Aakriti | Engineering | Research and Development Achievement Award

Ms. Aakriti | Engineering | Research and Development Achievement Award

PhD student at CSIR-Central Building Research Institute, India

Aakriti Baliyan is a PhD candidate in Chemical Sciences, specializing in the synthesis of chemical additives from FGD gypsum for sustainable building materials. Her research focuses on green materials, contributing to low-carbon construction solutions. Aakriti has a strong publication record and extensive experience in waste utilization, including the development of water-resistant binders and hybrid cementitious materials. She possesses a diverse technical skill set, including Life Cycle Assessment and various analytical techniques. With a background in mentoring and interdisciplinary collaboration, Aakriti is dedicated to advancing sustainable practices in her field.

Profile:

Google scholar

Strengths for the Award:

  1. Innovative Research Focus:
    • Aakriti’s PhD research on utilizing FGD gypsum for developing chemical additives and composite binders represents a significant contribution to sustainable building materials. This aligns well with current environmental priorities.
  2. Strong Publication Record:
    • Aakriti has a notable number of publications in reputable journals, demonstrating her ability to conduct impactful research. Her articles address critical issues in low-carbon construction, showcasing her expertise and commitment to advancing the field.
  3. Interdisciplinary Collaboration:
    • Her collaborative work with NTPC and involvement in various interdisciplinary projects highlight her ability to work effectively in team settings, enhancing the practical applicability of her research.
  4. Technical Proficiency:
    • Aakriti possesses extensive technical skills and research methodologies, such as Life Cycle Assessment (LCA) and various analytical techniques. This versatility enables her to tackle complex research problems effectively.
  5. Mentorship and Outreach:
    • She has mentored graduate students and engaged in workshops, which reflects her commitment to knowledge sharing and capacity building in her field.

Areas for Improvement:

  1. Broader Research Impact:
    • While Aakriti has made significant strides in her niche area, expanding her research to include more diverse applications or collaborating with industries outside the construction sector could enhance her overall impact.
  2. Increased Visibility:
    • Engaging more actively in international conferences and networking opportunities could improve her visibility and foster collaborations that enhance her research profile.
  3. Grant Acquisition:
    • Focusing on obtaining research grants can support her projects and facilitate the scaling of her innovative solutions, thus increasing her research’s reach and impact.
  4. Public Engagement:
    • Strengthening efforts in public outreach and education about the benefits of green materials can help raise awareness and promote sustainable practices in construction.

Education:

Aakriti Baliyan holds a Ph.D. in Chemical Sciences from the Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Building Research Institute, Roorkee, where her research focuses on utilizing FGD gypsum for developing chemical additives and composite binders in sustainable construction. Prior to her doctoral studies, she completed an M.Sc. in Applied Chemistry from Amity University Noida, where she worked on polymeric transdermal patches for topical applications. She also earned a B.Ed. in Physical and Biological Sciences from Chaudhary Charan Singh University and a B.Sc. in Life Sciences from the University of Delhi. This diverse educational background has equipped her with strong interdisciplinary knowledge across chemical sciences, education, and applied life sciences.

Experience:

Aakriti Baliyan has extensive research experience in the field of chemical sciences, with a focus on the utilization of industrial byproducts like FGD gypsum for developing sustainable construction materials. Her work includes the synthesis of chemical additives, water-resistant binders, and lightweight plasters, contributing to low-carbon and eco-friendly building solutions. She has collaborated with major national organizations like NTPC and the Department of Science and Technology, working on projects related to both modern construction materials and heritage conservation. Aakriti’s technical expertise spans advanced analytical techniques (SEM, FTIR, LCA) and various scientific software, while her contributions are backed by a strong publication record in peer-reviewed journals. Additionally, she has mentored students and presented her research at international conferences, demonstrating her capability to lead and innovate within her field.

Research Focus:

Aakriti Baliyan’s research primarily focuses on the utilization of industrial byproducts, specifically FGD gypsum, to develop sustainable construction materials. Her work aims to create eco-friendly, low-carbon solutions such as water-resistant binders, lightweight plasters, and hybrid cementitious binders that can be used in both interior and exterior applications. She addresses critical issues like high porosity and poor water resistance in FGD gypsum by synthesizing chemical additives to improve its properties. Her research also includes a Life Cycle Assessment (LCA) to evaluate the environmental impact of these materials, contributing to the advancement of green construction technologies. Additionally, Aakriti’s work extends to the conservation of heritage structures, where she develops gypsum-based repair materials to preserve historical buildings, showcasing her interdisciplinary approach to sustainable materials science.

