Rana Ramadan Fahmy Neiber | Chemical Engineering | Research Excellence Award

Dr. Rana Ramadan Fahmy Neiber | Chemical Engineering | Research Excellence Award

Chinese Academy of Sciences | China

Dr. Rana Ramadan Fahmy Neiber is a postdoctoral fellow at the Institute of Process Engineering, Chinese Academy of Sciences, specializing in chemical and process engineering with expertise spanning energy storage, advanced functional materials, and sustainable resource recovery. The candidate holds doctoral and master’s training in process engineering, supported by competitive international fellowships, with a strong foundation in chemistry, analytical biochemistry, and organic synthesis. Professionally, the author has contributed to high-impact research projects in metal adsorption, battery and plastic recycling, MXene and MBene-based materials, extrusion ink applications, and green engineering, while actively participating in scientific forums and invited lectures. The research portfolio includes influential publications in leading journals such as Advanced Functional Materials, Chemical Engineering Journal, Journal of Hazardous Materials, Nano-Micro Letters, and Coordination Chemistry Reviews, covering supercapacitors, lithium recovery, antibacterial materials, and electrochemical sensing. The candidate has received multiple excellence and outstanding performance awards from academic and research institutions and is recognized for interdisciplinary innovation, international collaboration, and strong potential for continued leadership in sustainable energy and materials research.

Citation Metrics (Google Scholar)

649
500
300
100
0

649

12

14

Citations

h-index

i10-index


Top 5 Featured Publications

 

Tun Naw Sut | Chemical Engineering | Best Researcher Award

Dr. Tun Naw Sut | Chemical Engineering | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Tun Naw Sut is a postdoctoral fellow specializing in nanomedicine, biomimetic membranes, and bio-sensing technologies, recognized for his interdisciplinary expertise and impactful research contributions. He holds dual doctoral training in nanomedicine and chemical engineering, supported by prior qualifications in materials science and biomedical engineering, forming a strong foundation for his work at the interface of engineering, biotechnology, and nanomaterials. His professional experience spans academic research, diagnostic platform development, electrochemical biomarker detection, phospholipid self-assembly studies, and compliance testing of medical electrical equipment, reflecting both scientific depth and industry-relevant technical capability. Dr. Sut’s research focuses on lipid-based nanomaterials, membrane biophysics, antimicrobial lipids, diagnostic sensors, and therapeutic nanoplatforms, and he has authored numerous publications in high-impact journals that advance the understanding and application of functional biomimetic systems. His leadership includes serving as guest editor and topic editor for international journals, contributing to the curation of scholarly work in biomimicry, functional materials, and membrane science. He has been recognized through competitive research grants, academic scholarships, and editorial appointments that highlight his innovation, scientific rigor, and growing influence in the field. Through his combined research excellence, interdisciplinary training, and dedication to advancing diagnostic and therapeutic technologies, Dr. Sut demonstrates exceptional potential for continued contributions to scientific innovation and research leadership.

Profiles: Scopus | ORCID

Featured Publications

1. Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces.

2. Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano.

3. Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials.

4. Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials.

5. Hwang, Y., Zhao, Z. J., Shin, S., Sut, T. N., Jackman, J. A., Kim, T., Moon, Y., Ju, B. K., Jeoni, J. H., Cho, N. J., & Kim, M. (2025). Nanopot plasmonic sensor platform for broad spectrum virus detection. Chemical Engineering Journal.

Dr. Tun Naw Sut’s work advances next-generation diagnostic and therapeutic technologies through innovative biomimetic membrane engineering and lipid-based nanomaterials. His research contributes to global health by enabling more effective pathogen detection, improved targeted delivery systems, and transformative strategies for sensing and treating complex diseases.

Kaíque Oliveira | Chemical Engineering | Editorial Board Member

Dr. Kaíque Oliveira | Chemical Engineering | Editorial Board Member

Researcher | Federal University of São Carlos | Brazil

Dr. Kaíque Souza Gonçalves Cordeiro Oliveira, a Professor at IFSULDEMINAS, is an expert in electrochemical treatment of water and wastewater, with specialization in electrooxidation and capacitive and faradaic processes; he has completed advanced academic training with graduate degrees focused on electrochemical and environmental engineering disciplines, building a strong foundation in applied research and technological development. His professional experience includes leading instructional and research activities, mentoring students, and contributing to institutional projects that advance sustainable water-treatment technologies. Dr. Oliveira’s research centers on developing innovative electrochemical approaches for pollutant degradation, system optimization, and materials performance, resulting in impactful publications and growing recognition within the scientific community. His scholarly contributions, including peer-reviewed articles and participation in collaborative research initiatives, reflect his commitment to advancing environmentally responsible treatment methods. He has received professional acknowledgments for academic excellence, serves in editorial and review capacities for scientific journals, and contributes to professional societies and technical committees that promote innovation in electrochemical engineering.

Profiles: Google Scholar

Featured Publications

1. Juchen, P. T., Barcelos, K. M., Oliveira, K. S. G. C., & Ruotolo, L. A. M. (2022). Using crude residual glycerol as precursor of sustainable activated carbon electrodes for capacitive deionization desalination. Chemical Engineering Journal, 429, 132209.

2. Barcelos, K. M., Oliveira, K. S. G. C., & Ruotolo, L. A. M. (2020). Insights on the role of interparticle porosity and electrode thickness on capacitive deionization performance for desalination. Desalination, 492, 114594.

3. Oliveira, K. S. G. C., dos Santos, E. V., Loor-Urgilés, L. D., Shabanloo, A., & others. (2025). The world impact of boron doped diamond electrodes and low-cost strategies for novel production systems for sustainable wastewater treatment. Current Opinion in Electrochemistry, 101648.

4. Oliveira, K. S. G. C., Farinos, R. M., Veroli, A. B., & Ruotolo, L. A. M. (2021). Electrochemical incineration of glyphosate wastewater using three-dimensional electrode. Environmental Technology, 42(2), 170–181.

5. Oliveira, K. S. G. C., Barcelos, K. M., Lado, J. J., Palma, J., & Ruotolo, L. A. M. (2023). Improving the electrochemical desalination performance of chloride-doped polyaniline activated carbon electrode by tuning the synthesis method. Chemical Engineering Journal, 457, 141059.

Dr. Kaíque Souza Gonçalves Cordeiro Oliveira’s work advances sustainable electrochemical technologies that enable cleaner water, improved resource recovery, and more resilient environmental systems. His innovations in electrooxidation and capacitive deionization contribute to global efforts to ensure accessible, energy-efficient, and environmentally responsible water treatment solutions for industry and society.

