Dr. Sheta Mohamed| Chemistry | Best Researcher Award

Dr. Sheta Mohamed| Chemistry | Best Researcher Award

Assoc. Prof. at Mohamed National Research Centre, Egypt

Dr. Sheta Mohamed Sheta is an Associate Professor at the Inorganic Chemistry Department, National Research Centre, Egypt, with extensive expertise in metal-organic frameworks (MOFs), nanomaterials, biosensors, and environmental remediation. Her interdisciplinary research spans medical diagnostics, analytical techniques, wastewater treatment, and climate change mitigation. With 41 peer-reviewed publications, over 950 citations, and an h-index of 19, she demonstrates strong research impact. She holds one granted patent, two submitted patents, and has led or participated in 11 funded research projects. Dr. Sheta has supervised 12 graduate theses and actively contributes to the scientific community as a reviewer for over 300 international articles and an editorial board member of 12 journals. Her innovations include diagnostic tools for COVID-19 and advanced sensors for environmental and biomedical applications. Recognized for her dedication to scientific advancement and mentorship, Dr. Sheta is a highly qualified candidate for the Best Researcher Award, with growing international collaboration and influence.

Professional Profile 

Google Scholar
ORCID Profile 

Education

Dr. Sheta Mohamed Sheta has a solid academic foundation in chemistry, culminating in a Ph.D. in Inorganic-Analytical Chemistry from Ain Shams University in 2015. Prior to her doctorate, she earned a Master’s degree in Inorganic-Physical-Analytical Chemistry in 2010 and a Pre-Master’s in Inorganic Chemistry in 2007, both from Helwan University. Her undergraduate studies also took place at Helwan University, where she graduated with a Bachelor of Science in Chemistry in 2004 with a “Very Good” grade. This structured educational journey laid a strong theoretical and practical foundation in chemistry, particularly analytical and inorganic domains. During her graduate and postgraduate years, she focused on micro-determination methods, sensor development, and spectrofluorimetric analysis, aligning with international standards, including protocols from the World Anti-Doping Agency (WADA). Her academic training also included specialized courses in fluorometric analysis and biosensor development, further preparing her for a career marked by innovation, interdisciplinary research, and applied science.

Professional Experience

Dr. Sheta has held progressive research roles at the National Research Centre in Egypt, where she currently serves as an Associate Professor in the Inorganic Chemistry Department. Starting as a chemist in 2013, she advanced through various roles including Research Assistant and Senior Researcher, reflecting her dedication and expertise. Between 2008 and 2013, she also worked as a lecturer at the Egyptian Doping Control Laboratory, where she gained significant experience in biomedical analysis and anti-doping research. Her current responsibilities encompass research leadership, scientific supervision, and active project coordination. Over her career, she has been involved in 11 funded projects—four as Principal Investigator—and supervised 12 academic theses at the MSc and PhD levels. She has also participated in scientific missions in Germany and Italy. Her professional trajectory showcases a strong balance between hands-on laboratory work, interdisciplinary research execution, and academic mentoring, making her a well-rounded and impactful scientific contributor.

Research Interest

Dr. Sheta’s research interests lie at the intersection of inorganic chemistry, analytical techniques, and applied environmental and biomedical science. She specializes in the synthesis and characterization of metal-organic frameworks (MOFs), nanocomposites, and complexes, exploring their applications in areas such as sensors, biosensors, medical diagnostics, and environmental remediation. Her work addresses real-world challenges including detection of tumor biomarkers, hormones, and pharmaceutical contaminants, as well as removal of heavy metals, bacteria, and radioactive pollutants from water sources. Dr. Sheta is also engaged in the development of innovative analytical methodologies and diagnostic tools, including novel electrochemical and fluorometric sensors for COVID-19 and doping drugs. Her contributions to climate change mitigation through wastewater treatment and pollution control technologies further demonstrate the social relevance of her work. The integration of advanced material science with biomedical and environmental applications marks her research as both interdisciplinary and highly impactful in solving global challenges.

Award and Honor

Dr. Sheta Mohamed Sheta has been recognized for her significant scientific contributions through various awards and honors, affirming her impact in both research and innovation. She has received three formal awards and prizes in acknowledgment of her excellence in research and academic leadership. Her scientific innovations have led to one granted patent and two additional patents submitted, highlighting her ability to translate complex research into practical applications. Notably, she developed a rapid and accurate COVID-19 detection sensor and other prototype devices for drug and pollutant detection. Dr. Sheta has also been invited to speak at 12 international conferences, including as a plenary and keynote speaker, reflecting her growing recognition within the global research community. Additionally, she is a reviewer for over 300 scientific articles and serves on editorial boards of 12 journals. These honors underscore her professional integrity, intellectual leadership, and valuable contributions to the advancement of science.