Publications Top Notes:

  • A Comprehensive Review of Flue Gas Desulphurized Gypsum: Production, Properties, and Applications
    Authors: S. Maiti, N. Jain, J. Malik
    Year: 2023
    Citation: Construction and Building Materials, 393, 131918.
  • Light Weight Plasters Containing Vermiculite and FGD Gypsum for Sustainable and Energy Efficient Building Construction Materials
    Authors: S. Maiti, N. Jain, J. Malik, A. Baliyan
    Year: 2023
    Citation: Journal of The Institution of Engineers (India): Series A, 1-12.
  • Calcium Sulphate Whiskers (CSW) an Innovative Material for Civil Engineering Applications: A Critical Review of Its Preparation, Characterization, Current Trends, and Prospects
    Authors: A. Bhardwaj, S. Maiti, N. Jain, A. Pathak, R. R. Gupta
    Year: 2024
    Citation: Construction and Building Materials, 420, 135624.
  • Development of Sustainable Water-Resistant Binder with FGD Gypsum & Fly Ash, and Its Environmental Impact Evaluation via Carbon Footprint and Energy Consumption Analysis
    Authors: N. Jain, S. Maiti, J. Malik, D. Sondhi
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 37, 101376.
  • Synthesis of Calcium Sulfate Whiskers via Acidification Exploiting FGD Gypsum for Improved Binder Properties
    Authors: P. P., Aakriti, S. Maiti, N. Jain
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 42, 101745.

Conclusion:

Aakriti Baliyan’s research in the field of chemical additives, sustainable construction materials, and waste utilization demonstrates significant potential for her to be a strong candidate for the Best Researcher Award. Her innovative contributions to the development of eco-friendly building materials, strong publication record, technical expertise, and engagement in interdisciplinary projects highlight her as a promising researcher. With further international collaborations and expansion into diverse areas of waste management, Aakriti’s profile would be even more competitive for major research accolades.

Archana Yadav l Engineering l Women Researcher Award

Dr. Archana Yadav l Engineering l Women Researcher Award

Assistant Professor at Integral University Lucknow, India

Publication Profile

scopus

Strengths for the Award

  1. Extensive Teaching and Research Experience: With over 12 years in academia, Dr. Yadav has a solid foundation in teaching and mentoring students in various engineering subjects, which enhances her role as an educator.
  2. Significant Contributions to Research: Her doctoral research on surface plasmonic resonance sensors for biomedical applications is both innovative and relevant, especially in healthcare. The application of her work in developing wearable devices for continuous glucose monitoring shows a practical approach to her research.
  3. Active in Academic Service: Dr. Yadav has taken on numerous leadership roles within her department, including coordinator positions for examinations, curriculum design, and departmental committees. This indicates her commitment to improving academic standards and contributing to institutional growth.
  4. Strong Publication Record: With five high-impact publications and a patent, Dr. Yadav has made significant contributions to the field, showcasing her capability to conduct meaningful research that advances knowledge.
  5. Reviewer and Editorial Roles: Her involvement as a reviewer for multiple journals and conferences highlights her expertise and respect within the academic community, as well as her commitment to advancing research in her field.
  6. Innovative Teaching Methods: By creating e-learning materials and engaging students through practical workshops, she demonstrates a commitment to educational innovation and technology integration.

Areas for Improvement

  1. Broaden Research Collaboration: While Dr. Yadav has a strong individual research background, collaborating with other researchers or institutions could lead to more interdisciplinary projects and broaden the impact of her work.
  2. Increase Visibility in Conferences: Although she has presented at some international conferences, attending more such events could enhance her networking and provide greater exposure for her research.
  3. Expand Research Interests: Exploring additional areas within biosensors or healthcare applications could diversify her research portfolio and attract more funding opportunities.
  4. Mentorship and Guidance: While she has successfully guided several students, formalizing a mentorship program could further enhance the development of her students and the overall academic environment.
  5. Public Engagement: Increasing outreach efforts, such as community workshops or public lectures, could help disseminate her research findings more widely and engage with non-academic audiences.

Education

Dr. Archana Yadav holds a Ph.D. in Analysis and Design of Surface Plasmonic Resonance Sensors for Biomedical Applications from Amity University, where she conducted significant research utilizing COMSOL and MATLAB for simulating sensor designs. She also earned her M.Tech. in Digital Communication from B.I.E.T. Jhansi, achieving a first division with honors, and completed her B.Tech. in Electronics & Instrumentation Engineering from I.E.T. Lucknow with a commendable score. Her academic journey includes notable dissertation projects focused on sensor technology, emphasizing her strong foundation in engineering and commitment to advancing research in optical biosensors.

