Mengyao Li | Engineering | Best Researcher Award

Dr. Mengyao Li | Engineering | Best Researcher Award

Student at Nanyang Technological University Singapore

Mengyao Li is a dedicated researcher specializing in electromagnetic fields, metasurfaces, and frequency-selective structures. With a strong academic foundation and a passion for advancing next-generation communication and radar technologies, Li has made significant contributions to the field of low-RCS antenna-radome systems, lens antennas, and THz reconfigurable intelligent surfaces. His research focuses on innovative solutions that enhance wave manipulation, beamforming, and scattering control, making a direct impact on applications in wireless communication and stealth technology. As a Ph.D. candidate at Nanyang Technological University (NTU), Singapore, under the guidance of Prof. Shen Zhongxiang (IEEE Fellow), Li has published extensively in top-tier journals and continues to explore novel electromagnetic solutions. His work not only bridges theoretical advancements with practical applications but also aligns with the future demands of 6G wireless networks and advanced sensing technologies, solidifying his position as an emerging expert in the field.

Professional Profile

Education

Mengyao Li began his academic journey with a B.S. in Electrical Engineering from the Communication University of China, Beijing, specializing in Telecommunication Engineering. Graduating in 2020 with a GPA of 3.59/4.0, he ranked among the top 8% of students and was recognized as an Outstanding Graduate of Beijing. His undergraduate research focused on reconfigurable frequency-selective absorbers, laying a strong foundation for his future work. In January 2021, he pursued a Ph.D. in Electrical and Electronic Engineering at Nanyang Technological University, Singapore, specializing in Electromagnetic Fields and Microwave Technology. Under the supervision of Prof. Shen Zhongxiang, his doctoral research centers on low-RCS integrated radome and antenna systems, aiming to develop advanced solutions for stealth technology and wireless communication. Throughout his academic career, Li has demonstrated strong analytical skills and research capabilities, contributing to the advancement of electromagnetic and antenna engineering.

Professional Experience

As a Ph.D. researcher at Nanyang Technological University, Mengyao Li has been actively engaged in cutting-edge research in the field of electromagnetic wave manipulation, metasurfaces, and antenna systems. His professional work focuses on designing low-RCS antennas, frequency-selective structures, and THz reconfigurable intelligent surfaces, contributing to innovations in stealth technology and high-frequency communication. Collaborating with leading academics and industry experts, he has developed practical solutions for beam manipulation, conformal lens antennas, and ultra-wideband absorptive structures. His research has been published in top IEEE journals, showcasing his ability to bridge theoretical concepts with practical engineering applications. In addition to research, he actively mentors junior researchers, contributes to technical discussions, and engages in academic collaborations to advance antenna and metamaterial technologies. His expertise and technical acumen make him a promising figure in the field of advanced electromagnetic applications.

Research Interests

Mengyao Li’s research interests lie at the intersection of electromagnetic wave engineering, metasurfaces, and reconfigurable intelligent surfaces (RIS), with a strong emphasis on low-RCS antenna-radome systems, lens antennas, and THz wireless communication. His work on low-scattering antenna structures contributes to stealth and radar applications, while his innovative metasurface designs enable advanced beam steering and polarization control. Additionally, he explores MEMS-based THz metasurfaces, which hold promise for 6G wireless networks and high-frequency communication systems. His research on frequency-selective structures and transmissive antennas bridges the gap between traditional electromagnetic theory and modern reconfigurable technologies. By integrating material science, physics, and advanced fabrication techniques, Li’s research aims to create high-performance, miniaturized, and dynamically tunable electromagnetic structures, making a significant impact on next-generation wireless technologies and radar systems.

Awards and Honors

Throughout his academic journey, Mengyao Li has received multiple recognitions for his research excellence. As an Outstanding Graduate of Beijing, he was acknowledged for his academic performance and early contributions to telecommunication engineering. His Ph.D. research at NTU has been supported by prestigious funding, reflecting the significance of his work in low-RCS antenna systems and metasurface engineering. His journal publications in IEEE Transactions on Antennas and Propagation and IEEE Antennas Wireless Propagation Letters further highlight his research impact in the field. Li’s innovative contributions to reconfigurable intelligent surfaces and frequency-selective radomes have been well-received in the academic community, earning him invitations to collaborate with leading researchers. With his strong research background and growing influence in electromagnetic wave control and antenna design, he continues to make valuable contributions to the field, positioning himself as a rising expert in advanced electromagnetics and wireless technology.