Conclusion

In conclusion, Dr. Sheta Mohamed Sheta exemplifies the qualities of a dedicated and impactful researcher through her academic background, professional experience, and interdisciplinary research portfolio. With over 41 scientific publications, 950+ citations, and active roles in scientific review and editorial leadership, she has made significant contributions to both theoretical and applied chemistry. Her innovative work on biosensors, environmental remediation, and diagnostics for global health challenges like COVID-19 positions her as a forward-thinking scientist with real-world influence. Her mentorship of graduate students, leadership in funded research, and international collaborations further reinforce her standing as a research leader. Dr. Sheta’s accomplishments, including awards and patents, validate her creative and technical excellence. Overall, she is a highly qualified candidate for any top-tier scientific recognition such as the Best Researcher Award, combining innovation, academic rigor, and a commitment to solving pressing societal challenges through science.

Publications Top Notes

  • Title: Nucleic acids biosensors based on metal-organic framework (MOF): Paving the way to clinical laboratory diagnosis
    Authors: O. Diaa, E.S. Said, S. Sheta, A. Omnia, S. Aliaa, S. Wafaa, E.L.K. Sherif, S. Sherif
    Year: 2019
    Citations: 126

  • Title: Simple synthesis of novel copper metal-organic frameworks nanoparticles: biosensing and biological applications
    Authors: M.M.A.E. Sheta, S.M. El-Sheikh
    Year: 2018
    Citations: 108

  • Title: A novel HCV electrochemical biosensor based on a polyaniline@ Ni-MOF nanocomposite
    Authors: S.M. Sheta, S.M. El-Sheikh, D.I. Osman, A.M. Salem, O.I. Ali, F.A. Harraz, …
    Year: 2020
    Citations: 87

  • Title: A novel Ag/Zn bimetallic MOF as a superior sensitive biosensing platform for HCV-RNA electrochemical detection
    Authors: S.M. El-Sheikh, D.I. Osman, O.I. Ali, W.G. Shousha, M.A. Shoeib, S.M. Shawky, …
    Year: 2021
    Citations: 63

  • Title: A novel nano‐size lanthanum MOF based on 5‐amino‐isophthalic acid and phenylenediamine: Photoluminescence study and sensing applications
    Authors: M.S. Sheta, M.E.S. Said, M.A.E. Mohkles, R.W. Ahmed
    Year: 2019
    Citations: 51

  • Title: A novel Iron (III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study
    Authors: S.M. Sheta, S.R. Salem, S.M. El-Sheikh
    Year: 2022
    Citations: 39

  • Title: A novel optical approach for determination of prolactin based on Pr-MOF nanofibers
    Authors: M.S. Sheta, M.E.S. Said, M.A. Mokhles
    Year: 2019
    Citations: 37

  • Title: Dual naked-eye and optical chemosensor for morphine detection in biological real samples based on Cr (III) MOF nanoparticles
    Authors: M. Alhaddad, S.M. Sheta
    Year: 2020
    Citations: 36

  • Title: Novel nanomaterial based on ferrous MOF and its application as chemosensors for mercury in environmental and biological samples
    Authors: A.S. Basaleh, S.M. Sheta
    Year: 2020
    Citations: 35

  • Title: A novel biosensor for early diagnosis of liver cancer using nano‐magnetic MOF
    Authors: S.M. Sheta, S.M. El‐Sheikh, M.M. Abd‐Elzaher, S.R. Salem, H.A. Moussa, …
    Year: 2019
    Citations: 35

  • Title: Cerium(III)–isatin Schiff base complex: spectrofluorometric and DFT studies as a kidney biomarker for human creatinine
    Authors: S.M. Sheta, M.A. Akl, H.E. Saad, E.S.R.H. El-Gharkawy
    Year: 2020
    Citations: 34

  • Title: Removal of radionuclides from wastewater using MOFs: A review
    Authors: S.M. Sheta, M.A. Hamouda, O.I. Ali, A.T. Kandil, R.R. Sheha, S.M. El-Sheikh
    Year: 2023
    Citations: 31

  • Title: SARS‑CoV‑2 surveillance using biosensor technology: A review
    Authors: D.M. El‑Sherif, M. Abouzid, M.S. Gaballah
    Year: 2021
    Citations: 29

  • Title: Fast, high sensitivity biosensor for chest pain diagnosis
    Authors: S. Sheta, E.S. Said, A.E. Mokhles, G. Mosaad, S. Salem
    Year: 2019
    Citations: 28

  • Title: Optical approach for triiodothyronine hormone determination using Cu-MOF nanoparticles
    Authors: S. Sheta, E.S. Said, A.E. Mohkles
    Year: 2019
    Citations: 28