Satyen Kumar Das | Chemical Engineering | Outstanding Scientist Award

Dr. Satyen Kumar Das | Chemical Engineering | Outstanding Scientist Award

Chief General Manager at Indian Oil Corporation Limited, R&D Centre, Faridabad, India

Dr. Satyen Kumar Das, Chief General Manager at IndianOil R&D Centre, is a distinguished chemical engineer with over 30 years of pioneering contributions in petroleum refining, sustainability, and circular technologies. A Ph.D. from IIT Delhi, he has led the development and commercialization of breakthrough technologies such as INDMAX, Ind-Coker, Needle Coke, INDEcoP2F, and IV-IZOMaxCAT, significantly enhancing India’s energy self-reliance. With 210 patents (144 granted globally), 10 commercialized technologies, and over 98 technical publications, his innovations span residue upgradation, light olefin production, and waste-to-fuel conversion. Dr. Das has received 13+ national awards, including honors from DST, DSIR, and MOP&NG, recognizing his excellence in applied R&D. Under his leadership, several large-scale refining projects have been successfully deployed across India and internationally. His visionary work blends scientific rigor with industrial impact, making him a leading force in advancing indigenous, eco-friendly refining technologies.

Professional Profile 

Google Scholar
Scopus Profile

Education 

Dr. Satyen Kumar Das has a strong academic foundation in chemical engineering from some of India’s premier institutions. He completed his Bachelor of Technology (B.Tech) in Chemical Engineering from the University of Calcutta, where he gained essential knowledge in chemical processes and thermodynamics. He then pursued his Master of Technology (M.Tech) in Chemical Engineering from the Indian Institute of Technology, Kanpur, enhancing his expertise in process engineering and catalysis. To further advance his academic pursuits, Dr. Das earned his Doctorate (Ph.D.) in Chemical Engineering from the Indian Institute of Technology, Delhi. During his academic journey, he built a strong foundation in research methodology, process modeling, and applied chemical engineering, which laid the groundwork for his long-standing contributions to petroleum refining and sustainable technologies. His education has been instrumental in shaping his career, enabling him to bridge the gap between scientific research and industrial innovation effectively.

Experience 

Dr. Satyen Kumar Das began his professional journey with IndianOil R&D Centre in 1995 and has since accumulated nearly 30 years of experience in the petroleum refining industry. Currently serving as Chief General Manager, he leads the Refining Technology division, steering large-scale R&D, troubleshooting, and commercial deployment of innovative technologies. From 1995 to 2013, he contributed to the development of key catalytic processes such as INDMAX, INDALIN, and Fischer Tropsch-based technologies. Between 2014 and 2025, he spearheaded the commercialization of advanced solutions including Ind-Coker, INDEcoP2F, and IV-IZOMaxCAT, transforming refinery operations across India. His leadership has resulted in the successful implementation of several commercial plants, with a cumulative licensed capacity of over 17 MMTPA. Dr. Das also initiated futuristic projects in bio-refineries, waste-to-energy, and CO₂ valorization, demonstrating a vision aligned with environmental sustainability. His broad experience reflects an exceptional blend of technical depth and strategic innovation.

Awards and Honors

Dr. Satyen Kumar Das has been widely recognized for his outstanding contributions to petroleum refining and chemical engineering through numerous national and industry awards. He has received over 13 prestigious honors, including multiple National Awards from the Government of India for the development and commercialization of INDMAX and Needle Coke Technologies. The National Petroleum Management Program (NPMP) and DST, DSIR, and MOP&NG have honored him for innovation, sustainability, and indigenous technology leadership. He received the “Innovator of the Year” award from FIPI, the CHEMTECH CEW Award for R&D excellence, and the AIMA Award for breakthrough innovation in artificial intelligence and R&D. In recent years, he was recognized for plastic circularity (INDEcoP2F), light naphtha isomerization (IV-IZOMaxCAT), and was honored with the “Jewel of India Award” and the “Indian Scientist Award” for best researcher in chemical engineering. His accolades underscore his impact on national energy innovation.

Research Focus  on Chemical Engineering

Dr. Satyen Kumar Das’s research primarily centers on the development of innovative, sustainable, and commercially viable technologies in petroleum refining. His focus includes residue upgradation, light olefin production, waste-to-fuel conversion, and plastic circularity—critical areas in the transition toward cleaner energy. He led the development of pathbreaking technologies like INDMAX, Ind-Coker, INDEcoP2F, and Octamax, targeting fuel efficiency, process optimization, and emissions reduction. His work spans catalyst development, feedstock valorization, carbon material synthesis, and CO₂ utilization, reflecting a deep commitment to sustainability and energy security. Dr. Das’s ability to move innovations from lab-scale to full-scale commercial deployment across multiple Indian and international refineries highlights his applied research excellence. He also initiated future-oriented programs in bio-refineries, advanced carbon materials, and specialty chemicals, aligning with global trends. His research philosophy blends scientific rigor with practical utility, aiming to enhance refinery economics while minimizing environmental impact.

Publications Top Notes

  • Title: Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks
    Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …
    Year: 2006
    Citations: 64

  • Title: CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components
    Authors: SK Das, S Majhi, P Mohanty, KK Pant
    Year: 2014
    Citations: 43

  • Title: Process for catalytic cracking of petroleum based feed stocks
    Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …
    Year: 1998
    Citations: 41

  • Title: CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading
    Authors: SK Das, P Mohanty, S Majhi, KK Pant
    Year: 2013
    Citations: 40

  • Title: Upgradation of undesirable olefinic liquid hydrocarbon streams
    Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …
    Year: 2000
    Citations: 38

  • Title: Stabilized dual zeolite single particle catalyst composition and a process thereof
    Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …
    Year: 2005
    Citations: 31

  • Title: Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters
    Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur
    Year: 2017
    Citations: 29

  • Title: Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same
    Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal
    Year: 2016
    Citations: 19

  • Title: Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques
    Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, SK Das
    Year: 2021
    Citations: 14

  • Title: Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same
    Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal
    Year: 2016
    Citations: 13

  • Title:Process for the production of needle coke
    Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, SK Das
    Year: 2009
    Citations: 8

  • Title: Delayed coker drum and method of operating thereof
    Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya
    Year: 2019
    Citations: 7

  • Title: Process and apparatus for co-conversion of waste plastics in delayed coker unit
    Authors: PR Pradeep, THVD Prasad, SA Dixit, P Mondal, VK Kottiyath, SK Das, …
    Year: 2021
    Citations: 6

  • Title: Process for the conversion of crude oil to light olefins, aromatics and syngas
    Authors: PR Pradeep, AK Kottakuna, THVD Prasad, SK Das, D Bhattacharyya, …
    Year: 2020
    Citations: 3

  • Title: Process for conversion of residue employing de-asphalting and delayed coking
    Authors: PR Pradeep, SK Das, THVD Prasad, AK Kottakuna, D Bhattacharyya, …
    Year: 2020
    Citations: 2

Conclusion

Dr. Satyen Kumar Das is an accomplished chemical engineer with a robust academic background from top Indian institutions and nearly three decades of impactful experience at IndianOil R&D. His contributions to indigenous refining technologies, waste-to-fuel innovation, and plastic circularity have transformed India’s energy landscape. With over 210 patents, 98 publications, 13+ national awards, and successful commercialization of 10 major technologies, his work demonstrates a rare blend of scientific depth, innovation, and real-world implementation. Dr. Das is strongly recommended for the Outstanding Scientist Award in recognition of his pioneering research and sustained national impact.

