Mengyao Li | Engineering | Best Researcher Award

Dr. Mengyao Li | Engineering | Best Researcher Award

Student at Nanyang Technological University Singapore

Mengyao Li is a dedicated researcher specializing in electromagnetic fields, metasurfaces, and frequency-selective structures. With a strong academic foundation and a passion for advancing next-generation communication and radar technologies, Li has made significant contributions to the field of low-RCS antenna-radome systems, lens antennas, and THz reconfigurable intelligent surfaces. His research focuses on innovative solutions that enhance wave manipulation, beamforming, and scattering control, making a direct impact on applications in wireless communication and stealth technology. As a Ph.D. candidate at Nanyang Technological University (NTU), Singapore, under the guidance of Prof. Shen Zhongxiang (IEEE Fellow), Li has published extensively in top-tier journals and continues to explore novel electromagnetic solutions. His work not only bridges theoretical advancements with practical applications but also aligns with the future demands of 6G wireless networks and advanced sensing technologies, solidifying his position as an emerging expert in the field.

Professional Profile

Education

Mengyao Li began his academic journey with a B.S. in Electrical Engineering from the Communication University of China, Beijing, specializing in Telecommunication Engineering. Graduating in 2020 with a GPA of 3.59/4.0, he ranked among the top 8% of students and was recognized as an Outstanding Graduate of Beijing. His undergraduate research focused on reconfigurable frequency-selective absorbers, laying a strong foundation for his future work. In January 2021, he pursued a Ph.D. in Electrical and Electronic Engineering at Nanyang Technological University, Singapore, specializing in Electromagnetic Fields and Microwave Technology. Under the supervision of Prof. Shen Zhongxiang, his doctoral research centers on low-RCS integrated radome and antenna systems, aiming to develop advanced solutions for stealth technology and wireless communication. Throughout his academic career, Li has demonstrated strong analytical skills and research capabilities, contributing to the advancement of electromagnetic and antenna engineering.

Professional Experience

As a Ph.D. researcher at Nanyang Technological University, Mengyao Li has been actively engaged in cutting-edge research in the field of electromagnetic wave manipulation, metasurfaces, and antenna systems. His professional work focuses on designing low-RCS antennas, frequency-selective structures, and THz reconfigurable intelligent surfaces, contributing to innovations in stealth technology and high-frequency communication. Collaborating with leading academics and industry experts, he has developed practical solutions for beam manipulation, conformal lens antennas, and ultra-wideband absorptive structures. His research has been published in top IEEE journals, showcasing his ability to bridge theoretical concepts with practical engineering applications. In addition to research, he actively mentors junior researchers, contributes to technical discussions, and engages in academic collaborations to advance antenna and metamaterial technologies. His expertise and technical acumen make him a promising figure in the field of advanced electromagnetic applications.

Research Interests

Mengyao Li’s research interests lie at the intersection of electromagnetic wave engineering, metasurfaces, and reconfigurable intelligent surfaces (RIS), with a strong emphasis on low-RCS antenna-radome systems, lens antennas, and THz wireless communication. His work on low-scattering antenna structures contributes to stealth and radar applications, while his innovative metasurface designs enable advanced beam steering and polarization control. Additionally, he explores MEMS-based THz metasurfaces, which hold promise for 6G wireless networks and high-frequency communication systems. His research on frequency-selective structures and transmissive antennas bridges the gap between traditional electromagnetic theory and modern reconfigurable technologies. By integrating material science, physics, and advanced fabrication techniques, Li’s research aims to create high-performance, miniaturized, and dynamically tunable electromagnetic structures, making a significant impact on next-generation wireless technologies and radar systems.

Awards and Honors

Throughout his academic journey, Mengyao Li has received multiple recognitions for his research excellence. As an Outstanding Graduate of Beijing, he was acknowledged for his academic performance and early contributions to telecommunication engineering. His Ph.D. research at NTU has been supported by prestigious funding, reflecting the significance of his work in low-RCS antenna systems and metasurface engineering. His journal publications in IEEE Transactions on Antennas and Propagation and IEEE Antennas Wireless Propagation Letters further highlight his research impact in the field. Li’s innovative contributions to reconfigurable intelligent surfaces and frequency-selective radomes have been well-received in the academic community, earning him invitations to collaborate with leading researchers. With his strong research background and growing influence in electromagnetic wave control and antenna design, he continues to make valuable contributions to the field, positioning himself as a rising expert in advanced electromagnetics and wireless technology.

Conclusion

Mengyao Li is a strong candidate for the Best Researcher Award, with a solid publication record, cutting-edge research contributions, and expertise in emerging electromagnetic technologies. However, improving the real-world impact, conference visibility, and interdisciplinary collaboration could further solidify the case for this award. If these areas are strengthened, Mengyao Li could become a leading figure in electromagnetic and metasurface research.

Publications Top Noted

  • Y. Ding, M. Li, J. Su, Q. Guo, H. Yin, Z. Li, J. Song – 2020 – 70 citations
    “Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch.”
    IEEE Transactions on Antennas and Propagation 69 (3), 1493-1504

  • M. Li, L. Zhou, Z. Shen – 2021 – 30 citations
    “Frequency selective radome with wide diffusive bands.”
    IEEE Antennas and Wireless Propagation Letters 21 (2), 327-331

  • M. Li, Z. Shen – 2023 – 13 citations
    “Low-RCS transmitarray based on 2.5-D cross-polarization converter.”
    IEEE Transactions on Antennas and Propagation 71 (7), 5828-5837

  • M. Li, Z. Shen – 2023 – 5 citations
    “Integrated diffusive antenna array of low backscattering.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li, Z. Shen – 2022 – 3 citations
    “Hybrid Frequency Selective Rasorber Combining 2-D and 3-D Resonators.”
    2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, J. Su – 2020 – 1 citation
    “Wideband frequency-selective absorber based on metal cross ring.”
    2020 IEEE MTT-S International Microwave Workshop Series on Advanced

  • M. Li, Z. Shen – 2024 – Not yet cited
    “Hybrid Rasorber Based on 3-D Bandpass Frequency-Selective Structures.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li – 2024 – Not yet cited
    “Integrated radome and antenna systems of low radar cross section.”
    Nanyang Technological University (Ph.D. Dissertation)