Kamal Kishore | Chemistry | Best Researcher Award

Prof. Kamal Kishore | Chemistry | Best Researcher Award

Professor & Dean at Eternal University, Baru Sahib, India

Kamal Kishore is an accomplished chemistry professor with over fourteen years of teaching experience and a strong academic foundation, including a Ph.D. focused on the physico-chemical and thermal behavior of terbium soaps. Currently serving as a Professor at Eternal University, he has demonstrated consistent professional growth, having held multiple academic positions since 2010. Kamal has actively contributed to research in surfactants, nanoparticles, and biodiesel synthesis, mentoring numerous M.Sc. students on innovative projects. He is recognized for his dedication to teaching, having received awards for excellence and playing a vital role as a resource person in academic training and curriculum development. Beyond teaching, Kamal serves on editorial boards of reputed journals and participates in peer review processes, showcasing his engagement with the broader scientific community. While his research contributions are strong, further enhancement through funded projects and high-impact publications could elevate his profile. Overall, Kamal Kishore exemplifies commitment to research and education in the chemical sciences.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Kamal Kishore has a robust educational background in chemistry, beginning with a B.Sc. in Non-Medical from Himachal Pradesh University, followed by a B.Ed. in Science from Jammu University. He then completed his M.Sc. in Chemistry from Barkatullah University, Bhopal, in 2004. Demonstrating a strong commitment to advanced study, Kamal earned his Ph.D. in Chemistry from the same university in 2010, focusing on the physico-chemical, thermal, and acoustical behavior of terbium soaps. Throughout his academic journey, he has consistently acquired knowledge and skills critical for both teaching and research. His qualification in the Teachers Eligibility Test (HPTET) further attests to his dedication to education. This solid academic foundation underpins his expertise and research capabilities, enabling him to contribute effectively to chemical sciences education and mentorship at various reputed institutions.

Professional Experience

Kamal Kishore’s professional experience spans over fourteen years in academia alongside pharmaceutical industry exposure. Starting as a Lecturer in 2010 at MIT College of Engineering & Management, he progressively advanced through Assistant and Associate Professor roles at several NAAC-accredited universities, including Career Point University and Eternal University. Currently, he serves as a Professor at Eternal University’s Department of Chemistry & Biochemistry. His academic career reflects continuous growth, with responsibilities expanding from teaching to research supervision and curriculum development. Additionally, Kamal has contributed as an IPQA Chemist in the pharmaceutical sector, adding practical industry experience to his academic expertise. His involvement as a resource person for workshops, teacher training, and curriculum writing further showcases his leadership in the scientific community and commitment to enhancing educational standards in chemistry.

Research Interest

Kamal Kishore’s research interests focus primarily on the physico-chemical characterization and synthesis of surfactants, nanoparticles, and metal carboxylates, with applications in biodiesel production and materials science. His Ph.D. research on terbium soaps laid the groundwork for continued investigations into thermal stability, surface activity, micellization behavior, and adsorption kinetics of various compounds. He has supervised numerous M.Sc. students in projects involving synthesis and characterization of novel surfactants and nanoparticles, highlighting his commitment to advancing knowledge in colloidal chemistry and nanotechnology. His research extends into practical applications such as dye removal from aqueous solutions and the development of environmentally relevant materials. Kamal’s active engagement in contemporary topics like nanotechnology and mass spectrometry demonstrates his dedication to both fundamental science and applied research, aiming to address current scientific challenges in chemical and material sciences.

Award and Honor

Kamal Kishore has been recognized for his academic excellence and professional dedication through several awards and honors throughout his career. Early achievements include merit certificates and rankings in state-level examinations, reflecting his consistent scholastic performance. He was awarded the Best Teacher for the 2012-13 academic session at Career Point University, underscoring his teaching excellence and student rapport. Kamal has also been honored for his participation in national sports championships and community events, showcasing his well-rounded personality. His certification as a Publons Academy mentor highlights his commitment to supporting research integrity and peer review education. Moreover, he has received awards of appreciation for contributions to university-organized events and served as a respected resource person in various scientific workshops and training programs. These accolades collectively illustrate Kamal’s multifaceted achievements in teaching, research, and community engagement.

Conclusion

Kamal Kishore is a dedicated chemistry educator and researcher with a strong academic background and a progressive career spanning over fourteen years. His expertise in physico-chemical research, particularly in surfactants and nanomaterials, combined with extensive mentorship of postgraduate students, underscores his commitment to advancing chemical sciences. Recognized for his excellence in teaching and active participation in academic initiatives, he also contributes significantly as a reviewer and editorial board member for reputed journals. While his contributions are notable, further focus on securing research funding and increasing publications in high-impact journals would enhance his research profile. Overall, Kamal Kishore’s blend of teaching excellence, research engagement, and community involvement positions him as a valuable asset to academia and a strong candidate for research recognition awards.