Dr. Chenjie Wei | Chemistry | Best Researcher Award 

Dr. Chenjie Wei | Chemistry | Best Researcher Award 

Doctoral Student at Peoples’ Public Security University of China, China

Chenjie Wei is a dedicated forensic science researcher specializing in non-destructive analytical techniques for trace evidence identification. With a strong focus on spectral fusion, chemometrics, and advanced spectroscopic methods such as FTIR and Raman spectroscopy, Wei has authored over 15 research papers, including publications in high-impact international journals like Microchemical Journal and Polymers. His work demonstrates a consistent commitment to practical forensic applications, addressing materials such as car bumpers, pigments, and drug additives. As a key contributor to multiple collaborative projects, he has built a strong foundation in interdisciplinary research, combining analytical chemistry, data science, and forensic investigation. While still in the early stages of his career, Wei’s research is impactful, methodologically innovative, and relevant to real-world forensic challenges. With continued development in leadership and international engagement, he is well-positioned as an emerging talent in the forensic science community.

Professional Profile 

Scopus Profile

Education

Chenjie Wei was born in August 1997 in China and pursued his academic training in forensic science, a multidisciplinary field that blends analytical chemistry, biology, and criminal investigation. While specific degree details are not provided in the resume, his extensive publication record suggests formal graduate-level education, likely including a Master’s and ongoing or completed doctoral studies in forensic or analytical sciences. His academic journey reflects rigorous scientific training in advanced spectroscopic methods and chemometrics. The consistent collaboration with established researchers like Jifen Wang further indicates his integration into a strong academic mentorship environment. Wei’s education appears to have emphasized practical and research-driven learning, as evidenced by his application of machine learning, spectral fusion, and molecularly imprinted polymers in forensic contexts. His academic trajectory has equipped him with the technical skills, scientific mindset, and collaborative discipline necessary for conducting innovative forensic research with real-world applicability in criminal investigations and material identification.

Professional Experience

Chenjie Wei has developed significant professional experience through active research in the field of forensic science. Although formal job titles or positions are not specified, his extensive list of co-authored and first-authored scientific publications indicates his involvement in academic or research institutions—most likely as a research assistant, doctoral candidate, or early-career researcher. Wei has participated in multiple collaborative research projects, often contributing to the development and validation of non-destructive methods for forensic evidence analysis using FTIR, Raman spectroscopy, and chemometric modeling. His contributions to Chinese core journals and SCI-indexed international publications reflect his engagement in both national and global research communities. His experience working on diverse forensic materials—such as car parts, pigments, and narcotics—demonstrates not only his technical versatility but also his commitment to applied forensic problem-solving. Wei’s professional journey suggests a strong emphasis on research execution, data analysis, and publication, building a solid foundation for a promising academic or institutional research career.

Research Interest

Chenjie Wei’s research interests lie at the intersection of forensic science, analytical chemistry, and data-driven material identification. He specializes in developing non-destructive analytical techniques using advanced spectroscopic tools such as FTIR (Fourier-transform infrared spectroscopy), Raman spectroscopy, and spectral fusion methods, often combined with chemometric and machine learning models. His focus is on the rapid, reliable, and minimally invasive classification of trace evidence—including automotive components, pigments, tissues, and controlled substances—for forensic investigations. Wei is particularly interested in improving the accuracy and speed of forensic analysis through mathematical modeling, artificial neural networks, support vector machines, and data fusion strategies. His recent research also includes the application of molecularly imprinted polymers (MIPs) for the selective detection of explosives. By aligning analytical precision with forensic applicability, Wei aims to enhance evidentiary reliability in criminal cases, streamline forensic workflows, and contribute to the scientific basis of judicial processes.

Award and Honor

While specific individual awards and honors are not explicitly listed in the available resume, Chenjie Wei’s body of work itself stands as a testament to his academic excellence. He has published over 15 research articles, including in high-impact journals such as Microchemical Journal and Polymers—both ranked Q1 with impact factors around 4.9. Such publications often require rigorous peer-review processes and signify recognition from the international research community. His involvement in collaborative, multi-author studies with senior experts and consistent presence in both SCI-indexed and Chinese core journals (CSCD, 北大核心) reflects strong institutional trust and academic contribution. These achievements suggest that Wei has likely been acknowledged within his academic institution or research group for outstanding performance, although formal award details may not be listed. Based on this record, he is a strong candidate for research-based awards that honor innovation, early-career excellence, and impact in forensic and analytical sciences.

Conclusion

Chenjie Wei is a promising young researcher whose contributions to forensic science reflect both depth and innovation. With a focused interest in non-destructive analytical techniques and forensic applications, he has built a strong publication record across reputable international and national journals. His research demonstrates not only technical rigor but also real-world relevance—addressing challenges in material identification, trace evidence classification, and forensic investigation through spectral data analysis and chemometric modeling. Wei’s education and professional experience have shaped him into a capable and collaborative researcher, with growing expertise in applying artificial intelligence and molecular technologies to forensic contexts. Although in the early stages of his career, he shows strong potential for leadership in forensic research and is well-positioned to contribute to both academic and applied domains. His track record makes him a compelling candidate for awards recognizing excellence in scientific research, especially within the forensic, analytical, and interdisciplinary science communities.

Publications Top Notes

  • Title:
    Application of Molecularly Imprinted Polymers in the Analysis of Explosives

  • Authors:
    Chenjie Wei, Lin Feng, Xianhe Deng, Yajun Li, Hongcheng Mei, Hongling Guo, Jun Zhu, Can Hu

  • Year of Publication:
    2025 (Published on May 20, 2025)

  • Journal:
    Polymers (MDPI), SCI Q1, Impact Factor: 4.9

Dr. Zeena Pillai | Chemistry | Best Researcher Award

Dr. Zeena Pillai | Chemistry | Best Researcher Award

Professor at Amrita Viswa Vidyapeetham, India

Dr. Zeena S. Pillai is a distinguished Professor of Chemistry at Amrita Vishwa Vidyapeetham, Amritapuri, with over two decades of experience in teaching and research. She holds a Ph.D. in Photochemistry and has completed prestigious postdoctoral fellowships in the United States at the University of Notre Dame and Florida State University. Her research spans organic photochemistry, supramolecular chemistry, nanochemistry, and phytochemistry, with a growing focus on sustainable technologies and Ayurvedic formulations. She has authored over 30 peer-reviewed publications, several book chapters, and has led multiple interdisciplinary research projects. Dr. Pillai has received numerous accolades, including the AIRA Research Award (2025), Best Academician Award (2023), and an Erasmus Mundus Professorship. As a curriculum developer and key contributor to the MHRD Virtual Labs project, she plays a vital role in educational innovation. Her academic excellence, research leadership, and commitment to advancing science make her a strong candidate for the Best Researcher Award.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile 

Education

Dr. Zeena S. Pillai completed her M.Sc. in Chemistry from Mahatma Gandhi University in 1996 and went on to earn a Ph.D. in Photochemistry from the Photonics and Photosciences Division at NIIST, Thiruvananthapuram, affiliated with the University of Kerala, in 2002. Her academic excellence was evident early on, qualifying national competitive exams such as the CSIR-UGC NET and GATE in 1997. She also received the prestigious CSIR Junior and Senior Research Fellowships, supporting her doctoral research. Post-Ph.D., she was awarded competitive postdoctoral research fellowships, first at the Radiation Laboratory, University of Notre Dame, and later at the Department of Chemistry and Biochemistry, Florida State University, USA. These positions provided her with significant exposure to cutting-edge international research. Her academic journey reflects a strong foundation in both theoretical and applied chemistry, combined with a global outlook and a consistent record of achievement across all stages of her education.