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Highly Selective Third-Order Bandpass Frequency Selective Surface.”
    2023 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Transmission Phase Controllable Rasorber Using All-Metal Cross-Polarization Converter.”
    2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, Z. Shen – 2022 – Not yet cited
    “Low-RCS Transmitarray Using Phase Controllable Absorptive Frequency-Selective Structure.”
    2022 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2021 – Not yet cited
    “RCS Reduction of Slot Antenna Array Using Coding Metasurfaces.”
    2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI

Kaili Wang | Engineering | Best Researcher Award

Ms. Kaili Wang | Engineering | Best Researcher Award

Student at NB U, China

MS Kaili Wang is a distinguished researcher in the field of gene editing and molecular diagnostics, specializing in nucleic acid detection for agricultural biotechnology. She is affiliated with Ningbo University, School of Food Science and Engineering, China, and collaborates with Zhejiang Academy of Agricultural Sciences and the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products. With a keen interest in genetic modification detection, her research focuses on improving the precision and sensitivity of detection methods for gene-edited organisms. Her recent work on droplet digital PCR (ddPCR) for MSTN gene-edited cattle has contributed significantly to the field of regulatory science and food safety. Dedicated to advancing biotechnology applications, she plays a crucial role in shaping methodologies for genetic monitoring, ensuring consumer safety, and fostering global discussions on gene editing and its implications.

Professional Profile

Education

MS Kaili Wang pursued her higher education in biotechnology, molecular biology, and food science, which provided a strong foundation for her research career. She earned her degrees from prestigious Chinese institutions, including Ningbo University, where she specialized in food science and genetic detection methods. Her academic training emphasized molecular diagnostics, genetic engineering, and PCR-based technologies, equipping her with the expertise necessary to develop innovative detection methods for genetically modified organisms (GMOs). Throughout her education, she engaged in interdisciplinary research, gaining hands-on experience in genetic modification analysis, nucleic acid quantification, and regulatory science. Her studies were complemented by rigorous laboratory work and collaborations with leading scientists in the field. This educational background has enabled her to contribute significantly to the advancement of gene-editing detection technologies, ensuring accuracy, sensitivity, and reliability in molecular diagnostics.

Professional Experience

With extensive experience in genetic research and molecular diagnostics, MS Kaili Wang has worked as a researcher at Ningbo University and in collaboration with Zhejiang Academy of Agricultural Sciences. She has been instrumental in developing innovative nucleic acid detection methods for gene-edited organisms, particularly using droplet digital PCR (ddPCR). Her work focuses on the safety assessment, traceability, and detection of genetically modified products, making a significant impact in the field of food safety and agricultural biotechnology. She has contributed to multiple high-impact research projects, collaborating with government agencies, regulatory bodies, and scientific institutions to establish robust methodologies for genetic monitoring. Her professional expertise extends to training young researchers, publishing peer-reviewed articles, and presenting her findings at international conferences related to gene editing and food safety. Her work plays a critical role in ensuring the accurate detection and regulation of gene-edited agricultural products.

Research Interests

MS Kaili Wang’s primary research interests lie in gene editing, nucleic acid detection, food safety, and molecular diagnostics. She is particularly focused on developing and optimizing PCR-based techniques, including ddPCR, qPCR, and CRISPR-based detection methods. Her research aims to enhance the specificity, sensitivity, and reliability of gene-editing detection, ensuring consumer safety and regulatory compliance. She is also deeply interested in the traceability of genetically modified organisms (GMOs) and their impact on food production, security, and public health. Through her work, she seeks to bridge the gap between scientific advancements and regulatory frameworks, contributing to the development of robust detection technologies that can be applied on a global scale. By integrating biotechnology with food safety regulations, she aims to provide innovative solutions for ensuring transparency in agricultural biotechnology and fostering public trust in gene-edited products.

Awards and Honors

Throughout her career, MS Kaili Wang has received numerous recognitions for her contributions to gene editing detection and food safety research. She has been honored with awards from academic institutions, regulatory bodies, and biotechnology organizations for her innovative work in nucleic acid quantification and molecular diagnostics. Her research on ddPCR-based detection of MSTN gene-edited cattle has gained international recognition, positioning her as a leading scientist in genetic monitoring and food safety regulation. She has been invited as a keynote speaker at scientific conferences, sharing her expertise on gene editing detection methodologies. Additionally, she has received grants and funding from government agencies to further her research in gene-editing detection and its application in regulatory science. Her dedication and contributions to biotechnology and food safety continue to make a profound impact, earning her a reputation as a pioneering researcher in the field.

Conclusion

MS Kaili Wang’s research is highly innovative and impactful, making significant contributions to gene editing detection and food safety monitoring. The work demonstrates scientific excellence, regulatory relevance, and technical robustness, making them a strong candidate for the Best Researcher Award. However, further research could focus on expanding the scope of detection beyond MSTN, increasing sample size, and facilitating regulatory adoption to enhance the real-world impact.

Publications Top Noted

Author: Kaili Wang, Yi Ji, Cheng Peng, Xiaofu Wang, Lei Yang, Hangzhen Lan, Junfeng Xu, Xiaoyun Chen
Year: 2025
Citation: Wang, K.; Ji, Y.; Peng, C.; Wang, X.; Yang, L.; Lan, H.; Xu, J.; Chen, X. (2025). “A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR.” Biology, 14(2), Article 0203. DOI: 10.3390/biology14020203.
Source: Multidisciplinary Digital Publishing Institute (MDPI)

 

Masoud Deyranlou | Engineering | Best Researcher Award

Mr. Masoud Deyranlou | Engineering | Best Researcher Award

Optical Network Engineer at Islamic Azad University, Iran

Masoud Deyranlou is an experienced Optical Network Engineer and researcher with over a decade of expertise in optical transmission systems and telecommunications infrastructure. His work spans high-level and low-level design of large-scale networks, specializing in advanced optical technologies like DWDM, ROADM, ASON, and SDN. Throughout his career, he has played a pivotal role in major telecommunication projects, contributing to the innovation and optimization of optical networking solutions. His research primarily focuses on the integration of optical transmission with emerging technologies, bridging the gap between theoretical advancements and practical implementations. With a strong background in both industry and academia, he has contributed to scientific literature and technological advancements in optical communications. His dedication to the field is evident through his numerous publications and technical contributions, making him a key figure in the development of modern optical networking solutions.