Publications Top Notes

  1. Title: Efficient removal of toxic dyes from water using Mn3O4 nanoparticles: Synthesis, characterization, and adsorption mechanisms
    Authors: K. Kishore, Jasvinder Kaur, Yasser B. Saddeek, Mohammed A. Albedah, Pankaj Sharma
    Year: 2025
    Citations: 2

  2. Title: Green synthesized Fe-doped ZnO NPs using aloe vera gel: Antimicrobial, structural, optical and magnetic properties
    Authors: Shreya Chauhan, Prashant Thakur, Kamal Kishore, Madan Lal, Pankaj Sharma
    Year: 2025

Artem Bezrukov | Chemistry | Best Researcher Award

Dr. Artem Bezrukov | Chemistry | Best Researcher Award

Associate Professor at Kazan National Research Technological Universirty, Russia

Dr. Artem N. Bezrukov is a distinguished researcher in microfluidics and lab-on-chip technologies, specializing in the synthesis and modification of smart soft materials. As an Associate Professor at Kazan National Research Technological University (KNRTU), he has made significant contributions to the development of novel materials based on liquid crystals, quantum dots, polymers, and colloids. His expertise spans both fundamental and applied research, focusing on micro-scale material behavior and its applications in advanced technological solutions. With a strong international presence, Dr. Bezrukov has collaborated with global institutions, contributing to academic and industrial advancements in material science. His dedication to education, research, and international cooperation has established him as a key figure in the field, actively shaping the future of smart materials and nanotechnology.

Professional Profile

Education

Dr. Bezrukov holds a Ph.D. in Chemistry from Kazan State Technological University (2010), where he conducted pioneering research in the field of physical and colloid chemistry. His academic journey began with a Specialist degree in Chemical Engineering (2006) from the same institution, equipping him with a solid foundation in materials science and process engineering. In addition to his scientific studies, he earned a qualification as a Translator & Interpreter for Professional Communication (2005), demonstrating his interdisciplinary skill set. His continuous pursuit of knowledge led him to international academic programs, including a Fulbright scholarship and a short-term postdoctoral fellowship in microfluidics at Carnegie Mellon University in 2019. These experiences have contributed to his expertise in interdisciplinary research, enabling him to bridge the gap between chemistry, engineering, and applied nanotechnology.

Professional Experience

Since 2011, Dr. Bezrukov has served as an Associate Professor at the Department of Physical and Colloid Chemistry at KNRTU, where he has played a pivotal role in research and academic development. From 2012 to 2018, he also held the position of Head of the Protocol Office in the International Affairs department, strengthening global academic collaborations for his university. Prior to that, he worked as a Teaching Assistant, gaining experience in mentoring students and advancing research in material sciences. His career has been marked by his ability to integrate research with practical applications, as seen in his contributions to various funded projects, curriculum development, and international research initiatives. His professional trajectory reflects his dedication to both academic excellence and the advancement of innovative scientific research on an international scale.

Research Interests

Dr. Bezrukov’s research is centered on microfluidics and lab-on-chip technologies, with a particular focus on the synthesis and manipulation of smart soft materials. His work explores the unique properties of liquid crystals, quantum dots, polymers, and colloids, seeking to develop advanced materials for use in biomedical, optical, and nanotechnological applications. By integrating microfluidic techniques with material science, he investigates novel approaches to controlling material properties at the microscale. His research is inherently interdisciplinary, combining chemistry, physics, and engineering to create innovative solutions with broad technological applications. Through his work, he aims to bridge the gap between fundamental scientific research and real-world applications, contributing to the development of next-generation functional materials.

Awards and Honors

Dr. Bezrukov has received multiple accolades in recognition of his outstanding contributions to research and education. He was awarded the prestigious Fulbright Scholarship in 2012, which enabled him to engage in international research collaborations. His work has been further recognized through a short-term postdoctoral scholarship at Carnegie Mellon University in 2019, highlighting his expertise in microfluidics. In addition, he has been the recipient of Potanin Foundation grants (2018-2024) for his contributions to developing innovative educational modules. His participation in Erasmus+ Capacity Building and Jean Monnet projects (2019-2022) demonstrates his commitment to international academic cooperation. With over 30 peer-reviewed journal articles and more than 70 total publications, his contributions have earned him recognition as a leading researcher in the field. His accolades reflect his dedication to advancing science and education on a global scale.

Conclusion

Dr. Artem N. Bezrukov is a strong candidate for the Best Researcher Award due to his contributions to microfluidics, international collaborations, and publication record. However, further emphasis on research impact, citations, leadership in major grants, and industry applications could solidify his candidacy. If these aspects are well-documented, he stands as an excellent contender for the award.

