from publishing more research, contributing original ideas to the field, and demonstrating how his work has pushed the boundaries of structural engineering theory and practice.

Publications Top Noted

1. Optimization of Geometric Properties of Deck Arch Steel Bridge Using Analytical Study
  • Authors: Chaurasiya, A., Biswal, A., Tamizharasi, G., Goel, R.
  • Year: 2025
  • Publication: Lecture Notes in Civil Engineering, Volume 550, pp. 173–180.
  • Citations: 0
2. Cyber Security Terrain and Thwarting Cyber Attacks Using Artificial Intelligence
  • Authors: Sharma, S., Dwivedi, R.K., Upadhyay, N., Kashyap, P., Chaurasiya, A.K.
  • Year: 2024
  • Publication: Lecture Notes in Electrical Engineering, Volume 1191, pp. 679–685.
  • Citations: 0