Professional Profile

ORCID Profile

Education

Masoud Deyranlou holds a Master of Science in Electrical Engineering – Telecommunications from Islamic Azad University (2007-2010), where he gained expertise in satellite communications, fiber optics, and coding theory. Prior to that, he earned his Bachelor of Science in Electrical Engineering from the same institution, developing a strong foundation in electromagnetics and optical transmission networks. His academic journey began with an Associate Degree in Industrial Electricity from Technical and Vocational University, where he built fundamental technical skills in electrical systems and automation. Throughout his education, he demonstrated exceptional academic performance, excelling in key subjects such as Satellite Communication (19.5/20), Coding Theory (18.5/20), and Electromagnetics (18/20). His education provided him with the theoretical knowledge and practical expertise necessary for his career in telecommunications, allowing him to integrate cutting-edge research with real-world optical network applications.

Professional Experience

Masoud Deyranlou has accumulated over 10 years of professional experience in the field of optical network engineering, working on large-scale telecommunication infrastructure projects. He currently serves as an Optical Network Design Engineer, where he is responsible for High-Level Design (HLD) and Low-Level Design (LLD) of complex optical transmission networks. His expertise spans across various cutting-edge technologies, including T-SDN, DWDM, ROADM, ASON, and WSON, enabling efficient and high-capacity data transmission. Throughout his career, he has actively contributed to the deployment of metro and long-haul optical networks, ensuring optimized performance and reliability. His ability to integrate research-driven solutions with practical applications has made him a valuable asset in the industry. His deep understanding of software-defined networking (SDN) and embedded systems further enhances his ability to develop next-generation optical communication networks, positioning him as a key expert in the field.

Research Interest

Masoud Deyranlou’s research focuses on advanced optical transmission networks, with a particular interest in Radio over Fiber (RoF), Free Space Optics (FSO), and Software-Defined Networks (SDN). His work explores the development of high-speed, low-latency optical communication systems, including novel approaches for adaptive coherent free-space optical communication in urban environments. He is also deeply involved in researching submarine fiber networks, aiming to enhance global telecommunication infrastructure through innovative optical networking solutions. His publications in renowned journals reflect his expertise in dual-polarization 10Gbps RoF systems, wavelength reuse technologies, and next-generation optical transmission mechanisms. By integrating theoretical advancements with practical implementations, he contributes to the continuous evolution of telecommunications technology. His research aligns with the growing need for more efficient, scalable, and resilient optical network architectures, driving innovation in global communications.

Awards and Honors

Masoud Deyranlou has been recognized for his outstanding contributions to the field of optical communications, earning accolades for his research and professional achievements. His work has been published in esteemed journals such as the Journal of Modern Optics and the AUT Journal of Electrical Engineering, showcasing his innovative research in optical transmission systems. Additionally, his high academic performance, particularly his perfect GRE Quantitative Score (170/170), highlights his strong analytical and problem-solving skills. His participation in major telecommunication infrastructure projects has also been acknowledged within the industry, cementing his reputation as a leading expert in optical networking. While he continues to build on his research portfolio, his contributions to advancing adaptive optical communication technologies and high-speed data transmission networks have earned him recognition as a top researcher in his field.

Conclusion

Masoud Deyranlou is a highly qualified candidate for the Best Researcher Award based on his strong technical expertise, research output, and industry experience. However, to further enhance his eligibility, he should focus on publishing in high-impact journals, engaging in international collaborations, securing research grants, and pursuing patents or innovations. If the award criteria emphasize a balance between academic excellence and industry impact, he is a strong contender.

Publications Top Noted

  • Adaptive coherent free space optics system for urban deployment: a case study in Tehran

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2025
    • Journal: Journal of Modern Optics
    • DOI: 10.1080/09500340.2025.2459887
    • Citation: Deyranlou, M., & Maleki Javan, A. (2025). Adaptive coherent free space optics system for urban deployment: a case study in Tehran. Journal of Modern Optics, 1–12.
    • ISSN: 0950-0340, 1362-3044
  • A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal

    • Author(s): Masoud Deyranlou, Alireza Maleki Javan
    • Year: 2020
    • Journal: AUT Journal of Electrical Engineering
    • DOI: 10.22060/eej.2020.16603.5292
    • Citation: Deyranlou, M., & Maleki Javan, A. (2020). A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal. AUT Journal of Electrical Engineering, 52(1), 9–18.

 

Ananya Kuri | Engineering | Best Researcher Award

Ms. Ananya Kuri | Engineering | Best Researcher Award

Scientist | R&D Project Manager at Siemens AG, Germany

Ananya Kuri is an accomplished R&D Project Manager at Siemens AG, specializing in electrical power engineering and grid stability. With over 10 years of experience in the power systems sector, she has played a pivotal role in dynamic performance analysis, inverter-based resource modeling, and power grid optimization. Ananya holds a Ph.D. from FAU Erlangen (dissertation under review) and an M.Sc. in Electrical Power Engineering from RWTH Aachen University. She is known for her leadership in managing complex projects, mentoring teams, and collaborating with global customers. Her expertise lies in enhancing power system stability, modeling and analyzing power plants, and supporting grid compliance efforts. Ananya’s work spans across consulting, R&D, and training, with significant contributions to Siemens’ technology in power systems and microgrids. Her professional journey reflects a blend of innovation, technical excellence, and strong industry engagement, making her a respected figure in the energy sector.

Professional Profile

Education

Ananya Kuri’s academic credentials lay a solid foundation for her extensive career in power systems engineering. She holds a Ph.D. in Electrical Engineering from FAU Erlangen, where her dissertation is currently under review. Prior to this, she completed her M.Sc. in Electrical Power Engineering from RWTH Aachen University, one of Germany’s premier technical institutions. During her time at RWTH Aachen, Ananya developed a deep understanding of electrical power technologies and systems, which has been pivotal in her professional journey. Her B.Eng. in Electrical and Electronics Engineering from M.S. Ramaiah Institute of Technology in Bangalore, India, provided her with early insights into power systems, further shaping her technical expertise. Throughout her academic tenure, Ananya demonstrated a strong commitment to research, resulting in multiple published works and contributions to cutting-edge developments in the power systems domain, paving the way for her successful professional career.