Publications Top Noted

Title: Internationalizing engineering education: A language learning approach

Author(s): A. Bezrukov, J. Ziyatdinova

Year : 2014

Citations: 38

Title: Global challenges and problems of Russian engineering education modernization

Author(s) : J.N. Ziyatdinova, P.N. Osipov, A.N. Bezrukov

Year : 2015

Citations: 28

Title: Development of a networking model for internationalization of engineering universities and its implementation for the Russia-Vietnam partnership

Author(s) : J. Ziyatdinova, A. Bezrukov, A. Sukhristina, P.A. Sanger

Year : 2016

Citations: 26

Title: Inbound international faculty mobility programs in Russia: Best practices

Author(s) : A. Bezrukov, J. Ziyatdinova, P. Sanger, V.G. Ivanov, N. Zoltareva

Year : 2018

Citations: 25

Title:

Best practices of engineering education internationalization in a Russian Top-20 university

Author(s) : J. Ziyatdinova, A. Bezrukov, P.A. Sanger, P. Osipov

Year : 2016

Citations: 24

Title: Development of a “smart materials” master’s degree module for chemical engineering students

Author(s) : A. Bezrukov, D. Sultanova

Year : 2020

Citations: 23

Title: Going globally as a Russian engineering university

Author(s) : J. Ziyatdinova, A. Bezrukov, P. Osipov, P.A. Sanger, V.G. Ivanov

Year : 2015

Citations: 22

Title: Flexible learning model for computer-aided technical translation

Author: A. Bezrukov

Year : 2013

Citations: 22

Title: Application of microfluidic tools for training chemical engineers

Author(s) : A. Bezrukov, D. Sultanova

Year : 2020

Citations: 18

Title: International approaches to the development of cross-cultural education at high school

Author(s) : M. Panteleeva, P.A. Sanger, A. Bezrukov

Year : 2016

Citations: 17

Title: Academic writing in the historical and linguistic context: An example of German language

Author(s) : F.F. Nasibullina, A.N. Bezrukov

Year : 2015

Citations: 9

Title:  Effect of the length of surfactant hydrocarbon radicals on the association of cationic polyelectrolytes with alkyl sulfates in water-alcohol solutions

Author(s) : S.V. Shilova, A.N. Bezrukov, A.Y. Tret’yakova, M.A. Voronin, L.Y. Zakharova, …

Year : 2012

Citations: 9

Title:  Effect of molecular weight of poly-N-benzyl-N,N-dimethyl-N-methacryloyloxyethylammonium chloride on its complexation with sodium dodecyl sulfate

Author(s) : S.V. Shilova, A.Y. Tret’yakova, A.N. Bezrukov, V.A. Myagchenkov, …

Year : 2007

Citations: 9

Title:  Orientation behavior of nematic liquid crystals at flow-wall interfaces in microfluidic channels

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2023

Citations: 7

Title: On-chip control over polyelectrolyte–surfactant complexation in nonequilibrium microfluidic confinement

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2022

Citations:  7

Title: Control of the phase formation process in solutions of anionic polyelectrolyte—cationic surfactant complexes in a microfluidic channel

Author(s) : A.N. Bezrukov, Y.G. Galyametdinov

Year : 2020

Citations: 7

Title:  Internationalization of engineering education

Author(s) : J.N. Ziyatdinova, A.N. Bezrukov

Year : 2015

Citations: 7

Title: Association of sodium dodecyl sulfate with a cationic polyelectrolyte in aqueous-ethanol media

Author(s) : S.V. Shilova, A.N. Bezrukov, A.Y. Tret’yakova, V.P. Barabanov

Year : 2014

Citations: 6

Title: Dynamic flow control over optical properties of liquid crystal–quantum dot hybrids in microfluidic devices

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2023

Citations: 5

Title: Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2021

Citations: 5

 

Fuzhou Wang | Chemistry | Best Researcher

Prof. Dr. Fuzhou Wang | Chemistry | Best Researcher Award

Professor at Anhui University, China

Professor Fuzhou Wang is a distinguished researcher and professor at Anhui University, specializing in organometallic and polymer chemistry, with a focus on olefin polymerization and water treatment. He earned his Doctor of Engineering from Hiroshima University and has held key leadership roles, including deputy director of the Chuzhou Research Institute and head of the Polyolefin Industry R&D Team. His groundbreaking work has led to numerous prestigious awards, such as the silver award in the 6th Anhui Province “Internet+” Innovation Competition and recognition as one of the “Most Beautiful Science and Technology Workers” in Hefei. With over 40 high-impact publications and active collaborations with industry leaders like ExxonMobil, he has significantly advanced polymer research. As the founder of Boqiang New Materials, he bridges academia and industry, fostering innovation. His contributions to catalysis, polymerization mechanisms, and sustainable material development position him as a strong candidate for the Best Researcher Award.

Professional Profile 

ORCID Profile

Education

Professor Fuzhou Wang earned his Doctor of Engineering degree from Hiroshima University, Japan, where he specialized in organometallic and polymer chemistry. His academic journey was marked by excellence in catalysis and polymerization research, laying a strong foundation for his future work. During his doctoral studies, he focused on developing advanced catalysts for olefin polymerization, a crucial area in polymer science. His interdisciplinary training in inorganic chemistry, material science, and polymer engineering has allowed him to bridge the gap between fundamental chemistry and industrial applications. His education also involved extensive international collaboration, equipping him with a global perspective on polymer research. With a solid background in theoretical and applied chemistry, Professor Wang has built an outstanding academic profile that continues to impact the field. His expertise in catalyst design and polymer synthesis has propelled him to the forefront of research, fostering innovative advancements in polymeric materials.