Experience

Dr. Archana Yadav has over 12 years of experience in teaching and research, currently serving as an Assistant Professor at Integral University, Lucknow. Her roles include departmental examination coordination, course design for new programs, and guidance for undergraduate and postgraduate projects. Dr. Yadav has actively contributed to institutional growth through various leadership positions, including serving on multiple committees related to accreditation and curriculum design. She has a strong research focus on optical biosensors for healthcare applications, specifically non-invasive glucose monitoring. Her scholarly work includes five high-impact publications and a patent, reflecting her commitment to advancing knowledge in her field. Additionally, she engages in academic service as a reviewer for several prestigious journals, showcasing her expertise and respect in the academic community.

Research Focus

Dr. Archana Yadav’s research focuses on the modeling and simulation of optical biosensors, particularly for healthcare applications. Her work primarily involves the non-invasive detection of glucose levels, utilizing advanced optical techniques such as surface plasmonic resonance. By investigating various nanomaterials and optimizing sensor designs, she aims to enhance sensitivity and accuracy in glucose monitoring. Her research holds promise for the development of wearable devices that can continuously monitor glucose levels, contributing significantly to biomedical applications and potentially improving patient care in diabetes management. Through her innovative approach, Dr. Yadav is advancing the field of biosensors with practical implications for health monitoring.

Awards and Honours

Dr. Archana Yadav has garnered recognition for her contributions to academia and research, evidenced by her involvement in various prestigious roles and accolades. She serves as a reviewer for numerous high-impact journals, including the IEEE Sensors Journal and Microchemical Journal, showcasing her expertise and respect within the scientific community. Additionally, she is an Editorial Board Member for several academic journals, including the Journal of Photonics Materials and Technology. Dr. Yadav has also received commendations for her innovative teaching methods and contributions to course development at Integral University. Her doctoral work has led to multiple publications in high-impact journals and a patent, reflecting her significant contributions to the field of biosensors. Overall, her extensive involvement in academic service and commitment to research excellence underline her distinguished career.

Publication Top Notes

  • Bimetal Thin Film, Semiconductors, and 2D Nanomaterials in SPR Biosensors: An Approach to Enhanced Urine Glucose Sensing
    • Authors: Kumar, S., Yadav, A., Malomed, B.A.
    • Year: 2024
    • Citations: 6
  • Design and Simulation of SPR Sensors by Employing Silicon and Silicon-Nitride With Mono and Bimetal Layers for Sensitivity Enhancement
    • Authors: Kumar, S., Yadav, A., Kumar, S., Malomed, B.A.
    • Year: 2024
    • Citations: 7
  • Improved Surface Plasmon Effect in Ag-based SPR Biosensor with Graphene and WS2: An Approach Towards Low Cost Urine-Glucose Detection
    • Authors: Yadav, A., Mishra, M., Tripathy, S.K., Singh, O.P., Sharan, P.
    • Year: 2023
    • Citations: 25
  • Highly Sensitive Bimetallic-Metal Nitride SPR Biosensor for Urine Glucose Detection
    • Authors: Yadav, A., Kumar, A., Sharan, P., Mishra, M.
    • Year: 2023
    • Citations: 54
  • Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection
    • Authors: Yadav, A., Kumar, S., Kumar, A., Sharan, P.
    • Year: 2023
    • Citations: 33

Conclusion

Dr. Archana Yadav exemplifies the qualities of a deserving candidate for the Best Researcher Award. Her robust academic and research contributions, commitment to teaching, and active engagement in academic service demonstrate her dedication to the field of engineering and education. With a few strategic improvements, particularly in collaboration and outreach, she could further amplify her impact in academia and beyond. Recognizing her with this award would not only honor her achievements but also encourage her continued contributions to research and education.

Junde Guo | Mechanical Design | Best Researcher Award

Assoc Prof Dr. Junde Guo | Mechanical Design | Best Researcher Award

Mechanical surface design, Xi’an Technological University, China

Dr. Junde Guo is a distinguished Doctor of Engineering, Postdoctoral Fellow, and Associate Professor with a rich background in mechanical engineering. He serves as a Doctoral Supervisor and has been recognized as a Provincial Young Talent. His expertise lies in tribology, surface engineering, and high-performance mechanical components, making significant contributions to both academic and industrial advancements.