Professional Experience

Ananya Kuri’s professional experience spans a decade of working with Siemens AG, where she has made significant contributions in both consulting and research roles. She began her career as a Senior Power Systems Consultant and Portfolio Element Owner in Siemens’ Digital Grid, focusing on transmission systems, inverter-based resources, and power grid stability. Her technical expertise was key in the modeling and analysis of various Siemens power systems products, including the Power Plant Controller and Microgrid Controller. Ananya has also held leadership roles as an R&D Project Manager, where she led projects like ENSURE Phase 3 for inverter-based resources and kurSyv for corrective system management in distribution networks. She has mentored teams, managed global consulting projects, and played an integral role in Siemens’ advancements in grid compliance, ensuring Siemens’ power systems meet the evolving needs of modern electrical grids. Her extensive work with international clients and R&D initiatives highlights her strong professional impact.

Research Interests

Ananya Kuri’s research interests lie primarily in the areas of power system stability, grid integration, and inverter-based technologies. Her work revolves around enhancing the dynamic performance of power grids, with a focus on transient stability, small-signal analysis, and frequency regulation. Ananya is particularly interested in the modeling and control of inverter-based resources, as these technologies are crucial in supporting the transition to renewable energy sources and the modernization of grid infrastructures. Her research also extends to the development of advanced control strategies for microgrids and power plants, aiming to improve grid stability and resilience. She is actively involved in R&D projects that address the operational challenges of integrating renewable energy into power systems, such as enhanced inverter control techniques. Ananya’s contributions to power system modeling, grid compliance studies, and dynamic simulations aim to drive innovations in power system operations and support the reliable and efficient operation of future grids.

Awards and Honors

Ananya Kuri’s outstanding contributions to the field of power systems engineering have earned her recognition within both the academic and professional communities. She has been actively involved in global research and development initiatives and has contributed to numerous successful consulting projects. Although specific awards are not mentioned, her leadership roles in industry-standard working groups like CIGRE and IEC, along with her involvement in over 35 working groups and 17+ published works, underscore her high standing in the industry. Ananya’s influence extends beyond her immediate work at Siemens, as she is recognized as a key member of international committees shaping the future of power system operations and standards. Her expertise in developing Siemens’ key products, such as the SICAM Power Plant Controller and Microgrid Controller, also highlights her significant contributions to the global energy sector. These honors and recognitions reflect her impact as a thought leader in electrical power engineering.

Conclusion

Ananya Kuri is highly suitable for the Best Researcher Award based on her extensive experience, leadership in R&D, technical expertise, and contributions to global research projects. Her work in inverter control strategies, grid stability, and model development for Siemens’ products directly addresses the challenges facing modern power systems. The only area for improvement would be completing her Ph.D. and further enhancing her public engagement. Overall, she represents the qualities of a forward-thinking researcher with significant industry impact.

Publications Top Noted

Title: Power Dispatch Capacity of a Grid-Forming Control Based on Phase Restoring Principle
Authors: A. Kuri, Ananya; R. Zurowski, Rainer; G. Mehlmann, Gert; M. Luther, Matthias
Journal: IEEE Systems Journal
Year: 2023
Citations: 3

 

Fred Lang | Engineering | Best Researcher Award

Mr. Fred Lang | Engineering | Best Researcher Award

President at Exergetic Systems Limited, United States

Fred D. Lang, P.E., P.Eng., is a distinguished power plant engineer with over 50 years of experience in energy systems, nuclear safety, and thermal performance monitoring. Renowned across North America and Europe, he has significantly contributed to power plant engineering through software innovation, advanced testing methodologies, and novel monitoring techniques. As the President of Exergetic Systems Limited, he has developed industry-transforming tools for power plant efficiency and safety. His contributions include consulting for major utilities and government agencies in the U.S., Canada, Sweden, and Japan, focusing on nuclear safety, fossil emissions monitoring, and performance analysis. Lang’s expertise spans simulation, plant design, exergy analysis, and fuel efficiency optimization, making him a leader in the energy sector. His commitment to research and technological advancements has led to groundbreaking methodologies that enhance power plant performance and operational safety, earning him a reputation as an innovator in the field.

Professional Profile

Education

Fred D. Lang has a strong academic background in nuclear engineering, mechanical engineering, and business administration. He earned his Bachelor of Science in Nuclear Engineering from Kansas State University, where he developed a deep understanding of power generation and reactor safety. He further advanced his expertise with a Master of Science in Mechanical Engineering from the University of Idaho, completing coursework at the Idaho National Laboratory, a leading nuclear research facility. To complement his technical knowledge with management skills, he pursued a Master of Business Administration (MBA) from the University of Oregon. In addition to his formal degrees, Lang holds several professional certifications, including a California Energy Auditor Certificate (#5872). He is a licensed Professional Engineer (P.E.) in California for mechanical and nuclear engineering and an active P.Eng. in British Columbia (#54236). His diverse educational background has provided him with the expertise to drive innovation in power plant engineering.

Professional Experience

Fred D. Lang has had an illustrious career spanning over five decades in power plant engineering. He is the President of Exergetic Systems Limited, a company specializing in power plant performance monitoring and efficiency solutions. Previously, he founded and led Exergetic Systems, Inc., which for nearly 40 years served major utilities across North America with software and engineering services. Lang is known as the “Father of PEPSE,” a widely used power plant simulation software. His expertise includes thermodynamic analysis, emissions monitoring, and nuclear safety systems. He has conducted hundreds of power plant studies and has been involved in 33 thermal performance evaluation projects, each lasting several months. His professional experience also includes consulting for Babcock & Wilcox, Exxon Nuclear (now Framatome), and government agencies in Sweden and Japan on critical nuclear safety issues. His work has shaped modern approaches to fuel monitoring, efficiency testing, and safety in power generation.

