T. Pramod | Materials Science | Best Researcher Award

Mr. T. Pramod | Materials Science | Best Researcher Award

Research Scholar at Kalasalingam Academy of Research and Education, India

T. Pramod is a dedicated researcher and technical expert specializing in mechanical engineering, material science, and nanocomposites. With a passion for innovation, he has contributed significantly to the advancement of fire-retardant materials, hydro turbine coatings, and polymer nanocomposites. His extensive experience spans research roles in prestigious institutions, including ISRO (LEOS), TERI, and CPRI, where he played a crucial role in developing cutting-edge technologies. As an active contributor to the scientific community, he has published numerous journal articles, presented research at international conferences, and filed multiple patents. His expertise in computational simulations, thermal coatings, and material characterization has made him a recognized name in engineering research. Alongside his technical acumen, Pramod has served as an editorial board member and reviewer for reputed journals, further establishing his influence in academia. His career is a testament to his dedication to scientific exploration and engineering advancements.

Professional Profile

Education

T. Pramod holds an M.Sc. Engineering by Research in Mechanical Engineering from Visvesvaraya Technological University, where he conducted in-depth research on material degradation and coatings. His undergraduate education includes a Bachelor of Engineering (B.E.) in Mechanical Engineering from M.V.J College of Engineering, Bangalore, where he developed a strong foundation in design, thermal engineering, and manufacturing processes. Prior to his engineering studies, he completed Pre-University Education (PCMB) from Sree Cauvery College, Bangalore, and his SSLC from Kendriya Vidyalaya, DRDO Township, where he exhibited a keen interest in science and mathematics. Throughout his academic journey, he consistently explored advanced research methodologies, gaining expertise in experimental analysis, computational modeling, and material characterization. His strong academic background laid the foundation for his prolific research career, equipping him with the necessary knowledge and skills to excel in mechanical and materials engineering.

Professional Experience

T. Pramod has amassed a wealth of experience in research and development, holding significant roles across premier research institutions. Currently, he serves as a Technical Assistant at ISRO’s Laboratory for Electro Optics Systems (LEOS), specializing in metrology and optics inspection. Previously, he was a Research Consultant at The Energy and Resources Institute (TERI-SRC), Bangalore, where he worked on fire-retardant nanocomposites for medium-voltage cable sheathing applications. His tenure as a Research Fellow at Central Power Research Institute (CPRI), Bangalore, focused on the combined effects of cavitation and silt erosion in hydro turbine coatings. Earlier, he worked at the Central Manufacturing Technology Institute (CMTI), Bangalore, exploring ductile regime machining of brittle materials. His extensive industrial and research experience has contributed to groundbreaking advancements in material science, coatings, and mechanical performance analysis. His multidisciplinary expertise has enabled him to bridge the gap between research and industrial applications.

Research Interests

T. Pramod’s research interests lie in the fields of material science, nanocomposites, thermal spray coatings, mechanical behavior, and fire-retardant materials. His work extensively covers the development and characterization of high-performance materials for aerospace, power, and defense applications. He specializes in polymer nanocomposites, mechanical testing, thermal degradation, and erosion-resistant coatings, contributing to advancements in engineering materials. His recent research focuses on intumescent fire-retardant nanocomposites, where he investigates the enhancement of flame resistance in polymer materials. Additionally, his studies on hydro turbine coatings and cavitation erosion resistance provide valuable insights into improving the durability of engineering structures. Through experimental and computational approaches, he has explored various mechanical and tribological properties of materials, aiming to optimize their performance under extreme conditions. His interdisciplinary research integrates material science, fluid mechanics, and thermal engineering to develop next-generation materials with superior properties.