Professional Experience

Professor Fuzhou Wang has had a distinguished professional career, contributing extensively to both academia and industry. He currently serves as a professor at Anhui University and holds leadership roles as the deputy director of the Chuzhou Research Institute and the head of the Polyolefin Industry R&D Team. His work focuses on bridging academic research with industrial applications, particularly in polymer chemistry. He has actively collaborated with major industry players such as ExxonMobil, enhancing the commercial viability of his research. In addition to his university roles, he founded Boqiang New Materials, a company dedicated to the development of sustainable polymer technologies. His career has been defined by a commitment to innovation, leading multiple national and provincial research projects. Through his extensive professional engagements, he has significantly contributed to the advancement of polymer science, catalysis, and material engineering, making him a recognized leader in both research and industrial innovation.

Research Interest

Professor Fuzhou Wang’s research interests span organometallic chemistry, catalysis, and polymer engineering, with a particular focus on olefin polymerization and water treatment technologies. His work revolves around the design and synthesis of novel catalysts for efficient and sustainable polymer production. He has made significant contributions to understanding polymerization mechanisms, particularly in the development of metallocene and post-metallocene catalysts for polyolefins. His research also explores functionalized polymer materials for environmental applications, such as advanced water purification systems. By integrating fundamental chemistry with applied engineering, he aims to develop eco-friendly and high-performance materials. His collaborations with industrial partners ensure that his research has real-world applications, impacting sectors such as packaging, automotive, and environmental sustainability. With a strong emphasis on green chemistry and polymer innovation, Professor Wang’s work continues to push the boundaries of material science and catalysis, positioning him as a leading figure in polymer research.

Award and Honor

Professor Fuzhou Wang has received numerous prestigious awards in recognition of his contributions to polymer chemistry and material science. He won the silver award in the 6th Anhui Province “Internet+” Innovation and Entrepreneurship Competition, highlighting his ability to translate research into practical applications. He was also named one of the “Most Beautiful Science and Technology Workers” in Hefei, reflecting his dedication to scientific progress. His achievements have been acknowledged through multiple provincial and national research grants, further solidifying his reputation as a leading researcher. Additionally, his contributions to the field of catalysis and polymerization have been recognized by various academic and industry organizations. His leadership in polymer research has also earned him invitations to speak at international conferences and contribute to high-impact scientific journals. Through his groundbreaking work, Professor Wang has established himself as a highly respected scientist, continuously driving advancements in polymer materials and sustainable chemistry.

Conclusion

Professor Fuzhou Wang is a highly accomplished researcher and professor whose work in polymer chemistry and catalysis has made a significant impact in both academia and industry. His extensive education, professional experience, and research contributions have positioned him as a leader in the field. Through his pioneering studies in olefin polymerization and sustainable materials, he has driven innovation that benefits both scientific communities and industrial applications. His leadership roles and entrepreneurial ventures further showcase his commitment to advancing polymer science and environmental sustainability. Recognized with numerous awards and honors, his influence continues to grow, making him a strong contender for prestigious research accolades. His ability to integrate theoretical research with practical solutions underscores his dedication to scientific excellence. As he continues his work in polymer innovation, Professor Wang remains a key figure in advancing material science, catalysis, and sustainable polymer technology for future generations.

Publications Top Noted

  • Nickel Catalyst With Excellent Thermal Stability for Ethylene Polymerization and Copolymerization
    Authors: Wanlu Tian, Hengchao Guan, Wenbing Wang, Xin Kong, Wenmin Pang, Quan Wang, Fuzhou Wang, Chen Zou
    Year: 2025
    Source: Applied Organometallic Chemistry

  • Preparation of polyethylene elastomers via controlled chain-walking ethylene polymerization for enhanced impact modification of polypropylene
    Authors: Yu Chen, Ning Wang, Di Zhang, Zhiyang Tian, Xin Lu, Pei Li, Muhammad Qasim, Fuzhou Wang
    Year: 2025
    Source: Polymer

  • Steric and temperature effects in unsymmetrical α‐diimine nickel‐catalyzed ethylene and 1‐octene polymerization
    Authors: Jinke Shou, Pei Li, Wanlu Tian, Yue Liu, Shaojie Zhang, Fuzhou Wang, Chen Tan
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Positional heterogenization effect in salicylaldimine nickel catalyzed ethylene polymerization
    Authors: Fan Yu, Yanfeng Gong, Ning Liu, Guoyong Xu, Pei Li, Binyuan Liu, Chao Li, Fuzhou Wang
    Year: 2024
    Source: Journal of Applied Polymer Science