Professional Experience

Dr. Zeena S. Pillai brings a wealth of professional experience in both academia and research, marked by a consistent trajectory of growth and leadership. She began her career as a Postdoctoral Research Fellow at the University of Notre Dame (2001–2003) and later at Florida State University (2003–2004), where she worked on photochemical systems and supramolecular materials. Returning to India, she held teaching roles at R.V. College of Engineering, Bangalore (2006), and NSS College for Women, Trivandrum (2008). Since 2009, she has served as a Professor in the Department of Chemistry at Amrita Vishwa Vidyapeetham, Amritapuri Campus. Her responsibilities have included curriculum development, Ph.D. supervision, and spearheading interdisciplinary research initiatives. She has also served as a subject expert in MHRD’s Virtual Labs project under the National Mission on Education through ICT. Her career reflects a blend of research innovation, pedagogical excellence, and national-level academic contribution.

Research Interest

Dr. Zeena S. Pillai’s research is rooted in interdisciplinary and application-driven chemical sciences. Her primary areas of interest include organic photochemistry, supramolecular chemistry, nanochemistry, phytochemistry, and photodynamic therapy. She has explored functional materials such as dendrimers, host–guest systems, and hemicyanines with applications in sensing, drug delivery, and luminescence. She also contributes to sustainable and green chemistry through research on ionic liquids, metal-organic frameworks (MOFs), and carbon capture technologies. Notably, her work bridges traditional systems of medicine and modern chemistry, with several studies on Ayurvedic compounds and ethnobotanicals for pharmacological applications. Dr. Pillai’s active research includes both experimental and theoretical components, as reflected in her numerous publications in high-impact journals like Nature (NPG Asia Materials) and The Electrochemical Society. Her work exemplifies a commitment to solving real-world challenges using modern chemical science while maintaining a strong academic and ethical research foundation.

Award and Honor

Dr. Zeena S. Pillai has been recognized for her research excellence and academic leadership through numerous awards and honors. Recently, she received the AIRA Research Award (2025) from Amrita Vishwa Vidyapeetham and the Best Academician Award (2023) from InAsc. Her international reputation was highlighted by her selection for the prestigious Erasmus Mundus Visiting Professorship at the University of Bologna, Italy, in 2010 and 2011. Earlier in her career, she earned the highly competitive CSIR Junior and Senior Research Fellowships, along with a National Talent Scholarship from India’s Ministry of Education. She also cleared national-level competitive exams such as the CSIR-UGC NET and GATE in Chemistry. These recognitions validate not only the scientific merit of her work but also her contributions to capacity-building in higher education and research. Dr. Pillai’s consistent record of academic distinction and award-winning scholarship strengthens her candidacy for any research-focused honors.

Conclusion

In conclusion, Dr. Zeena S. Pillai stands out as a highly accomplished academic and researcher in the field of chemical sciences. With a solid educational foundation, substantial international research experience, and a deep commitment to interdisciplinary and socially relevant science, she has built a career marked by both scholarly excellence and impactful teaching. Her contributions span from foundational photochemistry to applied research in nanomaterials and Ayurvedic compounds, illustrating a rare blend of tradition and innovation. With over 30 research publications, several book chapters, and leadership roles in national education initiatives, she continues to inspire future generations of scientists. Her awards, fellowships, and invited positions further affirm her role as a thought leader in her discipline. As a result, Dr. Pillai is exceptionally well-qualified for recognition through honors such as the Best Researcher Award, which would be a fitting acknowledgment of her dedication, impact, and ongoing contributions to science and education.

Publications Top Notes

  • Title: What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?
    Authors: ZS Pillai, PV Kamat
    Year: 2004
    Citations: 1092

  • Title: Photoinduced Charge Transfer between CdSe Quantum Dots and p-Phenylenediamine
    Authors: SN Sharma, ZS Pillai, PV Kamat
    Year: 2003
    Citations: 300

  • Title: The VALUE@ Amrita Virtual Labs Project: Using web technology to provide virtual laboratory access to students
    Authors: K Achuthan, KS Sreelatha, S Surendran, S Diwakar, P Nedungadi, ZS Pillai, et al.
    Year: 2011
    Citations: 90

  • Title: Chemistry of cyanine dyes—A review
    Authors: GS Gopika, PMH Prasad, AG Lekshmi, S Lekshmypriya, S Sreesaila, ZS Pillai
    Year: 2021
    Citations: 78

  • Title: Dendrimers as Nd3+ ligands: Effect of Generation on the Efficiency of the Sensitized Lanthanide Emission
    Authors: ZS Pillai, P Ceroni, M Kubeil, JM Heldt, H Stephan, G Bergamini
    Year: 2013
    Citations: 19

  • Title: Effect of viscosity on the singlet-excited state dynamics of some hemicyanine dyes
    Authors: ZS Pillai, PK Sudeep, KG Thomas
    Year: 2003
    Citations: 18

  • Title: Spectroelectrochemistry of aromatic amine oxidation: an insight into the indo dye formation
    Authors: ZS Pillai, PV Kamat
    Year: 2005
    Citations: 17

  • Title: Emerging organic electrode materials for sustainable batteries
    Authors: PM Hari Prasad, G Malavika, A Pillai, S Sadan, ZS Pillai
    Year: 2024
    Citations: 11

  • Title: The stability of the superhydrophobic surfaces
    Authors: JS Jayan, D Jayadev, ZS Pillai, K Joseph, A Saritha
    Year: 2019
    Citations: 10

  • Title: A review on synthesis and various pharmacological aspects of Rhinacanthin-C with special emphasis on antidiabetic activity
    Authors: AS Kumar, M Leema, S Sridevi, S Sreesaila, LJ Anil, M Mohit, H Krishnan, ZS Pillai
    Year: 2021
    Citations: 7

  • Title: Characterization of superhydrophobic polymer coating
    Authors: D Jayadev, JS Jayan, ZS Pillai, K Joseph, A Saritha
    Year: 2019
    Citations: 6

  • Title: Synthesis of silver nanoparticles from a bioactive precursor
    Authors: M Leema, G Sreekumar, A Sivan, ZS Pillai
    Year: 2019
    Citations: 4

  • Title: Lanthanide Terpyridine‐Based Assemblies: Towards Dual Luminescent Probes
    Authors: JK Molloy, Z Pillai, J Sakamoto, P Ceroni, G Bergamini
    Year: 2015
    Citations: 4

  • Title: Synthesis and antibacterial screening of novel derivatives of embelin
    Authors: L Subramanian, M Leema, NS Pradeep, B Joy, ZS Pillai
    Year: 2018
    Citations: 3

  • Title: Synthesis and fine tuning of MOF for hydrogen storage
    Authors: ZS Pillai, PPMH Prasad, ASA Latheef, A Pillai
    Year: 2023
    Citations: 2

Xiaoxu Liu | Engineering | Best Researcher Award

Dr. Xiaoxu Liu | Engineering | Best Researcher Award

Associate Professor at Shenzhen Technology University, China

Dr. Xiaoxu Liu is an accomplished Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. He holds a Ph.D. in Electrical Engineering from the University of Northumbria and specializes in robust fault diagnosis, fault-tolerant control, stochastic systems, and multi-agent systems. Dr. Liu has published extensively in top-tier journals such as IEEE Transactions on Industrial Electronics and Automatica, and has served as Associate Editor for IEEE Transactions on Industrial Informatics. He has led multiple nationally funded research projects, securing over 3 million RMB in grants. His work integrates control theory with data-driven methods, addressing challenges in cyber-physical systems. Recognized as a Shenzhen Overseas High-level Talent, he has received numerous awards for research excellence and student mentorship. With international research experience and significant editorial contributions, Dr. Liu is a prominent figure in intelligent systems and control, demonstrating both academic leadership and impactful research contributions.