Research Interests

Fred D. Lang’s research focuses on power plant thermodynamics, nuclear safety, emissions monitoring, and exergy analysis. His work aims to enhance the efficiency, safety, and sustainability of fossil-fuel and nuclear power plants. A major area of his research is the development of advanced monitoring techniques, such as the Input/Loss Method, which allows real-time determination of fuel chemistry, calorific value, and heat rate in coal-fired power plants. Another significant contribution is the NCV Method, a groundbreaking approach to nuclear reactor monitoring, neutron flux measurement, and coolant flow analysis, which improves nuclear safety. Lang has also developed innovative instrumentation for emissions testing, heat balance analysis, and fuel efficiency optimization. His research integrates software development, thermodynamic modeling, and real-world application, ensuring that power plants operate more efficiently while reducing environmental impact. His findings have led to significant improvements in plant performance and fuel economy worldwide.

Awards and Honors

Fred D. Lang has received numerous accolades for his contributions to power plant engineering and nuclear safety. He holds 38 patents, including 22 in the U.S. and 16 in Canada, Australia, and Europe, covering innovations in power plant instrumentation, Rankine cycle modifications, and emissions monitoring technologies. His pioneering Input/Loss Method and NCV Method have been recognized as transformative advancements in the energy sector. Lang has been invited by major utilities and government agencies to develop new technologies, including a 2021 invitation to design a novel nuclear plant monitoring system. His software tools, such as PEPSE, EX-FOSS, and THERM, are used by leading power utilities worldwide. In addition to his technical achievements, he has been honored for his mentorship and leadership in the engineering field. His work has redefined power plant efficiency, fuel monitoring, and nuclear safety standards, earning him a reputation as a pioneer in the industry.

Conclusion

Fred D. Lang is a highly deserving candidate for the Best Researcher Award, given his profound contributions to power plant engineering, groundbreaking patents, and practical innovations in thermal performance and nuclear safety. While strengthening academic publications and mentorship efforts could further solidify his influence, his technical advancements have already had a significant impact on the industry. His work represents a paradigm shift in power plant monitoring and nuclear reactor safety, making him a strong contender for this recognition.

Publications Top Noted

  • Lang, F. D. (Year Unknown). “Verified Knowledge of Nuclear Power Plants Using the NCV Method.” Conference Paper. Citations: 0

  • Lang, F. D., Mason, D., & Rodgers, D. A. T. (Year Unknown). “Effects on Boiler Efficiency Standards and Computed Coal Flow Given Variable Ambient Oxygen and Humidity.” Conference Paper. Citations: 0

 

Arvind Chaurasiya | Engineering | Best Researcher Award

Mr. Arvind Chaurasiya | Engineering | Best Researcher Award

Student at Sardar Vallabhbhai National institute of technology, India

Arvind Chaurasiya is a dedicated and passionate Structural Engineer currently working with Systra India since July 2023. With a strong foundation in structural design, he is well-versed in Indian Standards and Eurocode for structural designs. Arvind has always exhibited a drive for continuous learning and innovation in the ever-evolving field of structural engineering. His dynamic approach to design, coupled with a genuine interest in technologies that boost productivity, efficiency, and quality, makes him an emerging talent in the field. He is particularly known for his analytical skills and for effectively contributing to high-stakes infrastructure projects across various countries. Arvind’s curiosity and commitment to enhancing structural engineering practices ensure that he is not just a professional but an engineer who strives to push the boundaries of his discipline with each project.

Professional Profile

Education

Arvind Chaurasiya completed his education with a Bachelor’s degree in Civil Engineering, which laid the foundation for his career in structural engineering. Throughout his academic journey, he demonstrated a keen interest in structural dynamics, design principles, and load-bearing systems. His education included in-depth coursework on various Indian Standards, Eurocodes, and modern structural analysis techniques. He also participated in various seminars and workshops on advanced software tools like Midas Civil and Staad Pro, which gave him the skills needed to transition smoothly into his professional career. Arvind’s educational background not only provided him with a solid technical base but also instilled in him a passion for lifelong learning, driving him to continuously explore new technologies and approaches in structural design.

Professional Experience

Arvind’s professional experience includes working on several high-profile international projects that have honed his skills in structural design and analysis. Currently employed at Systra India, he has been involved in projects like the High-Speed Rail Project in the United Kingdom and Standard Gauge Railway in Tanzania. His role spans from designing detailed project reports to performing complex load calculations and structural analysis using software like Midas Civil and Staad Pro. Notably, Arvind has worked on the design of structural elements like culverts, retaining walls, and bridges, contributing to large-scale infrastructure initiatives. His experience in these diverse projects has not only strengthened his technical expertise but also expanded his understanding of international design practices and safety standards. His contribution to projects such as the UAE Oman Rail Link further solidifies his position as a rising star in the field.

Research Interests

Arvind’s primary research interest lies in improving the efficiency and sustainability of structural designs. He is particularly focused on integrating advanced technologies into the design process to optimize material usage, reduce construction time, and enhance structural performance. Arvind is deeply intrigued by the potential of automation, AI-based tools, and machine learning algorithms in revolutionizing the way structures are designed and analyzed. His goal is to explore innovative ways of designing energy-efficient, eco-friendly, and cost-effective infrastructure systems that align with the growing emphasis on sustainable development. Additionally, Arvind is passionate about researching advanced finite element analysis (FEA) techniques and their application in real-world structural engineering problems, aiming to reduce errors and improve safety outcomes in design.

Awards and Honors

Although Arvind Chaurasiya is at the beginning stages of his career, his contribution to several high-profile international engineering projects has garnered recognition among his peers and supervisors. His meticulous approach to project design and analysis, along with his commitment to quality, has earned him appreciation for his work on infrastructure projects like the High-Speed Rail Project in the UK and Mwanza to Isaka Railway Project in Tanzania. Though still early in his career, Arvind’s ongoing focus on developing innovative structural designs and utilizing cutting-edge technologies has positioned him as a promising candidate for future awards and honors. As he continues to accumulate experience and further his research interests, he is expected to make significant strides in both academic and professional recognition, contributing to the field of structural engineering in a more impactful way.