Awards and Honors

T. Pramod has been recognized for his outstanding contributions to research and development in mechanical and materials engineering. He has filed multiple patents, including one on fire-retardant nanocomposite materials and another on hydro turbine erosion coatings, showcasing his innovation in material applications. As an editorial and review board member for reputed scientific journals, he has played a crucial role in advancing knowledge dissemination in engineering. He has actively contributed as a technical committee member for national and international conferences, including the National Conference on Additive Manufacturing in Aerospace and Defense and the All India Seminar on Residual Stress and Advanced NDE Techniques. His numerous journal publications in high-impact international journals reflect his significant research impact. Additionally, he has been honored for his participation in scientific symposiums and technical workshops, further solidifying his stature as an accomplished researcher in his field.

Conclusion

T. Pramod has an impressive research background, publication record, patents, and technical expertise, making him a strong candidate for the Best Researcher Award. If he enhances his academic credentials, research leadership, and global outreach, he would be an even more outstanding contender.

Publications Top Noted

Author: T. Pramod, Shreyas J. Kashyap, Z. Yunus Khan, Mohammed Jahangeer Ali, Mohammed Yunus Khaleel, R.R.N. Sailaja
Year: 2025
Citation: Pramod, T., Kashyap, S. J., Khan, Z. Y., Ali, M. J., Khaleel, M. Y., & Sailaja, R. R. N. (2025). Mechanical and flame retardant characteristics of PC/ABS composites: Effect of loading co-microencapsulated flame retardant additive along with silane treated nanoclay and functionalized MWCNT as fillers. Advanced Composite Materials. DOI: 10.1080/09243046.2025.2475600

 

Ho Won Jang | Materials Science | Best Paper Award

Prof. Dr. Ho Won Jang | Materials Science | Best Paper Award

Professor at Seoul National University, South Korea

Prof. Ho Won Jang is a distinguished professor in the Department of Materials Science and Engineering at Seoul National University (SNU), South Korea. With a career spanning over two decades, he has made groundbreaking contributions to materials science, particularly in electronic and electrochemical applications. His research focuses on advanced materials, including memristive materials, nanostructures, and epitaxial thin films, which have significant implications for nanoelectronics, neuromorphic computing, and sustainable energy solutions. As a globally recognized scientist, he has been actively involved in editorial boards, international collaborations, and high-impact research publications, shaping the future of electronic materials. His leadership roles in academia and professional societies highlight his commitment to advancing science and mentoring young researchers. With an extensive portfolio of research excellence and prestigious accolades, Prof. Jang continues to be a driving force in cutting-edge materials research, contributing significantly to the evolution of modern technologies.

Professional Profile

Education

Prof. Ho Won Jang earned his Ph.D. in Materials Science and Engineering from POSTECH (Pohang University of Science and Technology), Korea, in 2004, after completing his M.S. (2001) and B.S. (1999) degrees at the same institution. His academic journey was marked by a strong foundation in nanomaterials, thin films, and semiconductor physics, which paved the way for his pioneering research in advanced materials. During his Ph.D., he focused on the design and synthesis of functional materials for electronic applications, laying the groundwork for his future studies in epitaxial thin films and nanostructured devices. His early research contributions were recognized through multiple prestigious awards, demonstrating his academic excellence and innovative approach to materials science. His education at one of Korea’s leading engineering institutions provided him with the technical expertise and research capabilities that would later define his career as a top-tier scientist in the field.

Professional Experience

Prof. Jang began his professional career as a Postdoctoral Fellow at POSTECH (2004-2005) before moving to the University of Wisconsin-Madison (2006-2009) as a Research Associate. In 2006, he joined the Korea Institute of Science and Technology (KIST) as a Senior Research Scientist, where he led several high-impact projects in nanoelectronics and electrochemical applications. His transition to Seoul National University in 2012 as a Professor marked a significant milestone in his career, where he has since played a crucial role in advancing research in materials science and engineering. Over the years, he has served as an editor for multiple international journals, collaborated with leading global researchers, and contributed to key advancements in electronic materials. His leadership positions, including serving as Associate Dean at SNU’s College of Engineering (2021-2024), highlight his influence in shaping the future of materials research and education.