Professional Profile 

Scopus Profile

Education

Dr. Xiaoxu Liu possesses a strong and progressive academic background in engineering and applied mathematics. He earned his Ph.D. in Electrical Engineering from the University of Northumbria in the UK (2014–2018), where he specialized in fault-tolerant control systems and robust estimation. Prior to this, he completed a Master’s degree in Operations Research and Cybernetics at Northeastern University (2012–2014), and a Bachelor’s degree in Information and Computing Science at the same university (2008–2012). His educational path reflects a solid foundation in both theoretical and applied aspects of control systems, cybernetics, and intelligent systems. This combination of mathematical rigor and engineering application has laid the groundwork for his interdisciplinary research approach. His international academic journey has also helped him build a global perspective and a collaborative mindset, both of which have been instrumental in his subsequent professional and research achievements.

Professional Experience

Dr. Xiaoxu Liu has built an impressive academic and research career marked by rapid progression and leadership. Since December 2021, he has served as an Associate Professor at the Sino-German College of Intelligent Manufacturing, Shenzhen Technology University. Before that, he was an Assistant Professor at the same institution from 2018 to 2021. He also held research and teaching positions internationally, including as a Research Associate at the Faculty of Mathematics, City University of Hong Kong, and as a Lecturer at the University of Northumbria. Throughout these roles, Dr. Liu has led cutting-edge research projects, mentored students, and contributed to institutional development. He has acted as the principal investigator for numerous funded research programs, reflecting his capacity to lead independently and strategically. His experience demonstrates not only academic proficiency but also a sustained commitment to advancing intelligent systems research and fostering interdisciplinary collaboration in both teaching and applied engineering contexts.

Research Interest

Dr. Xiaoxu Liu’s research spans several high-impact areas within intelligent systems and control engineering. His primary interests include robust fault diagnosis, fault-tolerant control, stochastic nonlinear systems, and multi-agent systems. He also ocuses on cyber-physical systems and data-driven control, areas highly relevant to Industry 4.0 and autonomous system applications. Dr. Liu’s work often combines theoretical rigor with practical relevance, leveraging modern tools like deep reinforcement learning and Takagi-Sugeno fuzzy models to address real-world challenges such as actuator faults in UAVs or wind turbine resilience. His interdisciplinary approach blends classical control theory with artificial intelligence, enhancing system adaptability and reliability. His research outputs—published in top-tier journals like IEEE Transactions on Industrial Electronics—demonstrate not only novelty but also applicability to emerging technologies. Dr. Liu’s ability to connect robust theory with practical implementations positions him as a thought leader in intelligent manufacturing and autonomous system control.

ward and Honor

Dr. Xiaoxu Liu has received multiple awards that recognize his research excellence, academic leadership, and contributions to engineering education. He was honored as a Shenzhen Overseas High-level Talent in 2019, highlighting his strategic value to China’s academic and technological development. He has earned several Best Paper and Best Presentation Awards from prestigious conferences and journals, such as the IEEE Industrial Electronics Society and Processes. Dr. Liu also received the IEEE IES Student Paper Travel Award and various recognitions for his mentorship of student teams who achieved national-level prizes in robotics and circuit design competitions. These accolades underscore both the quality and impact of his scholarly work and his dedication to student development. His involvement as an Associate Editor for IEEE Transactions on Industrial Informatics and reviewer for top IEEE journals further validates his status as a trusted expert in his field. These honors collectively reflect his rising prominence in the global research community.

Conclusion

In summary, Dr. Xiaoxu Liu stands out as a highly capable and accomplished researcher in the field of intelligent control systems. With a solid educational foundation, diverse professional experience across top institutions, and a research portfolio that blends theoretical innovation with real-world application, he exemplifies academic excellence. His focus on robust fault diagnosis, resilient control systems, and data-driven approaches addresses some of the most pressing challenges in cyber-physical systems and smart manufacturing. Recognized nationally and internationally through numerous awards, editorial roles, and funded projects, Dr. Liu has established himself as a leader in his domain. He continues to advance the field through impactful publications, student mentorship, and collaborative projects. His trajectory reflects not only technical expertise but also a broader commitment to scientific progress and educational excellence. As such, Dr. Liu is highly deserving of recognition through accolades such as the Best Researcher Award.

Publications Top Notes

  • Title: Joint Observer Based Fault Tolerant Control for Discrete-Time Takagi-Sugeno Fuzzy Systems With Immeasurable Premise Variables

    • Authors: Xiaoxu Liu, Risheng Li, Zhiwei Gao, Bowen Li, Tan Zhang

    • Year: 2025

  • Title: Multiagent Formation Control and Dynamic Obstacle Avoidance Based on Deep Reinforcement Learning

    • Authors: Zike Yuan, Chenhao Yao, Xiaoxu Liu, Zhiwei Gao, Wenwei Zhang

    • Year: 2025

  • Title: Fault Estimation for Cyber–Physical Systems with Intermittent Measurement Transmissions via a Hybrid Observer Approach

    • Authors: Jingjing Yan, Chao Deng, Weiwei Che, Xiaoxu Liu

    • Year: 2024

    • Citations: 5

  • Title: Reinforcement Learning-Based Fault-Tolerant Control for Quadrotor UAVs Under Actuator Fault

    • Authors: Xiaoxu Liu, Zike Yuan, Zhiwei Gao, Wenwei Zhang

    • Year: 2024

    • Citations: 12

Vassilios Sikavitsas | Chemical Engineering | Best Researcher Award

Prof. Vassilios Sikavitsas | Chemical Engineering | Best Researcher Award 

Professor at University of Oklahoma, United States

Professor Vassilios I. Sikavitsas is a distinguished researcher and educator in biomedical and chemical engineering at the University of Oklahoma. With a Ph.D. in Chemical Engineering from SUNY Buffalo and postdoctoral experience at Rice University, his work focuses on tissue engineering, cancer therapeutics, and bioreactor technologies. He has authored numerous high-impact publications and holds patents related to bone tissue engineering and scaffold design. Recognized multiple times as Best Professor by chemical engineering students, he has also mentored award-winning graduate researchers. His research bridges fundamental science and clinical application, notably in cancer exosome-based therapies and dynamic in vitro tumor models. Sikavitsas actively contributes to the scientific community through editorial board service and memberships in leading professional societies such as AIChE, BMES, and TERMIS. His commitment to interdisciplinary innovation, student development, and translational impact positions him as a leading figure in his field and a strong candidate for the Best Researcher Award.