Conclusion

Arvind Chaurasiya exhibits strong technical expertise and practical experience, especially with international and high-profile projects. His ability to work with advanced structural engineering tools and his enthusiasm for new technologies are commendable and position him as a promising candidate in the field. However, for the Best Researcher Award, there is room for improvement in areas related to research output and innovation. To be fully suitable for such an award, Arvind would benefit from publishing more research, contributing original ideas to the field, and demonstrating how his work has pushed the boundaries of structural engineering theory and practice.

Publications Top Noted

1. Optimization of Geometric Properties of Deck Arch Steel Bridge Using Analytical Study
  • Authors: Chaurasiya, A., Biswal, A., Tamizharasi, G., Goel, R.
  • Year: 2025
  • Publication: Lecture Notes in Civil Engineering, Volume 550, pp. 173–180.
  • Citations: 0
2. Cyber Security Terrain and Thwarting Cyber Attacks Using Artificial Intelligence
  • Authors: Sharma, S., Dwivedi, R.K., Upadhyay, N., Kashyap, P., Chaurasiya, A.K.
  • Year: 2024
  • Publication: Lecture Notes in Electrical Engineering, Volume 1191, pp. 679–685.
  • Citations: 0

 

BENDADI HANUMANTHA RAO | Engineering | Best Researcher Award

Assoc. Prof. Dr. BENDADI HANUMANTHA RAO | Engineering | Best Researcher Award

Associate Professor, IIT Bhubaneswar, India

Dr. B. Hanumantha Rao is an Associate Professor at the School of Infrastructure, IIT Bhubaneswar. With a rich academic and research background, he specializes in geotechnical and geoenvironmental engineering, focusing on innovative solutions for sustainable construction. He has a deep interest in ground improvement techniques, expansive soil stabilization, and the valorization of industrial by-products like red mud and fly ash. Dr. Rao’s prolific research contributions have gained him national and international recognition, and he has received several prestigious awards.

Profile

Education 

  • Ph.D. in Geotechnical Engineering (2005-2009): IIT Bombay
  • M.Tech. in Geotechnical Engineering (2003-2005): IIT Bombay
  • B.E. in Civil Engineering (1999-2003): Osmania University, Hyderabad
  • Diploma in Civil Engineering (1995-1998): Govt. Polytechnic, Kothagudem

Experience 

  • Associate Professor, IIT Bhubaneswar (2022–Present)
  • Assistant Professor, IIT Bhubaneswar (2011–2022)
  • Assistant Professor, NIT Rourkela (2011)
  • Scientific Officer-D, NPCIL (2010–2011)
  • Assistant Professor, KL University (2010)
  • Post-Doctoral Fellow, University of Saskatchewan, Canada (2009–2010)

Awards and Honors 

  • 🌟 Top Innovative Project: Geopolymer Concrete at ALL IIT R&D Fair 2021
  • 🏆 Best Oral Presentation: IGC-2019, NIT Surat
  • 🥈 Second Rank, Engineering Common Entrance Test, 1999
  • 🎓 PRATIBHA Award, Govt. of Andhra Pradesh (1999-2003)
  • 🏅 Fellowship for Ph.D., BRNS, IIT Bombay (2005-2009)
  • 🌏 Post-Doctoral Fellowship, University of Saskatchewan (2009-2010)

Research Focus 

Dr. Rao’s research interests span ground improvement, expansive soil stabilization, and waste valorization. His innovative work includes synthesizing geopolymer concrete using red mud, fly ash, and slag; biopolymers for soil stabilization; and advanced geotechnics. His projects are aimed at developing sustainable geomaterials for engineering applications and addressing geoenvironmental challenges.

Publications

  • A mix design procedure for geopolymer concrete with fly ash 🧱
  • Mix Design Development of Fly Ash & GGBS Geopolymer Concrete 🚧
  • Review: Source Material Composition’s Effect on Geopolymer Strength 📚
  • Strength and Durability of GGBS-Stabilized Red Mud 🔬
  • Specific Surface Area Methods Comparison for Fine-Grained Soils 📏
  • Predicting Soil Thermal Resistivity Using Neural Networks 🤖
  • Applications and Properties of Red Mud in Construction 🏗️
  • Predicting Soil Electrical Resistivity with Neural Networks ⚡
  • Red Mud’s Use as a Construction Material 🌱
  • Microplastics in Soils: Geotechnical Perspective 🌍
  • Additives’ Impact on Swelling of Expansive Soils 🌊
  • Swelling Properties Determined from Suction 💧
  • Effect of Na₂SiO₃/NaOH on Fly Ash Geopolymer Mortar 🛠️
  • Moisture Content Measurement Techniques: A Study 🌫️
  • Clay Content’s Influence on Expansive Soils 🛤️
  • Biopolymer Treatment for Red Mud Waste Stabilization 🦠
  • Durability of Geopolymer Concrete with Phosphogypsum 🧪
  • Biopolymers in Strengthening Red Mud Waste 🌟
  • Compaction of Treated and Untreated Red Mud 📉
  • Consolidation of Indian Red Mud Waste 🏞️

Anna Plichta | Engineering | Best Researcher Award

Mrs. Anna Plichta | Engineering | Best Researcher Award

Research and Teaching Assistant Professor, Cracow University of Technology, Poland

Dr. Anna Plichta is a Research and Teaching Assistant Professor at Cracow University of Technology, Poland, where she also works at the International Center of Education. With a multifaceted background in Comparative Literature and Computer Science, she combines insights from the humanities with advanced computational techniques. Dr. Plichta holds a PhD in Computer Science from Politechnika Wrocławska (2019) and has a strong academic foundation with degrees from Jagiellonian University and Politechnika Krakowska. Her interdisciplinary research focuses on machine learning, artificial intelligence, and applied computer science, with practical applications in energy systems, motor diagnostics, and microbiology. With a commitment to educational excellence and international collaboration, Dr. Plichta has been a key figure in research and teaching at the university for over a decade.