Conclusion

Mengyao Li is a strong candidate for the Best Researcher Award, with a solid publication record, cutting-edge research contributions, and expertise in emerging electromagnetic technologies. However, improving the real-world impact, conference visibility, and interdisciplinary collaboration could further solidify the case for this award. If these areas are strengthened, Mengyao Li could become a leading figure in electromagnetic and metasurface research.

Publications Top Noted

  • Y. Ding, M. Li, J. Su, Q. Guo, H. Yin, Z. Li, J. Song – 2020 – 70 citations
    “Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch.”
    IEEE Transactions on Antennas and Propagation 69 (3), 1493-1504

  • M. Li, L. Zhou, Z. Shen – 2021 – 30 citations
    “Frequency selective radome with wide diffusive bands.”
    IEEE Antennas and Wireless Propagation Letters 21 (2), 327-331

  • M. Li, Z. Shen – 2023 – 13 citations
    “Low-RCS transmitarray based on 2.5-D cross-polarization converter.”
    IEEE Transactions on Antennas and Propagation 71 (7), 5828-5837

  • M. Li, Z. Shen – 2023 – 5 citations
    “Integrated diffusive antenna array of low backscattering.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li, Z. Shen – 2022 – 3 citations
    “Hybrid Frequency Selective Rasorber Combining 2-D and 3-D Resonators.”
    2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, J. Su – 2020 – 1 citation
    “Wideband frequency-selective absorber based on metal cross ring.”
    2020 IEEE MTT-S International Microwave Workshop Series on Advanced

  • M. Li, Z. Shen – 2024 – Not yet cited
    “Hybrid Rasorber Based on 3-D Bandpass Frequency-Selective Structures.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li – 2024 – Not yet cited
    “Integrated radome and antenna systems of low radar cross section.”
    Nanyang Technological University (Ph.D. Dissertation)

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Highly Selective Third-Order Bandpass Frequency Selective Surface.”
    2023 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Transmission Phase Controllable Rasorber Using All-Metal Cross-Polarization Converter.”
    2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, Z. Shen – 2022 – Not yet cited
    “Low-RCS Transmitarray Using Phase Controllable Absorptive Frequency-Selective Structure.”
    2022 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2021 – Not yet cited
    “RCS Reduction of Slot Antenna Array Using Coding Metasurfaces.”
    2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI

Masoud Deyranlou | Engineering | Best Researcher Award

Mr. Masoud Deyranlou | Engineering | Best Researcher Award

Optical Network Engineer at Islamic Azad University, Iran

Masoud Deyranlou is an experienced Optical Network Engineer and researcher with over a decade of expertise in optical transmission systems and telecommunications infrastructure. His work spans high-level and low-level design of large-scale networks, specializing in advanced optical technologies like DWDM, ROADM, ASON, and SDN. Throughout his career, he has played a pivotal role in major telecommunication projects, contributing to the innovation and optimization of optical networking solutions. His research primarily focuses on the integration of optical transmission with emerging technologies, bridging the gap between theoretical advancements and practical implementations. With a strong background in both industry and academia, he has contributed to scientific literature and technological advancements in optical communications. His dedication to the field is evident through his numerous publications and technical contributions, making him a key figure in the development of modern optical networking solutions.

Professional Profile

ORCID Profile

Education

Masoud Deyranlou holds a Master of Science in Electrical Engineering – Telecommunications from Islamic Azad University (2007-2010), where he gained expertise in satellite communications, fiber optics, and coding theory. Prior to that, he earned his Bachelor of Science in Electrical Engineering from the same institution, developing a strong foundation in electromagnetics and optical transmission networks. His academic journey began with an Associate Degree in Industrial Electricity from Technical and Vocational University, where he built fundamental technical skills in electrical systems and automation. Throughout his education, he demonstrated exceptional academic performance, excelling in key subjects such as Satellite Communication (19.5/20), Coding Theory (18.5/20), and Electromagnetics (18/20). His education provided him with the theoretical knowledge and practical expertise necessary for his career in telecommunications, allowing him to integrate cutting-edge research with real-world optical network applications.