  • Electronic effect regulated ethylene polymerization and copolymerization of phosphorus phenol nickel catalysts
    Authors: Yaping Xie, Feiran Yang, Qing Miao, Ziqiang Zhang, Wenbing Wang, Fuzhou Wang, Chen Zou
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Regulation of α-diimine nickel catalyzed olefin polymerization by remote site modifications
    Authors: Yufei Li, Yu Chen, Pei Li, Pingping Hu, Guoyong Xu, Chao Li, Shaojie Zhang, Fuzhou Wang
    Year: 2024
    Source: Polymer

  • Chain‐walking polymerization of ethylene and 1‐octene with ortho‐phenyl‐based α‐diimine Ni (II) catalysts
    Authors: Jie Wu, Pei Li, Juan Zhang, Zhengquan Dong, Wu Li, Muhammad Sohail Bashir, Yougui Li, Fuzhou Wang
    Year: 2023
    Source: Applied Organometallic Chemistry

  • Facile one-pot strategy to fabricate polyurea-based palladium for flow-through catalytic reduction of harmful hexavalent chromium from water
    Authors: Muhammad Sohail Bashir, Aqsa Safdar, Adnan Ibrahim, Inas A. Ahmed, Syed Shoaib Ahmad Shah, Ahsanullah Unar, Hanadi A. Almukhlifi, Ahmad M. Saeedi, Wang Fuzhou
    Year: 2023
    Source: Inorganic Chemistry Communications

  • Steric and electronic effects in cationic pyridine carboxamidate nickel mediated ethylene polymerization and copolymerization with methyl 10-undecenoate
    Authors: Pei Li, Hongju Liu, Wanlu Tian, Zhanshan Ma, Xiaoyue Wang, Guoyong Xu, Chao Li, Muhammad Qasim, Fuzhou Wang
    Year: 2023
    Source: Polymer

  • Polyethylene Foam
    Authors: Muhammad Sohail Bashir, Muhammad Qasim, Humaira Bashir, Fuzhou Wang
    Year: 2023
    Source: ACS Symposium Series

  • A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites
    Authors: Wen Cai, Yongshuang Huang, Jie Li, Gang Yang, Fuzhou Wang, Guifu Si, Chen Tan
    Year: 2023
    Source: European Polymer Journal

  • Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment
    Authors: Fuzhou Wang, Muhammad Sohail Bashir, Chengyun Zhou, Chaohai Wang, Mika Sillanpää, Fuzhou Wang
    Year: 2023
    Source: Separation and Purification Technology

  • Systematic study on interfacial polymerization mechanism of toluene diisocyanate and water for the preparation of polyurea microspheres
    Authors: Fuzhou Wang
    Year: 2022
    Source: Inorganic Chemistry Communications

Sikander Ali | Chemistry | Young Scientist Award

Mr. Sikander Ali | Chemistry | Young Scientist Award

Research Associate Riphah international university-Lahore. Pakistan

Sikander Ali is an accomplished researcher in applied mathematics, specializing in graph theory, cryptography, and fault-tolerant systems. An active member of international research groups, he has consistently contributed to the advancement of mathematical theory and practical applications through innovative research projects and collaborations.

Profile

Scopus.com

Education 🎓

  • MS in Mathematics (2021–2023): COMSATS University, Sahiwal Campus, GPA 3.42, with a focus on Applied Mathematics and Graph Theory.
  • MSc in Mathematics (2018–2020): COMSATS University, Sahiwal Campus, GPA 3.45, specializing in Cryptography and Numerical Analysis; awarded a 2nd position medal.
  • Bachelor’s in Mathematics (2015–2017): GOVT College Bahawal Nagar, with a solid foundation in mathematics and physics.
  • Intermediate in Pre-Engineering (2013–2015): GOVT College Bahawal Nagar.

Experience 📈

Sikander has extensive teaching experience, having served as a lecturer at prominent institutions like Riphah International University and Army Public School and College System. His teaching expertise covers both fundamental and advanced mathematics, where he focuses on fostering deep comprehension among his students.

Research Interests 🔍

Sikander’s research is centered on advanced topics in mathematics, including:

  • Graph Theory: Resolvability Parameters and Graph Labelling
  • Cryptography: Developing secure frameworks
  • Fault-Tolerant Embedding: Emphasis on nanosheet and nanotube structures
  • Neutrosophic Fuzzy Sets: Applications in various mathematical problems

Awards 🏆

  • 2nd Position Medal in MSc: Recognized for academic excellence at COMSATS University.
  • PEEF Scholarship: Awarded for outstanding performance.
  • Inter-Campus First Prize: Earned recognition as a top debater.
  • Vice President of COMSATS Sports Society: Led the sports society and promoted active participation.

Publications Top Notes📚:

Sikander has published widely in reputable journals, covering topics like graph theory and nano-structures. Below are some highlights:

Ali, S., Azeem, M., Zahid, M. A. Double Resolvability Parameters of Fosmidomycin Anti-Malaria Drug and Exchange Property. Heliyon (2024). DOI: 10.1016/j.heliyon.2024.e33211.