Profile

Strengths for the Award

  1. Diverse Research Interests and Impact: Dr. Plichta’s work spans multiple domains including comparative literature, computer science, machine learning, electrical engineering, and applied mathematics. This interdisciplinary approach showcases her ability to bridge distinct fields, offering innovative solutions to complex problems. Notably, her research on bacterial classification using machine learning methods and energy consumption forecasting using machine learning reflects her versatility and the relevance of her work to contemporary scientific and industrial challenges.
  2. High Citation Impact: Her publication titled “Deep learning approach to bacterial colony classification” has received 134 citations, which demonstrates significant influence and recognition in the scientific community. This kind of citation impact highlights the relevance and utility of her research findings.
  3. Technological Innovation: Her contributions to induction motor fault detection using machine learning techniques (e.g., simulated annealing and genetic algorithms) are highly practical, with clear industrial applications. This emphasizes her role in driving innovation in applied fields, particularly in electromechanical systems and energy sectors, making her work not only academic but also relevant to real-world problems.
  4. Academic Leadership and Teaching: As a Research and Teaching Assistant Professor at Cracow University of Technology, Dr. Plichta combines academic instruction with significant research involvement. Her active engagement in the International Center of Education is a testament to her dedication to fostering a new generation of researchers and students.
  5. Publication Quality: Dr. Plichta consistently publishes in peer-reviewed journals and presents at high-level conferences like those organized by the European Council for Modelling and Simulation. This speaks to her engagement with the broader academic community and her ability to produce high-quality research.

Areas for Improvement

  1. Collaboration and Interdisciplinary Work: While Dr. Plichta’s interdisciplinary work is commendable, further expanding collaborations with other research groups and international institutions could enhance the visibility and impact of her work. Expanding collaborative efforts, especially with industry partners, could help bring more practical applications to the forefront.
  2. Public Outreach and Dissemination: While her publications and citations are notable, there could be a more concerted effort to engage with the general public or non-academic stakeholders, particularly in areas like bacterial classification and energy forecasting, where her research could have significant societal impact. This could include public lectures, podcasts, or participation in science communication events.
  3. Further Publishing in High-Impact Journals: Publishing in higher-impact journals (e.g., Nature, IEEE Transactions) could further boost the international recognition of her work. While her current journal choices are respected, elevating the visibility of her research in top-tier outlets may further her career and contribute to the recognition of her as a leading expert in her field.

Education

Dr. Anna Plichta’s academic journey blends the study of literature and technology. She earned a BA in Comparative Literature (2005) and MA in Comparative Literature (2007) from Jagiellonian University. Her fascination with technology led her to pursue an MA in Computer Science (2010) from Politechnika Krakowska, followed by a PhD in Computer Science from Politechnika Wrocławska (2019). Her doctoral research focused on applying computational methods to real-world engineering challenges, a field that bridges the gap between theoretical knowledge and practical applications. With this strong foundation, she applies machine learning and AI techniques to diverse areas such as energy forecasting, motor fault detection, and bacterial classification. Dr. Plichta’s educational background not only demonstrates her expertise in both the arts and sciences but also her commitment to lifelong learning and interdisciplinary research.

Experience 

Dr. Anna Plichta has had a distinguished career as a Research and Teaching Assistant Professor at Cracow University of Technology since 2010. She has been an integral part of the university’s International Center of Education since 2015, fostering international research collaboration. Dr. Plichta’s professional experience spans both teaching and research, with a particular emphasis on computational techniques applied to energy systems, mechanical engineering, and biology. She has developed and taught courses related to machine learning, AI, and applied computer science. Her academic leadership extends to guiding postgraduate students and conducting collaborative research projects. Dr. Plichta’s expertise in energy consumption modeling, motor diagnostics, and microbial classification has positioned her as a thought leader in these domains, contributing to over 17 published works. She is also involved in the advancement of international education, contributing to the university’s global research network.

Research Focus 

Dr. Anna Plichta’s research focuses on applying machine learning and artificial intelligence to solve complex problems in fields ranging from energy systems to biological data analysis. Her work in forecasting energy consumption uses advanced computational techniques to predict energy demands in clusters, supporting sustainable energy solutions. In the area of electromechanical engineering, she has applied genetic algorithms and wavelet analysis to detect faults in induction motors, such as inter-turn short circuits. Additionally, her research in microbiology explores the use of image analysis and neural networks to identify bacterial species, contributing to more accurate and efficient diagnostic methods. Dr. Plichta is deeply invested in interdisciplinary research, bringing together computational methods with practical applications in industries such as energy, engineering, and healthcare. She is particularly interested in improving the accuracy and efficiency of diagnostic techniques and optimizing energy consumption through AI-driven models.

Publication 

  1. Forecasting Energy Consumption in Energy Clusters using Machine Learning Methods 📊💡
  2. Matrix Similarity Analysis of Texts Written in Romanian and Spanish 📚🔍
  3. Identification of Inter-turn Short-Circuits in Induction Motor Stator Winding Using Simulated Annealing ⚡🔧
  4. Application of Genetic Algorithm for Inter-turn Short Circuit Detection in Stator Winding of Induction Motor ⚙️🧠
  5. Recognition of Species and Genera of Bacteria by Means of the Product of Weights of the Classifiers 🦠🔬
  6. Application of Image Analysis to the Identification of Mass Inertia Momentum in Electromechanical Systems with Changeable Backlash Zone ⚙️🔍
  7. Application of Wavelet-Neural Method to Detect Backlash Zone in Electromechanical Systems Generating Noises 🔧🌊
  8. Methods of Classification of the Genera and Species of Bacteria Using Decision Tree 🌱📈
  9. Deep Learning Approach to Bacterial Colony Classification 🧬🤖
  10. The DDS Synthesizer (for FPGA Platform) for the Purpose of Research and Education 💻📚

Conclusion

Dr. Anna Plichta is a highly suitable candidate for the Best Researcher Award due to her multidisciplinary approach, significant research contributions, high citation impact, and leadership in academia. She has demonstrated a consistent ability to tackle complex challenges through computational methods, contributing valuable knowledge to both the scientific community and industrial sectors. Her work, particularly in machine learning and electromechanical systems, is both innovative and impactful.While there are always areas for improvement, such as expanding collaborative efforts and public outreach, these do not overshadow her significant academic achievements. Dr. Plichta’s track record of high-quality research and teaching, along with her contribution to solving real-world problems, make her an excellent contender for the Best Researcher Award.