Professional Experience

Masoud Deyranlou has accumulated over 10 years of professional experience in the field of optical network engineering, working on large-scale telecommunication infrastructure projects. He currently serves as an Optical Network Design Engineer, where he is responsible for High-Level Design (HLD) and Low-Level Design (LLD) of complex optical transmission networks. His expertise spans across various cutting-edge technologies, including T-SDN, DWDM, ROADM, ASON, and WSON, enabling efficient and high-capacity data transmission. Throughout his career, he has actively contributed to the deployment of metro and long-haul optical networks, ensuring optimized performance and reliability. His ability to integrate research-driven solutions with practical applications has made him a valuable asset in the industry. His deep understanding of software-defined networking (SDN) and embedded systems further enhances his ability to develop next-generation optical communication networks, positioning him as a key expert in the field.

Research Interest

Masoud Deyranlou’s research focuses on advanced optical transmission networks, with a particular interest in Radio over Fiber (RoF), Free Space Optics (FSO), and Software-Defined Networks (SDN). His work explores the development of high-speed, low-latency optical communication systems, including novel approaches for adaptive coherent free-space optical communication in urban environments. He is also deeply involved in researching submarine fiber networks, aiming to enhance global telecommunication infrastructure through innovative optical networking solutions. His publications in renowned journals reflect his expertise in dual-polarization 10Gbps RoF systems, wavelength reuse technologies, and next-generation optical transmission mechanisms. By integrating theoretical advancements with practical implementations, he contributes to the continuous evolution of telecommunications technology. His research aligns with the growing need for more efficient, scalable, and resilient optical network architectures, driving innovation in global communications.

Awards and Honors

Masoud Deyranlou has been recognized for his outstanding contributions to the field of optical communications, earning accolades for his research and professional achievements. His work has been published in esteemed journals such as the Journal of Modern Optics and the AUT Journal of Electrical Engineering, showcasing his innovative research in optical transmission systems. Additionally, his high academic performance, particularly his perfect GRE Quantitative Score (170/170), highlights his strong analytical and problem-solving skills. His participation in major telecommunication infrastructure projects has also been acknowledged within the industry, cementing his reputation as a leading expert in optical networking. While he continues to build on his research portfolio, his contributions to advancing adaptive optical communication technologies and high-speed data transmission networks have earned him recognition as a top researcher in his field.

Conclusion

Masoud Deyranlou is a highly qualified candidate for the Best Researcher Award based on his strong technical expertise, research output, and industry experience. However, to further enhance his eligibility, he should focus on publishing in high-impact journals, engaging in international collaborations, securing research grants, and pursuing patents or innovations. If the award criteria emphasize a balance between academic excellence and industry impact, he is a strong contender.

Publications Top Noted

  • Adaptive coherent free space optics system for urban deployment: a case study in Tehran

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2025
    • Journal: Journal of Modern Optics
    • DOI: 10.1080/09500340.2025.2459887
    • Citation: Deyranlou, M., & Maleki Javan, A. (2025). Adaptive coherent free space optics system for urban deployment: a case study in Tehran. Journal of Modern Optics, 1–12.
    • ISSN: 0950-0340, 1362-3044
  • A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2020
    • Journal: AUT Journal of Electrical Engineering
    • DOI: 10.22060/eej.2020.16603.5292
    • Citation: Deyranlou, M., & Maleki Javan, A. (2020). A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal. AUT Journal of Electrical Engineering, 52(1), 9–18.

 

Fred Lang | Engineering | Best Researcher Award

Mr. Fred Lang | Engineering | Best Researcher Award

President at Exergetic Systems Limited, United States

Fred D. Lang, P.E., P.Eng., is a distinguished power plant engineer with over 50 years of experience in energy systems, nuclear safety, and thermal performance monitoring. Renowned across North America and Europe, he has significantly contributed to power plant engineering through software innovation, advanced testing methodologies, and novel monitoring techniques. As the President of Exergetic Systems Limited, he has developed industry-transforming tools for power plant efficiency and safety. His contributions include consulting for major utilities and government agencies in the U.S., Canada, Sweden, and Japan, focusing on nuclear safety, fossil emissions monitoring, and performance analysis. Lang’s expertise spans simulation, plant design, exergy analysis, and fuel efficiency optimization, making him a leader in the energy sector. His commitment to research and technological advancements has led to groundbreaking methodologies that enhance power plant performance and operational safety, earning him a reputation as an innovator in the field.