Professional Profile

Google Scholar
Scopus Profile

Education

Professor Vassilios I. Sikavitsas holds a strong academic foundation in chemical engineering. He earned his Ph.D. (2000) and M.S. (1995) in Chemical Engineering from the State University of New York at Buffalo, where he built his expertise in biomaterials and tissue engineering. Prior to his graduate studies in the United States, he obtained a Diploma in Chemical Engineering from Aristotle University of Thessaloniki, Greece, in 1991. His educational trajectory reflects a progressive focus on biomedical applications within engineering, which laid the groundwork for his future research in regenerative medicine and bioreactor technologies. This combination of classical chemical engineering training and biomedical specialization has enabled him to operate at the intersection of engineering and life sciences, a hallmark of his interdisciplinary research. The international scope of his education also contributes to his broad perspective on engineering challenges and biomedical innovation.

Professional Experience

Professor Sikavitsas has built a distinguished academic career at the University of Oklahoma, where he currently serves as a Professor in the School of Chemical, Biological, and Materials Engineering and is affiliated with the Institute of Biomedical Engineering, Science, and Technology. He joined the university as an Assistant Professor in 2002 and was progressively promoted to Associate Professor in 2008 and Full Professor in 2015. His academic journey began with a postdoctoral research appointment in the Department of Bioengineering at Rice University from 2000 to 2002, where he deepened his expertise in tissue engineering. Throughout his academic appointments, he has established a dynamic and productive research laboratory, collaborated across disciplines, and contributed significantly to curriculum development in bioengineering. In addition to his academic duties, he serves on editorial boards and remains active in professional societies, enhancing his engagement with the broader scientific and engineering communities.

Research Interest

Professor Sikavitsas’s research is centered around tissue engineering, regenerative medicine, cancer biology, and bioreactor design. He specializes in the development of 3D biomimetic scaffolds, dynamic in vitro tumor models, and bone tissue constructs using advanced flow perfusion systems. His work investigates the role of mechanical stimulation and surface modifications in cell differentiation and tissue regeneration. In recent years, he has expanded into cutting-edge cancer research, exploring exosome-based drug delivery systems and tumor-immune interactions. His interdisciplinary projects bridge chemical engineering principles with biomedical applications, contributing to both fundamental understanding and clinical translation. Notable innovations include US patents on scaffold technology and tissue construct production. With an emphasis on bioreactor modeling and oxygen transport optimization, his work has practical implications in both regenerative therapies and anti-cancer strategies. His lab’s ability to combine experimental and computational methods distinguishes his contributions in the field of biomedical engineering.

Award and Honor

Professor Sikavitsas has received numerous awards and recognitions that reflect his excellence in research, teaching, and mentorship. He has been honored multiple times as the “Best Chemical Engineering Professor” by senior undergraduate students at the University of Oklahoma, recognizing his dedication to teaching and student engagement. As a research advisor, he has mentored students who have won prestigious accolades, including the Biomedical Engineering Society’s Best Dissertation Award and several Best Poster Awards at regional and national conferences. His achievements are further highlighted by multiple editorial board appointments in respected journals like the Journal of Functional Biomaterials and Scientifica (tissue engineering section). Additionally, his professional affiliations with AIChE, BMES, the Biomaterials Society, and TERMIS underscore his standing in the scientific community. These recognitions demonstrate his well-rounded excellence as a researcher, educator, and mentor, making him a strong role model and leader in his academic field.

Conclusion

Professor Vassilios I. Sikavitsas is a highly accomplished researcher and educator whose work bridges chemical engineering and biomedical science. His academic background, combined with over two decades of professional experience, has positioned him as a leader in tissue engineering, regenerative medicine, and cancer therapeutic research. His innovative work on bioreactors, scaffolds, and cancer exosomes has resulted in numerous peer-reviewed publications, patents, and awards. Equally committed to mentorship and education, he has been recognized for excellence in teaching and for guiding students toward national-level accolades. His involvement in editorial boards and leading scientific societies demonstrates a commitment to the advancement of science and engineering at large. Professor Sikavitsas’s sustained contributions to both research and academic service, along with his interdisciplinary impact, make him a compelling candidate for honors such as the Best Researcher Award. His career reflects a balance of innovation, collaboration, and academic leadership.

Publications Top Notes

  • Title: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner
    Authors: GN Bancroft, VI Sikavitsas, J Van Den Dolder, TL Sheffield, CG Ambrose, et al.
    Year: 2002
    Citations: 901

  • Title: Biomaterials and bone mechanotransduction
    Authors: VI Sikavitsas, JS Temenoff, AG Mikos
    Year: 2001
    Citations: 815

  • Title: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces
    Authors: VI Sikavitsas, GN Bancroft, HL Holtorf, JA Jansen, AG Mikos
    Year: 2003
    Citations: 595

  • Title: Formation of three‐dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor
    Authors: VI Sikavitsas, GN Bancroft, AG Mikos
    Year: 2002
    Citations: 541

  • Title: Design of a flow perfusion bioreactor system for bone tissue-engineering applications
    Authors: GN Bancroft, VI Sikavitsas, AG Mikos
    Year: 2003
    Citations: 529

  • Title: In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation
    Authors: N Datta, QP Pham, U Sharma, VI Sikavitsas, JA Jansen, AG Mikos
    Year: 2006
    Citations: 521

  • Title: Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch‐based three‐dimensional scaffolds
    Authors: ME Gomes, VI Sikavitsas, E Behravesh, RL Reis, AG Mikos
    Year: 2003
    Citations: 468

  • Title: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells
    Authors: N Datta, HL Holtorf, VI Sikavitsas, JA Jansen, AG Mikos
    Year: 2005
    Citations: 388

  • Title: Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds
    Authors: VI Sikavitsas, GN Bancroft, JJ Lemoine, MAK Liebschner, M Dauner, et al.
    Year: 2005
    Citations: 247

  • Title: Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh
    Authors: J van den Dolder, GN Bancroft, VI Sikavitsas, PHM Spauwen, JA Jansen, et al.
    Year: 2003
    Citations: 205

  • Title: Pre‐culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential
    Authors: H Castano‐Izquierdo, J Álvarez‐Barreto, J Dolder, JA Jansen, AG Mikos, et al.
    Year: 2007
    Citations: 203

  • Title: Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications
    Authors: NR Richbourg, NA Peppas, VI Sikavitsas
    Year: 2019
    Citations: 196

  • Title: Flow perfusion improves seeding of tissue engineering scaffolds with different architectures
    Authors: JF Alvarez-Barreto, SM Linehan, RL Shambaugh, VI Sikavitsas
    Year: 2007
    Citations: 171

  • Title: Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells
    Authors: H Castano, EA O’Rear, PS McFetridge, VI Sikavitsas
    Year: 2004
    Citations: 158