Costica BEJINARIU | Materials Technology | Best Researcher Award

Prof Dr. Costica BEJINARIU | Materials Technology | Best Researcher Award

Professor, PhD, Eng., „Gheorghe Asachi” Technical University from Iasi, Romania

👨‍🏫 Professor Costica Bejinariu is a distinguished academic with over 35 years of experience in Materials Engineering and Industrial Safety. He currently holds a position as a full professor at Gheorghe Asachi Technical University of Iasi, Romania, and is also a doctoral supervisor. His research interests span across Materials Science, Nanostructured Materials, Safety at Work, and Risk Assessment. Professor Bejinariu has made significant contributions to both national and international research, with numerous projects and publications, and he is highly involved in academic leadership and professional associations.

Profile

Google Scholar

Education

🎓 Professor Bejinariu’s education has laid a strong foundation for his extensive career in Materials Engineering. While details of his personal education journey are not specifically listed, his professional development is highlighted through his role as a doctoral supervisor since 2009, guiding seven completed theses and currently overseeing seven doctoral candidates.

Research Experience

🔬 With over 45 completed and ongoing research projects, Professor Bejinariu has led and contributed to a wide array of initiatives, including industry projects and academic research funded by prominent Romanian grants such as CNMP-PN2, CeEx, and ORIZONT 2000. He has also managed several grants, demonstrating his leadership in both scientific and applied research. His research has focused primarily on Materials Science, particularly the safety and health aspects in engineering and industrial applications.

Research Interests

🧪 Professor Bejinariu’s research spans several crucial domains, including Materials Engineering, Nanostructured Materials, and Safety Engineering. His work in risk assessment and occupational health highlights his dedication to improving workplace safety and public health through advanced material testing and development. He also actively explores sustainable practices in materials technology and engineering, aiming to address industrial and environmental challenges.

Awards

🏆 Professor Bejinariu’s career is marked by numerous honors and achievements, including his membership in prestigious organizations such as the Academy of Romanian Scientists. He has contributed significantly to both the academic and industry sectors through his leadership in research, having been recognized for his innovative approaches and commitment to academic excellence. His research and publications continue to receive global recognition, contributing to his high citation index.

Publications Top Notes

📚 Professor Bejinariu has an impressive record with 277 scientific papers, including over 65 articles indexed in ISI – Web of Science Core Collection and 33 papers in proceedings. His work spans international journals and conferences, with a citation index of over 1500 citations across platforms like Web of Science, Scopus, and Google Scholar. Some of his notable works include his contributions to corrosion resistance and materials surface enhancement. He has also published 30 books/chapters, several of which are internationally recognized.

Citation Metrics:

  • Web of Science: 875 citations
  • Scopus: 1077 citations
  • Google Scholar: 1547 citations

Nasimuddin | Engineering | Best Researcher Award

Dr. Nasimuddin | Engineering | Best Researcher Award

Principal Scientist I2R ASTAR  Singapore

Nasimuddin is a Principal Scientist at the Institute for Infocomm Research (I²R), part of A*STAR in Singapore. With a distinguished career in RF and antenna engineering, he has contributed extensively to the fields of wireless power transmission, sensor design, and advanced antenna systems for a variety of applications including satellite communications and energy harvesting. Nasimuddin’s work bridges industry and academia, evidenced by his collaborations, industry technology transfers, and numerous patents.

profile

Google scholar.com

Education 🎓

  • Ph.D. in Electronic Science (2004): University of Delhi, India
    Thesis: Analysis and design of multilayer slow-wave microstrip structures and multilayered microstrip antennas.
  • M.Tech. in Microwave Electronics (1998): University of Delhi, India
  • M.Sc. in Electronics (1996): Jamia Millia Islamia, India
  • B.Sc. in Physics, Mathematics, Chemistry (1994): Jamia Millia Islamia, India

Experience 🏢

Nasimuddin has held various research and teaching roles. Since 2006, he has been part of I²R, A*STAR Singapore, where he currently serves as a Principal Scientist. He was an Honorary Research Associate and Fellow at Macquarie University in Australia (2009–2020) and held a Postdoctoral Research Fellowship under an ARC Discovery Project at Macquarie University (2004–2006). He has also conducted specialized courses in RF energy harvesting applications at NIT Silchar, India.

Research Interests 🔬

Nasimuddin’s research interests include:

  • Advanced antenna engineering for sensor and wireless systems
  • High-gain, compact metamaterial-based antennas
  • Printed and flexible electronics
  • Beam steering antennas and phased array systems
  • RF energy harvesting and wireless power transmission systems
    His research focuses on microwave and millimeter-wave antennas, addressing challenges in satellite communication, RFID, and beamforming technologies.

Awards 🏆

  • Singapore Manufacturing Federation Award (2014): Recognized for contributions to TVWS Transceiver Radio Technology (team award).
  • Dedicated Service Award (2022): Honored for 15 years at I²R, Singapore.
  • Long Service Awards (2012, 2017): For 5 and 10 years at I²R, Singapore.
  • Young Scientist Award (2005): Awarded by the International Union of Radio Science (URSI).
  • M.Tech. Merit Scholarship (1996): University of Delhi, for outstanding academic performance.

Publications Top Notes📚:

Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A State-of-the-Art Review – IEEE Antennas and Propagation Magazine, 2024. Cited by 12 articles.

Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions – IEEE Microwave Magazine, 2023. Cited by 18 articles.

5G/Millimeter-Wave Rectenna Systems for RF Energy Harvesting/Wireless Power Transmission Applications: An Overview – IEEE Antennas and Propagation Magazine, 2023. Cited by 25 articles.

A Single-Feed Wideband Circularly Polarized Dielectric Resonator Antenna Using Hybrid Technique with a Thin Metasurface – IEEE Access, 2022. Cited by 10 articles.

Quantifying the Impact of Slow Wave Factor on Closed-Loop Defect-Based WPT Systems – IEEE Transactions on Instrumentation and Measurement, 2022. Cited by 8 articles.