Professional Profile

Education

Fred D. Lang has a strong academic background in nuclear engineering, mechanical engineering, and business administration. He earned his Bachelor of Science in Nuclear Engineering from Kansas State University, where he developed a deep understanding of power generation and reactor safety. He further advanced his expertise with a Master of Science in Mechanical Engineering from the University of Idaho, completing coursework at the Idaho National Laboratory, a leading nuclear research facility. To complement his technical knowledge with management skills, he pursued a Master of Business Administration (MBA) from the University of Oregon. In addition to his formal degrees, Lang holds several professional certifications, including a California Energy Auditor Certificate (#5872). He is a licensed Professional Engineer (P.E.) in California for mechanical and nuclear engineering and an active P.Eng. in British Columbia (#54236). His diverse educational background has provided him with the expertise to drive innovation in power plant engineering.

Professional Experience

Fred D. Lang has had an illustrious career spanning over five decades in power plant engineering. He is the President of Exergetic Systems Limited, a company specializing in power plant performance monitoring and efficiency solutions. Previously, he founded and led Exergetic Systems, Inc., which for nearly 40 years served major utilities across North America with software and engineering services. Lang is known as the “Father of PEPSE,” a widely used power plant simulation software. His expertise includes thermodynamic analysis, emissions monitoring, and nuclear safety systems. He has conducted hundreds of power plant studies and has been involved in 33 thermal performance evaluation projects, each lasting several months. His professional experience also includes consulting for Babcock & Wilcox, Exxon Nuclear (now Framatome), and government agencies in Sweden and Japan on critical nuclear safety issues. His work has shaped modern approaches to fuel monitoring, efficiency testing, and safety in power generation.

Research Interests

Fred D. Lang’s research focuses on power plant thermodynamics, nuclear safety, emissions monitoring, and exergy analysis. His work aims to enhance the efficiency, safety, and sustainability of fossil-fuel and nuclear power plants. A major area of his research is the development of advanced monitoring techniques, such as the Input/Loss Method, which allows real-time determination of fuel chemistry, calorific value, and heat rate in coal-fired power plants. Another significant contribution is the NCV Method, a groundbreaking approach to nuclear reactor monitoring, neutron flux measurement, and coolant flow analysis, which improves nuclear safety. Lang has also developed innovative instrumentation for emissions testing, heat balance analysis, and fuel efficiency optimization. His research integrates software development, thermodynamic modeling, and real-world application, ensuring that power plants operate more efficiently while reducing environmental impact. His findings have led to significant improvements in plant performance and fuel economy worldwide.

Awards and Honors

Fred D. Lang has received numerous accolades for his contributions to power plant engineering and nuclear safety. He holds 38 patents, including 22 in the U.S. and 16 in Canada, Australia, and Europe, covering innovations in power plant instrumentation, Rankine cycle modifications, and emissions monitoring technologies. His pioneering Input/Loss Method and NCV Method have been recognized as transformative advancements in the energy sector. Lang has been invited by major utilities and government agencies to develop new technologies, including a 2021 invitation to design a novel nuclear plant monitoring system. His software tools, such as PEPSE, EX-FOSS, and THERM, are used by leading power utilities worldwide. In addition to his technical achievements, he has been honored for his mentorship and leadership in the engineering field. His work has redefined power plant efficiency, fuel monitoring, and nuclear safety standards, earning him a reputation as a pioneer in the industry.

Conclusion

Fred D. Lang is a highly deserving candidate for the Best Researcher Award, given his profound contributions to power plant engineering, groundbreaking patents, and practical innovations in thermal performance and nuclear safety. While strengthening academic publications and mentorship efforts could further solidify his influence, his technical advancements have already had a significant impact on the industry. His work represents a paradigm shift in power plant monitoring and nuclear reactor safety, making him a strong contender for this recognition.

Publications Top Noted

  • Lang, F. D. (Year Unknown). “Verified Knowledge of Nuclear Power Plants Using the NCV Method.” Conference Paper. Citations: 0

  • Lang, F. D., Mason, D., & Rodgers, D. A. T. (Year Unknown). “Effects on Boiler Efficiency Standards and Computed Coal Flow Given Variable Ambient Oxygen and Humidity.” Conference Paper. Citations: 0

 

Nasimuddin | Engineering | Best Researcher Award

Dr. Nasimuddin | Engineering | Best Researcher Award

Principal Scientist I2R ASTAR  Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I²R), part of A*STAR in Singapore. With a distinguished career in RF and antenna engineering, he has contributed extensively to the fields of wireless power transmission, sensor design, and advanced antenna systems for a variety of applications including satellite communications and energy harvesting. Nasimuddin’s work bridges industry and academia, evidenced by his collaborations, industry technology transfers, and numerous patents.