  • Title: Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue‐engineered constructs using a rat cranial critical size defect model
    Authors: VI Sikavitsas, J Dolder, GN Bancroft, JA Jansen, AG Mikos
    Year: 2003
    Citations: 150

Jayaprakash Behera | Chemistry | Young Scientist Award

Mr. Jayaprakash Behera | Chemistry | Young Scientist Award

Researcher at CSIR-IIIM JAMMU, India

Dr. Jayaprakash Behera is a highly accomplished young scientist with a diverse educational and professional background. Currently pursuing a PhD at CSIR-IIIM Jammu, he holds an M.Phil. in polymer chemistry and material science, along with an M.Sc. in organic chemistry. He has contributed significantly to scientific research through roles in the CSIR Aroma Mission and various DST-funded projects. Jayaprakash is a five-time world record holder and has received numerous prestigious awards, including the Dr. A.P.J. Abdul Kalam National Star Award and the Young Scientist Award. His work is recognized internationally through publications in renowned journals like Springer Nature and Wiley. He has also presented his research at prominent exhibitions such as the Global Bio India Exhibition 2023. Beyond research, Jayaprakash has developed innovative products, including medicinal soap for skin problems and nanoparticle seed coatings. His extensive involvement in scientific societies further highlights his active participation in the global scientific community..

Professional Profile 

Google Scholar

Education

Dr. Jayaprakash Behera has an impressive educational background, starting with a Bachelor’s degree in Chemistry from Utkal University. He later completed his M.Sc. in Organic Chemistry from Galgotias University and pursued an M.Phil. in Polymer Chemistry and Material Science at Veer Surendra Sai University of Technology. Currently, he is working towards his Ph.D. at CSIR-IIIM Jammu under AcSIR, focusing on cutting-edge research in his field. His strong academic foundation is complemented by his ongoing commitment to advancing knowledge and expertise in various scientific disciplines.

Professional Experience

Dr. Behera has gained valuable professional experience through various roles in scientific research and development. He has worked as a Project Associate-I for CSIR’s Aroma Mission Phase-III, and previously as a Project Assistant-I during Phase-II. His work also includes being a Junior Research Fellow in a DST-funded project at Malaviya National Institute of Technology. Additionally, he has contributed to projects at prestigious institutions like IIT Guwahati and IIT Delhi, further expanding his professional profile.

Research Interest

Dr. Behera’s research interests lie in polymer chemistry, material science, and the development of innovative solutions in the fields of health, agriculture, and technology. His work focuses on creating medicinal products for skin problems, developing nanoparticle-based seed coatings, and improving material properties for industrial applications. His involvement in the CSIR Aroma Mission reflects his interest in the application of chemistry and material science for practical, real-world solutions, particularly in the context of medicinal and agricultural advancements.

Award and Honor

Dr. Jayaprakash Behera has earned numerous national and international awards, recognizing his exceptional contributions to science and innovation. Among his accolades are the prestigious Dr. A.P.J. Abdul Kalam National Star Award, Young Scientist Award, and International Young Scientist Award. Additionally, he holds five world records in various scientific domains and has been honored with awards like the Global Icon Award and Nelson Mandela International Award 2025. His recognition reflects his commitment to scientific excellence and his ability to inspire others in the scientific community.

Conclusion

Dr. Jayaprakash Behera is a dynamic and accomplished scientist with a strong educational background, extensive professional experience, and a proven track record of innovative research. His contributions span various scientific fields, from polymer chemistry to healthcare solutions, earning him global recognition and multiple prestigious awards. His dedication to advancing scientific knowledge and creating practical solutions underscores his potential for continued impact in the scientific community. Dr. Behera’s blend of academic excellence, professional achievements, and global recognition makes him a standout figure in his field.

Publications Top Notes
  • Title: Nano boron nitride laminated poly (ethyl methacrylate)/poly (vinyl alcohol) composite films imprinted with silver nanoparticles as gas barrier and bacteria resistant packaging
    Authors: J. Behera, S. Patra, S. Nazrul, S.K. Sharma, D. Kumar, M.K. Verma, A.K. Katare, …
    Year: 2024
    Citation: Journal of Applied Polymer Science, 141 (16), e55246

  • Title: Bioassay-guided fractionations of Cannabis sativa extract and HPLC-assisted purifications of anti-proliferative active fractions lead to the isolation of 16 known and novel bioactive compounds
    Authors: Y. Nalli, S. Bharti, T. Amin, R. Singh, J. Behera, S.S. Bhayye, Y.P. Bharitkar, …
    Year: 2024
    Citation: Medicinal Chemistry Research, 33 (4), 635-650

  • Title: Correction: Bioassay-guided fractionations of Cannabis sativa extract and HPLC-assisted purifications of anti-proliferative active fractions lead to the isolation of 16 known and novel bioactive compounds
    Authors: Y. Nalli, S. Bharti, T. Amin, R. Singh, J. Behera, S.S. Bhayye, Y.P. Bharitkar, …
    Year: 2024
    Citation: Medicinal Chemistry Research, 33 (5), 838-838

  • Title: Phytochemical investigation of anti-proliferative active fractions of Cannabis sativa leads to isolate a new compound Canniprene A and other bioactive compounds
    Authors: Y. Nalli, S. Bharti, T. Amin, R. Singh, J. Behera, A. Goswami, M.K. Verma
    Year: 2023

Fuzhou Wang | Chemistry | Best Researcher

Prof. Dr. Fuzhou Wang | Chemistry | Best Researcher Award

Professor at Anhui University, China

Professor Fuzhou Wang is a distinguished researcher and professor at Anhui University, specializing in organometallic and polymer chemistry, with a focus on olefin polymerization and water treatment. He earned his Doctor of Engineering from Hiroshima University and has held key leadership roles, including deputy director of the Chuzhou Research Institute and head of the Polyolefin Industry R&D Team. His groundbreaking work has led to numerous prestigious awards, such as the silver award in the 6th Anhui Province “Internet+” Innovation Competition and recognition as one of the “Most Beautiful Science and Technology Workers” in Hefei. With over 40 high-impact publications and active collaborations with industry leaders like ExxonMobil, he has significantly advanced polymer research. As the founder of Boqiang New Materials, he bridges academia and industry, fostering innovation. His contributions to catalysis, polymerization mechanisms, and sustainable material development position him as a strong candidate for the Best Researcher Award.

Professional Profile 

ORCID Profile

Education

Professor Fuzhou Wang earned his Doctor of Engineering degree from Hiroshima University, Japan, where he specialized in organometallic and polymer chemistry. His academic journey was marked by excellence in catalysis and polymerization research, laying a strong foundation for his future work. During his doctoral studies, he focused on developing advanced catalysts for olefin polymerization, a crucial area in polymer science. His interdisciplinary training in inorganic chemistry, material science, and polymer engineering has allowed him to bridge the gap between fundamental chemistry and industrial applications. His education also involved extensive international collaboration, equipping him with a global perspective on polymer research. With a solid background in theoretical and applied chemistry, Professor Wang has built an outstanding academic profile that continues to impact the field. His expertise in catalyst design and polymer synthesis has propelled him to the forefront of research, fostering innovative advancements in polymeric materials.