Profile

Scopus

Evaluation for the “Best Researcher Award”

Strengths for the Award:

Dr. Junde Guo demonstrates significant strengths that make him a strong candidate for the “Best Researcher Award.” His extensive research in tribology, surface engineering, and high-performance mechanical components is noteworthy, particularly his work on lubrication and sealing systems for industrial robots. Dr. Guo has led 17 major research projects, including those funded by prestigious organizations like the Shaanxi Natural Science Foundation and the State Key Laboratory of Solid Lubrication. His role as a key contributor in these projects highlights his leadership and expertise in his field. Furthermore, Dr. Guo has published over 50 academic papers, with more than 20 indexed in SCI journals as the first or corresponding author, showing his active engagement and impact in the research community. His paper on the triboelectric properties of high-temperature self-lubricating composite materials was recognized as a top 1% highly cited paper, underscoring the influence of his work. Additionally, his seven national invention patents and numerous editorial board positions further establish his credentials as a leading researcher. 🏅🔬

Areas for Improvement:

While Dr. Guo’s research achievements are impressive, there are a few areas where he could enhance his profile further. Increasing his collaboration with international research institutions could broaden the global impact of his work. Additionally, while Dr. Guo has published extensively, expanding his publications to higher-impact journals or focusing on groundbreaking research that addresses emerging challenges in mechanical engineering could further elevate his research stature. Finally, enhancing his engagement with the broader research community through more keynote speeches at international conferences or leadership roles in global professional organizations could increase his visibility and influence. 🌍📈

🎓 Education:

Dr. Guo earned his Ph.D. from the Bearing Institute of the School of Mechanical Engineering at Xi’an Jiaotong University, a premier institution renowned for its engineering programs. His postdoctoral research further refined his expertise in tribology and surface engineering, setting the stage for his prolific academic career.

💼 Experience:

Dr. Guo currently serves as a full-time faculty member at the School of Mechanical and Electrical Engineering, Xi’an University of Technology. His leadership roles include serving as an assistant to the Director of the Planning Department and, starting in 2024, being seconded to the Science and Technology Bureau of Wujiang Economic Development Zone in Suzhou. His previous roles include Deputy Director of the Science and Technology Bureau in Huaiyin District, Jiangsu Province.

🔬 Research Interests:

Dr. Guo’s research is primarily focused on tribology, surface engineering of high-end equipment support systems, and the development of maintenance-free characteristics of sliding components. He has dedicated much of his career to advancing key technologies for regulating friction and wear performance, especially under extreme conditions, providing crucial support for both military and civilian mechanical applications.

🏆 Awards:

Dr. Guo has received numerous accolades, including being named a young science and technology star in Shaanxi Province in 2021. He was awarded the Outstanding Reviewer title by the IOP database and the Journal of Friction and Friction in 2023. His work has also earned him the second prize in the Shaanxi University Science and Technology Research Excellent Achievement Award and recognition as an Outstanding Teacher at Xi’an Technological University.

📚 Publications Top Notes:

Dr. Guo has published over 50 academic papers, with more than 20 indexed in SCI journals. His notable publications include:

First principles investigation of in-situ NiAl(110)/Ag(111) and NiAl(110)/MoO3(010) heterogeneous interfaces behavior in composite coatingsSurfaces and Interfaces, 2024.

Enhancing PEO coating on TC6 alloy through in-situ synthesis of MoSe2—Towards more efficient wear-reducing lubrication and wear resistanceTribology International, 2024. Cited by 3 articles.

Multi-axis CNC finishing and surface roughness prediction of TC11 titanium alloy open integral micro impellerAdvances in Mechanical Engineering, 2024.

Effect of copper introduction on the properties of micro-arc oxidation coating on powder metallurgy aluminum diskSurface and Coatings Technology, 2024. Cited by 2 articles.

Tribological performance of maintenance-free Cu-Sn-Ni-MoS2 composites over a wide temperature rangeIndustrial Lubrication and Tribology, 2024. Cited by 1 article.

Friction and wear properties of textured surface for bearing steel with mango-shaped micro geometriesIndustrial Lubrication and Tribology, 2024.

Conclusion:

Dr. Junde Guo is a distinguished researcher with a strong track record in tribology and mechanical engineering. His leadership in significant research projects, prolific publication record, and contributions to the development of advanced materials and technologies make him a deserving candidate for the “Best Researcher Award.” With some strategic enhancements, particularly in international collaborations and high-impact research dissemination, Dr. Guo’s already impressive career could reach even greater heights. His recognition through this award would not only acknowledge his past achievements but also encourage continued excellence in his future endeavors. 🌟🎖