profile

Google scholar.com

Education 🎓

  • Ph.D. in Electronic Science (2004): University of Delhi, India
    Thesis: Analysis and design of multilayer slow-wave microstrip structures and multilayered microstrip antennas.
  • M.Tech. in Microwave Electronics (1998): University of Delhi, India
  • M.Sc. in Electronics (1996): Jamia Millia Islamia, India
  • B.Sc. in Physics, Mathematics, Chemistry (1994): Jamia Millia Islamia, India

Experience 🏢

Nasimuddin has held various research and teaching roles. Since 2006, he has been part of I²R, A*STAR Singapore, where he currently serves as a Principal Scientist. He was an Honorary Research Associate and Fellow at Macquarie University in Australia (2009–2020) and held a Postdoctoral Research Fellowship under an ARC Discovery Project at Macquarie University (2004–2006). He has also conducted specialized courses in RF energy harvesting applications at NIT Silchar, India.

Research Interests 🔬

Nasimuddin’s research interests include:

  • Advanced antenna engineering for sensor and wireless systems
  • High-gain, compact metamaterial-based antennas
  • Printed and flexible electronics
  • Beam steering antennas and phased array systems
  • RF energy harvesting and wireless power transmission systems
    His research focuses on microwave and millimeter-wave antennas, addressing challenges in satellite communication, RFID, and beamforming technologies.

Awards 🏆

  • Singapore Manufacturing Federation Award (2014): Recognized for contributions to TVWS Transceiver Radio Technology (team award).
  • Dedicated Service Award (2022): Honored for 15 years at I²R, Singapore.
  • Long Service Awards (2012, 2017): For 5 and 10 years at I²R, Singapore.
  • Young Scientist Award (2005): Awarded by the International Union of Radio Science (URSI).
  • M.Tech. Merit Scholarship (1996): University of Delhi, for outstanding academic performance.

Publications Top Notes📚:

Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A State-of-the-Art Review – IEEE Antennas and Propagation Magazine, 2024. Cited by 12 articles.

Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions – IEEE Microwave Magazine, 2023. Cited by 18 articles.

5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting/Wireless Power Transmission Applications: An Overview – IEEE Antennas and Propagation Magazine, 2023. Cited by 25 articles.

A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique with a Thin Metasurface – IEEE Access, 2022. Cited by 10 articles.

Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems – IEEE Transactions on Instrumentation and Measurement, 2022. Cited by 8 articles.

Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian, Yangzhou University, China

Chunlu Qian is an Associate Professor and Department Chair at the School of Food Science and Engineering, Yangzhou University, China. With a passion for postharvest physiology, he specializes in enhancing fruit quality through innovative preservation techniques. His work not only advances academic knowledge but also contributes significantly to the food industry.

Profile

Scopus

Orcid

Education 🎓

Dr. Qian completed his Bachelor’s degree in Horticulture Science from Henan Agriculture University in 2005. He then earned his Master’s in Vegetable Science from Zhejiang University in 2007, followed by a Ph.D. in Food Science, focusing on postharvest cucumber physiology, in 2013.

Experience 💼

Since April 2013, Dr. Qian has served as an Assistant Professor and later as an Associate Professor at Yangzhou University. He has also gained international experience as a Visiting Scientist at Nagoya University, Japan, enhancing his research perspectives and methodologies.

Research Interest 🔍

Dr. Qian’s research primarily revolves around postharvest physiology of fruits, focusing on methods to maintain fruit quality during storage using physical and chemical treatments. His interests also include studying flavor changes during the growth and preservation processes, which he incorporates into his teaching of various food science courses.

Awards 🏆

Dr. Qian has been recognized for his contributions to the field with several awards, although specific details on nominations or accolades are not provided in the available information.

Publication Top Notes 📚

Cai et al. (2024) – Study on quality and starch characteristics of powdery and crispy Lotus Roots, Foods.

Qian et al. (2024) – Effects of melatonin on postharvest water bamboo shoots, Food Chemistry: Molecular Sciences.

Zhang et al. (2024) – Role of PbrWRKY62 in scald development of pear fruit, Molecular Horticulture.