Ali, S., Azeem, M., Jamil, M. K. Resolving Set and Exchange Property in Nanotube. AIMS Mathematics, 9(8), 20 June 2023. DOI:10.3934/math.20231035.

Ali, S., Koam, N. A., Azeem, M. Double Edge Resolving Set for Nanosheet Structure. Heliyon (2024). DOI: 10.1016/j.heliyon.2024.e26992.

Hao Liu | Chemistry | Best Researcher Award

Dr. Hao Liu | Chemistry | Best Researcher Award

student, Tianjin University of Technology, China

Hao Liu is a passionate PhD candidate at Tiangong University, specializing in Materials Science and Engineering. His research focuses on the structural design and properties of cathode materials for lithium-sulfur batteries. Hao has actively contributed to the development of high-performance flexible vulcanised polyacrylonitrile composite fiber cathodes, advancing energy density and cycle stability for flexible electronic devices. 📚🔋

Publication Profile

Scopus

Strengths for the Best Researcher Award:

  • Innovative Research Focus: Hao Liu’s work in the design and properties of cathode materials for lithium-sulfur batteries is cutting-edge, addressing a critical area in the development of high-performance energy storage solutions. His contributions are especially relevant to flexible electronic devices, a rapidly growing field.
  • Publication Record: He has published four significant journal articles, two of which are in well-regarded SCI/Scopus-indexed journals. This demonstrates strong research output, with clear contributions to the field of lithium-sulfur batteries.
  • Collaboration and Professional Memberships: Collaborating with experts like Xingxiang Zhang and having professional memberships further strengthen Hao’s research network, allowing for diverse perspectives and contributions.
  • Technical Contributions: His work focuses on enhancing the energy density and cycle stability of batteries by optimizing material properties. This can have a substantial impact on the performance of next-generation batteries.

Areas for Improvement:

  • Industry/Consultancy Projects: Hao Liu’s application lacks industry engagement or consultancy projects, which could enhance the practical impact and application of his research. Collaborating with industries or securing consultancy roles could help bridge the gap between academia and real-world applications.
  • Patent Development: With no patents published or under process, this aspect of innovation can be further developed. Securing patents for his novel designs would strengthen his standing as an innovator in materials science and battery technology.
  • Broader Editorial Roles: Taking on more editorial roles or participating in journal review boards would also improve his profile as a recognized expert in the field.

🎓 Education:

Hao Liu is pursuing his PhD in Materials Science and Engineering from Tiangong University. His academic journey has been shaped by a strong interest in energy storage solutions, particularly in the development of advanced battery technologies. 🎓

💼 Experience:

With hands-on experience in designing and optimizing high-performance materials for lithium-sulfur batteries, Hao Liu has conducted significant research projects, contributing to the field of energy storage. His expertise lies in electrostatic spinning and the composition of organic, inorganic, and metallic materials. 🔬

🔬 Research Focus:

Hao’s research focuses on the structural design of cathode materials, particularly for lithium-sulfur batteries. He is driven to improve energy density and cycling stability through innovative material compositions. His work is crucial for the advancement of flexible electronic devices. ⚡🧪

🏅 Awards and Honors:

While Hao is in the early stages of his academic career, his research contributions have been recognized in several peer-reviewed journals. He is actively working towards making significant impacts in the materials science community. 🏅

📝 Publication Top Notes:

Liu, H., Zhang, Y., Li, Y. et al. (2024). Solid-State Transformations of Active Materials in the Pores of Sulfurized Polyacrylonitrile Fiber Membranes for High-Loading Lithium–Sulfur Battery Cathodes. Advanced Fiber Materials, 6, 772. Cited by 12

Liu, H., Zhang, Y., Li, Y. et al. (2023). Loadings of Functionalized Multiwalled Carbon Nanotubes for Enhancing Sulfurized Polyacrylonitrile Performance in Lithium–Sulfur Batteries. ACS Applied Nano Materials, 6, 21058. Cited by 18

Liu, H., He, R., Li, Y. et al. (2023). Effect of Sulfurized Polyacrylonitrile-g-rGO Composition on Specific Capacity of Lithium-Sulfur Batteries. Journal of Electroanalytical Chemistry, 15, 117465. Cited by 9

Liu, H., Zhang, Y., et al. (2024). Performance Study of Flexible Vulcanized Polyacrylonitrile Composite Fiber Anode. Journal of Colloid and Interface Science, Cited by 5

Conclusion:

Hao Liu’s research contributions in the area of lithium-sulfur batteries are significant and relevant for the Best Researcher Award. His innovative approaches, strong publication record, and collaboration with leading experts highlight his potential. However, greater involvement in industry projects and patent filing would further elevate his candidacy, strengthening his case as a leading researcher in materials science.