Professional Experience

Professor Fuzhou Wang has had a distinguished professional career, contributing extensively to both academia and industry. He currently serves as a professor at Anhui University and holds leadership roles as the deputy director of the Chuzhou Research Institute and the head of the Polyolefin Industry R&D Team. His work focuses on bridging academic research with industrial applications, particularly in polymer chemistry. He has actively collaborated with major industry players such as ExxonMobil, enhancing the commercial viability of his research. In addition to his university roles, he founded Boqiang New Materials, a company dedicated to the development of sustainable polymer technologies. His career has been defined by a commitment to innovation, leading multiple national and provincial research projects. Through his extensive professional engagements, he has significantly contributed to the advancement of polymer science, catalysis, and material engineering, making him a recognized leader in both research and industrial innovation.

Research Interest

Professor Fuzhou Wang’s research interests span organometallic chemistry, catalysis, and polymer engineering, with a particular focus on olefin polymerization and water treatment technologies. His work revolves around the design and synthesis of novel catalysts for efficient and sustainable polymer production. He has made significant contributions to understanding polymerization mechanisms, particularly in the development of metallocene and post-metallocene catalysts for polyolefins. His research also explores functionalized polymer materials for environmental applications, such as advanced water purification systems. By integrating fundamental chemistry with applied engineering, he aims to develop eco-friendly and high-performance materials. His collaborations with industrial partners ensure that his research has real-world applications, impacting sectors such as packaging, automotive, and environmental sustainability. With a strong emphasis on green chemistry and polymer innovation, Professor Wang’s work continues to push the boundaries of material science and catalysis, positioning him as a leading figure in polymer research.

Award and Honor

Professor Fuzhou Wang has received numerous prestigious awards in recognition of his contributions to polymer chemistry and material science. He won the silver award in the 6th Anhui Province “Internet+” Innovation and Entrepreneurship Competition, highlighting his ability to translate research into practical applications. He was also named one of the “Most Beautiful Science and Technology Workers” in Hefei, reflecting his dedication to scientific progress. His achievements have been acknowledged through multiple provincial and national research grants, further solidifying his reputation as a leading researcher. Additionally, his contributions to the field of catalysis and polymerization have been recognized by various academic and industry organizations. His leadership in polymer research has also earned him invitations to speak at international conferences and contribute to high-impact scientific journals. Through his groundbreaking work, Professor Wang has established himself as a highly respected scientist, continuously driving advancements in polymer materials and sustainable chemistry.

Conclusion

Professor Fuzhou Wang is a highly accomplished researcher and professor whose work in polymer chemistry and catalysis has made a significant impact in both academia and industry. His extensive education, professional experience, and research contributions have positioned him as a leader in the field. Through his pioneering studies in olefin polymerization and sustainable materials, he has driven innovation that benefits both scientific communities and industrial applications. His leadership roles and entrepreneurial ventures further showcase his commitment to advancing polymer science and environmental sustainability. Recognized with numerous awards and honors, his influence continues to grow, making him a strong contender for prestigious research accolades. His ability to integrate theoretical research with practical solutions underscores his dedication to scientific excellence. As he continues his work in polymer innovation, Professor Wang remains a key figure in advancing material science, catalysis, and sustainable polymer technology for future generations.

Publications Top Noted

  • Nickel Catalyst With Excellent Thermal Stability for Ethylene Polymerization and Copolymerization
    Authors: Wanlu Tian, Hengchao Guan, Wenbing Wang, Xin Kong, Wenmin Pang, Quan Wang, Fuzhou Wang, Chen Zou
    Year: 2025
    Source: Applied Organometallic Chemistry

  • Preparation of polyethylene elastomers via controlled chain-walking ethylene polymerization for enhanced impact modification of polypropylene
    Authors: Yu Chen, Ning Wang, Di Zhang, Zhiyang Tian, Xin Lu, Pei Li, Muhammad Qasim, Fuzhou Wang
    Year: 2025
    Source: Polymer

  • Steric and temperature effects in unsymmetrical α‐diimine nickel‐catalyzed ethylene and 1‐octene polymerization
    Authors: Jinke Shou, Pei Li, Wanlu Tian, Yue Liu, Shaojie Zhang, Fuzhou Wang, Chen Tan
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Positional heterogenization effect in salicylaldimine nickel catalyzed ethylene polymerization
    Authors: Fan Yu, Yanfeng Gong, Ning Liu, Guoyong Xu, Pei Li, Binyuan Liu, Chao Li, Fuzhou Wang
    Year: 2024
    Source: Journal of Applied Polymer Science

  • Electronic effect regulated ethylene polymerization and copolymerization of phosphorus phenol nickel catalysts
    Authors: Yaping Xie, Feiran Yang, Qing Miao, Ziqiang Zhang, Wenbing Wang, Fuzhou Wang, Chen Zou
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Regulation of α-diimine nickel catalyzed olefin polymerization by remote site modifications
    Authors: Yufei Li, Yu Chen, Pei Li, Pingping Hu, Guoyong Xu, Chao Li, Shaojie Zhang, Fuzhou Wang
    Year: 2024
    Source: Polymer

  • Chain‐walking polymerization of ethylene and 1‐octene with ortho‐phenyl‐based α‐diimine Ni (II) catalysts
    Authors: Jie Wu, Pei Li, Juan Zhang, Zhengquan Dong, Wu Li, Muhammad Sohail Bashir, Yougui Li, Fuzhou Wang
    Year: 2023
    Source: Applied Organometallic Chemistry

  • Facile one-pot strategy to fabricate polyurea-based palladium for flow-through catalytic reduction of harmful hexavalent chromium from water
    Authors: Muhammad Sohail Bashir, Aqsa Safdar, Adnan Ibrahim, Inas A. Ahmed, Syed Shoaib Ahmad Shah, Ahsanullah Unar, Hanadi A. Almukhlifi, Ahmad M. Saeedi, Wang Fuzhou
    Year: 2023
    Source: Inorganic Chemistry Communications

  • Steric and electronic effects in cationic pyridine carboxamidate nickel mediated ethylene polymerization and copolymerization with methyl 10-undecenoate
    Authors: Pei Li, Hongju Liu, Wanlu Tian, Zhanshan Ma, Xiaoyue Wang, Guoyong Xu, Chao Li, Muhammad Qasim, Fuzhou Wang
    Year: 2023
    Source: Polymer

  • Polyethylene Foam
    Authors: Muhammad Sohail Bashir, Muhammad Qasim, Humaira Bashir, Fuzhou Wang
    Year: 2023
    Source: ACS Symposium Series

  • A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites
    Authors: Wen Cai, Yongshuang Huang, Jie Li, Gang Yang, Fuzhou Wang, Guifu Si, Chen Tan
    Year: 2023
    Source: European Polymer Journal

  • Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment
    Authors: Fuzhou Wang, Muhammad Sohail Bashir, Chengyun Zhou, Chaohai Wang, Mika Sillanpää, Fuzhou Wang
    Year: 2023
    Source: Separation and Purification Technology

  • Systematic study on interfacial polymerization mechanism of toluene diisocyanate and water for the preparation of polyurea microspheres
    Authors: Fuzhou Wang
    Year: 2022
    Source: Inorganic Chemistry Communications