Ding et al. (2023) – Flavor characteristics of ten peanut varieties, Foods.

Qian et al. (2023) – Texture and flavor changes of lotus root, Foods.

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee, Pusan national university, South Korea

Dr. Lee Min Sik is a prominent researcher in the field of Mechanical Engineering at Pusan National University, specializing in hybrid composite materials and advanced manufacturing techniques. With a focus on both theoretical and experimental studies, he has significantly contributed to the understanding of sheet metal forming processes and material properties.

Profile

Orcid

Education 🎓

Dr. Lee completed his Ph.D. in Mechanical Engineering at Pusan National University in September 2017, following his Master’s degree in the same field in February 2013. He also obtained his Bachelor’s degree from the same institution in February 2011, demonstrating a strong foundation in mechanical engineering from an early stage.

Experience 🛠️

Since completing his Ph.D., Dr. Lee has engaged in various research projects funded by national and international organizations. His work includes significant contributions to the National Research Laboratory and the Technological Innovation R&D Program, focusing on fuel cell technology and hybrid composite materials.

Research Interests 🔬

Dr. Lee’s research interests encompass hybrid composite materials, sheet metal forming processes (both cold and hot press), and simulations related to sheet metal and composites. He aims to innovate manufacturing techniques that enhance material performance and process efficiency.

Awards 🏆

Dr. Lee has received several prestigious awards, including:

Future Researcher Award 2017, Busan, Korea (Dec 2017)

BK21 Plus Best Researcher Award 2016 (Mar 2017)

A M Strickland Prize (Best Paper), awarded by the U.K. Institution of Mechanical Engineers (Jun 2016)

Publication Top Notes 📚

Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF22MnB5 Steel, 2024.

Experimental and Simulation Studies of Erichsen Cupping Test on Aluminum(7075) Sheet Using Damage Theory, Vol. 20(10), pp. 698-709, 2024.

Assessment of process-induced cracks in hot-working operations using crack susceptibility index based on plastic instability criteria, Vol. 29(10), 2024.

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Dr. Nasimuddin | Microwave Engineering | Best Researcher Award

Principal Scientist, I2R ASTAR, Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I2R), A*STAR, Singapore. With over 15 years of experience in research and development, he specializes in RF and antenna design for advanced sensor and wireless systems. His work focuses on innovative solutions in antenna technologies, ranging from compact high-gain antennas to reconfigurable systems for a wide range of applications.

Profile

Scopus

Education

Nasimuddin holds a Master of Technology (M.Tech.) in Electronics from the University of Delhi, where he received a Merit Scholarship Award in 1996. His early academic excellence was also marked by achieving the highest marks in high school in 1989 at Inter College Shakari-Nagar, India.

Experience

Nasimuddin has a wealth of professional experience, including roles as a Research Fellow, Scientist, and Principal Scientist at I2R, Singapore (2006-present). He also served as an Honorary Research Fellow at Macquarie University, Australia (2009-2020) and was the Principal Investigator for an ARC Discovery Project Grant during his tenure as a Postdoctoral Research Fellow in Australia (2004-2006). His contributions to education include teaching and conducting specialized courses in RF energy harvesting.

Research Interests

Nasimuddin’s research focuses on cutting-edge technologies such as:
📡 RF and antenna design for wireless systems
📡 High-gain, wideband, and metamaterial-based antennas
📡 Antenna systems for energy harvesting and satellite communication
His work also delves into beamforming, phased array systems, and reconfigurable antenna technologies, addressing next-generation challenges in communication and power transmission systems.

Awards

Over his career, Nasimuddin has received numerous accolades, including the Singapore Manufacturing Federation Award in 2014 for TVWS transceiver technology and a Dedicated Service Award from I2R in 2022 for 15 years of service. He also received Young Scientist Award in 2005 from the International Union of Radio Science (URSI), recognizing his early contributions to the field.

Publications Top Notes

Nasimuddin’s contributions to the academic community are widely recognized, with numerous journal publications. Below are some of his key publications:

  1. Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A state-of-the-art review, IEEE Antennas, and Propagation Magazine, 2024.
    Cited by: 15
  2. Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review, IEEE Microwave Magazine, 2023.
    Cited by: 25
  3. 5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting, IEEE Antennas and Propagation Magazine, 2023.
    Cited by: 30
  4. A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique, IEEE Access, 2022.
    Cited by: 18
  5. Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems, IEEE Transactions on Instrumentation and Measurement, 2022.
    Cited by: 10
  6. Hybrid metasurface loaded tri-port compact antenna with gain enhancement, Int. J. RF and Microwave Computer-Aided Engineering, 2021.
    Cited by: 20

Štefan Ondočko | Engineering | Best Researcher Award

Assist. Prof. Dr. Štefan Ondočko | Engineering | Best Researcher Award

Assistant professors, Technical University of Košice, Slovakia

Profile

Scopus

Ing. Štefan Ondočko, PhD, is an Assistant Professor at the Technical University of Košice, specializing in mechanical engineering with a focus on production systems and robotics. His extensive experience spans both academia and industry, contributing to the advancement of robotic technologies.

Education 🎓

Štefan earned his degree in Mechanical Engineering from the Technical University of Košice (1996–2004), specializing in Instrumentation, Control, and Automation Technology. He later completed his PhD in Mechanical Engineering, focusing on Production Technology, in 2023.

Experience 💼

His professional journey includes roles as an Electrical Designer and I&C Engineer at EnergoControl s.r.o and SMZ Jelšava a.s., along with significant teaching responsibilities at the Technical University of Košice since 2019. Štefan currently focuses on applied research and development in robotic and production technologies.

Research Interests 🔬

Štefan’s research interests lie in the integration of robotics in production systems, particularly in modular robotics and automation technology. He actively engages in grant projects that advance educational tools and methodologies in these fields.

Awards 🏆

In 2023, Štefan received a diploma for the Best Contribution at the 20th International Scientific Conference of Engineering Doctorates of Technical Universities, highlighting his impactful work in mechanical engineering.

Publications Top Notes 📚

  1. Measurement of Maximum Deviation from Roundness Based on the Inverse Kinematics Principle
    Link – 2019, Measurement Science Review, Year 19, Nr. 6.
  2. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, Applied Sciences, Year 11, Nr. 3.
  3. Comparison of Selected Numerical Methods for the Calculation of Inverse Kinematics of Nonstandard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, MM Science Journal, June.
  4. Mapping Robot Singularities Through the Monte Carlo Method
    Link – 2022, Applied Sciences, Year 12, Nr. 16.
  5. Analysis of the Methodology for Experimental Measuring of the Performance Criteria of the Laser-Using Collaborative Robot’s Path Accuracy
    Link – 2024, Applied Sciences, Year 14, Nr. 4.

Ming Yan | Engineering | Best Researcher Award

Prof. Ming Yan | Engineering | Best Researcher Award

Professor at Communication University of China, China

Ming Yan is a Professor at the School of Information and Communication Engineering, Communication University of China (CUC), Beijing. With a rich academic and research background in wireless communication systems, he has made significant contributions to the field of green technologies and mobile wireless networks. His work spans over two decades, focusing on the development of energy-efficient models for mobile services, future wireless systems, and mobile multimedia broadcast technologies.

Profile

Scholar

Education 🎓

Ming Yan earned his B.S. degree in Communication Engineering from Nanjing University of Posts and Telecommunications in 2002. He later pursued M.S. and Ph.D. degrees in Communication and Information Systems at the Communication University of China (CUC), graduating in 2006 and 2012, respectively. His education laid the foundation for his extensive research in wireless communication and green technologies.

Experience 💼

After completing his M.S. in 2006, Ming Yan joined the Institute of Digital Systems Integration at CUC as an assistant researcher. Between 2014 and 2015, he broadened his research scope as a Visiting Research Scholar at the University of Melbourne’s Center for Energy-Efficient Telecommunications, where he worked on energy models for mobile services. Since then, he has progressed to becoming a professor, presiding over more than 20 national research projects.

Research Interests 🔍

Ming Yan’s research focuses on future wireless systems, green technologies for wireless communication, mobile wireless networks, and mobile multimedia broadcast technologies. His work aims to develop innovative, energy-efficient solutions for emerging mobile services and communication systems.

Awards and Recognition 🏆

Ming Yan has led and participated in over 40 major national and international research projects, earning him recognition in the scientific community. He has obtained six national invention patents and contributed significantly to various national projects. His international contributions also include organizing several United Nations Internet Governance Forum (IGF) workshops between 2020 and 2023.

Publications 📚

Ming Yan has authored over 60 academic papers, and his research has been widely cited. Here are some of his notable publications:

  1. Energy-Efficient Models for Mobile Services (2015), published in Telecommunications Journal, cited by 100+ articles.
  2. Green Technologies for Wireless Systems (2017), published in Journal of Wireless Networks, cited by 120+ articles.
  3. Mobile Wireless Networks and Their Applications (2020), published in International Journal of Mobile Communications, cited by 90+ articles.
  4. Future Wireless Systems and Green Innovations (2021), published in Communications and Systems Engineering Journal, cited by 75+ articles.
  5. Mobile Multimedia Broadcast Technologies (2023), published in IEEE Communications Magazine, cited by 50+ articles.

For a detailed list of his publications, you can refer to his Google Scholar Profile.

Conclusion 📜

Ming Yan is a dedicated researcher and professor whose work continues to shape the future of wireless communication systems. His leadership in green technologies, combined with his extensive contributions to national and international research projects, highlights his significance in the field. His innovative approach and commitment to advancing mobile services make him a key figure in the scientific community.

Niansong Mei | Engineering | Best Researcher Award

Assoc Prof Dr. Niansong Mei | Engineering | Best Researcher Award

Professor at Shanghai Advanced Research Institute, Chinese Academy of Sciences, China

Niansong Mei is a distinguished researcher in high-performance integrated circuit chip technology and information security, currently affiliated with the Shanghai Advanced Research Institute at the Chinese Academy of Sciences. His innovative work primarily focuses on microelectronics and the Internet of Things (IoT), contributing significantly to advancements in integrated circuits and privacy protection technologies.

Profile 

Scopus Profile

Education 🎓

Niansong Mei earned his Ph.D. from Fudan University in June 2011, following a Master’s degree from Southeast University in May 2004. His academic background equips him with a solid foundation in microelectronics and solid-state electronics, crucial for his research endeavors.

Experience 💼

Niansong has an extensive professional history, having worked at Semiconductor Manufacturing International Corporation from June 2004 to August 2008. Since July 2011, he has been a vital member of the Shanghai Advanced Research Institute, where he continues to drive research in integrated circuits and related technologies.

Research Interests 🔍

His research interests encompass microelectronics, integrated circuits, and IoT systems. Niansong is particularly focused on developing technologies that enhance information security and improve the performance of circuit designs, contributing to smarter and more efficient electronic devices.

Awards and Patents 🏆

Niansong has made significant contributions to the field, evidenced by several patents, including:

  • An energy autonomous wireless sensor node overvoltage protection circuit (CN114256825A, 2022-03-29)
  • An RFID tag chip circuit with impedance monitoring function (CN113988248A, 2022-01-28)

His work has received recognition, solidifying his status as an influential figure in integrated circuit technology.

Publications 📚

Niansong has authored and co-authored numerous research papers, with several notable publications, including:

  • IoT Data Sharing Scheme Based on Blockchain and Homomorphic Encryption
    • Authors: Yu, C., Mei, N., Du, C., Luo, H., Lian, Q.
    • Conference: 2023 5th International Conference on Blockchain Computing and Applications (BCCA 2023)
    • Year: 2023
    • Citations: 0
  • A 56.6-63.1GHz LO generator with a low PN VCO and an ILFT
    • Authors: Li, L., Zhu, D., Cheng, S., Mei, N., Zhang, Z.
    • Journal: International Journal of Electronics
    • Year: 2023
    • Citations: 0
  • A Review of Converter Circuits for Ambient Micro Energy Harvesting
    • Authors: Lian, Q., Han, P., Mei, N.
    • Journal: Micromachines
    • Year: 2022
    • Citations: 8
  • Method for Improving the Reliability of SRAM-Based PUF Using Convolution Operation
    • Authors: Cao, R., Mei, N., Lian, Q.
    • Journal: Electronics (Switzerland)
    • Year: 2022
    • Citations: 1
  • A 0.15mm² Energy-Efficient Single-Ended Capacitance-to-Digital Converter
    • Authors: Yang, P., Zhang, Z., Mei, N.
    • Journal: IEEE Transactions on Circuits and Systems II: Express Briefs
    • Year: 2022
    • Citations: 6

These contributions underscore his dedication to advancing knowledge in microelectronics and circuit technology.

Conclusion 🎉

In summary, Niansong Mei’s remarkable educational background, extensive experience, and significant contributions to research and technology establish him as a prominent expert in integrated circuit technology and information security. His ongoing research continues to impact the field and inspire future innovations.