Research Interests

Prof. Jang’s research focuses on epitaxial thin films, memristive materials, electrochemical catalysts, and nanosensors for next-generation electronic and energy applications. His studies on Mott insulators, neuromorphic computing, and electronic nose/tongue technologies have led to innovative breakthroughs in artificial intelligence-driven materials and nanoelectronic devices. Additionally, his work on localized surface plasmon resonance sensors and micro-light-emitting diodes (µLEDs) has potential applications in biomedical sensing and next-generation displays. His research in electrodes and catalysts for water splitting and CO₂ reduction aligns with global efforts toward sustainable and renewable energy solutions. By integrating multidisciplinary approaches, including nanotechnology, chemistry, and physics, he continues to explore novel materials with enhanced functionalities for computing, sensing, and clean energy applications, making significant contributions to both fundamental science and industrial innovation.

Awards and Honors

Prof. Ho Won Jang has received numerous prestigious awards for his outstanding contributions to materials science and engineering. His accolades include the Top 2% Scientists ranking by Stanford University (2022), the ACS Nano Top Contributor in Korea (2024), and the Academic Research and Education Award from SNU (2023). He has also been recognized with the 2021 Science and Technology Excellence Paper Award of Korea and multiple Best Paper Awards from leading conferences and institutions. His early achievements include the Young Ceramist Award (2014) and Young Scholarship Award (2014), highlighting his contributions to ceramic materials research. Additionally, he has played a vital role as an editorial board member for major scientific journals and a reviewer for over 200 high-impact journals, further solidifying his reputation as a leading scientist in materials research. His numerous honors reflect his exceptional research impact, leadership, and dedication to advancing materials science.

Conclusion

Prof. Ho Won Jang is highly suitable for the Research Best Paper Award, given his exceptional research contributions, prestigious recognitions, and leadership in the field of materials science and engineering. His extensive publication record, awards, and editorial roles further validate his expertise. If the award criteria favor cutting-edge innovation and research influence, he would be an excellent candidate. Strengthening the application by highlighting real-world applications, interdisciplinary collaborations, and mentoring efforts could further solidify his case.

Publications Top Noted

  1. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    • Authors: A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, et al.
    • Year: 2009
    • Citations: 685
  2. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

    • Authors: S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, et al.
    • Year: 2010
    • Citations: 550
  3. Giant piezoelectricity on Si for hyperactive MEMS

    • Authors: S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, et al.
    • Year: 2011
    • Citations: 514
  4. One-dimensional oxide nanostructures as gas-sensing materials: review and issues

    • Authors: K. J. Choi, H. W. Jang
    • Year: 2010
    • Citations: 473
  5. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination

    • Authors: S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. V. Le, H. W. Jang, et al.
    • Year: 2020
    • Citations: 446
  6. Organolead halide perovskites for low operating voltage multilevel resistive switching

    • Authors: J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, et al.
    • Year: 2016
    • Citations: 361
  7. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films

    • Authors: H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, et al.
    • Year: 2009
    • Citations: 351
  8. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate

    • Authors: S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J. L. Lee
    • Year: 2017
    • Citations: 334
  9. Ferroelectricity in strain-free thin films

    • Authors: H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, et al.
    • Year: 2010
    • Citations: 334
  10. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending

  • Authors: Y. H. Kim, S. J. Kim, Y. J. Kim, Y. S. Shim, S. Y. Kim, B. H. Hong, H. W. Jang
  • Year: 2015
  • Citations: 326
  1. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
  • Authors: C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, et al.
  • Year: 2011
  • Citations: 312
  1. Strain-induced polarization rotation in epitaxial (001) thin films
  • Authors: H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, et al.
  • Year: 2008
  • Citations: 309
  1. Perspectives and challenges in multilayer ceramic capacitors for next-generation electronics
  • Authors: K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, H. W. Jang
  • Year: 2019
  • Citations: 307
  1. Organic–Inorganic hybrid halide perovskites for memories, transistors, and artificial synapses
  • Authors: J. Choi, J. S. Han, K. Hong, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 303
  1. Metallic and insulating oxide interfaces controlled by electronic correlations
  • Authors: H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, M. K. Niranjan, C. T. Nelson, et al.
  • Year: 2011
  • Citations: 287
  1. Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective
  • Authors: Q. V. Le, H. W. Jang, S. Y. Kim
  • Year: 2018
  • Citations: 278
  1. Spin injection/detection using an organic-based magnetic semiconductor
  • Authors: J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, A. J. Epstein
  • Year: 2010
  • Citations: 260
  1. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures
  • Authors: H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, J. H. Lee
  • Year: 2013
  • Citations: 259
  1. Low-dimensional halide perovskites: review and issues
  • Authors: K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 257
  1. Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions
  • Authors: K. Hong, M. Sajjadi, J. M. Suh, K. Zhang, M. Nasrollahzadeh, H. W. Jang, et al.
  • Year: 2020
  • Citations: 252

 

Costica BEJINARIU | Materials Technology | Best Researcher Award

Prof Dr. Costica BEJINARIU | Materials Technology | Best Researcher Award

Professor, PhD, Eng., „Gheorghe Asachi” Technical University from Iasi, Romania

👨‍🏫 Professor Costica Bejinariu is a distinguished academic with over 35 years of experience in Materials Engineering and Industrial Safety. He currently holds a position as a full professor at Gheorghe Asachi Technical University of Iasi, Romania, and is also a doctoral supervisor. His research interests span across Materials Science, Nanostructured Materials, Safety at Work, and Risk Assessment. Professor Bejinariu has made significant contributions to both national and international research, with numerous projects and publications, and he is highly involved in academic leadership and professional associations.

Profile

Google Scholar

Education

🎓 Professor Bejinariu’s education has laid a strong foundation for his extensive career in Materials Engineering. While details of his personal education journey are not specifically listed, his professional development is highlighted through his role as a doctoral supervisor since 2009, guiding seven completed theses and currently overseeing seven doctoral candidates.

Research Experience

🔬 With over 45 completed and ongoing research projects, Professor Bejinariu has led and contributed to a wide array of initiatives, including industry projects and academic research funded by prominent Romanian grants such as CNMP-PN2, CeEx, and ORIZONT 2000. He has also managed several grants, demonstrating his leadership in both scientific and applied research. His research has focused primarily on Materials Science, particularly the safety and health aspects in engineering and industrial applications.

Research Interests

🧪 Professor Bejinariu’s research spans several crucial domains, including Materials Engineering, Nanostructured Materials, and Safety Engineering. His work in risk assessment and occupational health highlights his dedication to improving workplace safety and public health through advanced material testing and development. He also actively explores sustainable practices in materials technology and engineering, aiming to address industrial and environmental challenges.

Awards

🏆 Professor Bejinariu’s career is marked by numerous honors and achievements, including his membership in prestigious organizations such as the Academy of Romanian Scientists. He has contributed significantly to both the academic and industry sectors through his leadership in research, having been recognized for his innovative approaches and commitment to academic excellence. His research and publications continue to receive global recognition, contributing to his high citation index.

Publications Top Notes

📚 Professor Bejinariu has an impressive record with 277 scientific papers, including over 65 articles indexed in ISI – Web of Science Core Collection and 33 papers in proceedings. His work spans international journals and conferences, with a citation index of over 1500 citations across platforms like Web of Science, Scopus, and Google Scholar. Some of his notable works include his contributions to corrosion resistance and materials surface enhancement. He has also published 30 books/chapters, several of which are internationally recognized.

Citation Metrics:

  • Web of Science: 875 citations
  • Scopus: 1077 citations
  • Google Scholar: 1547 citations

Nicoleta Mirela Marin | Materials Science | Best Researcher Award

Dr Nicoleta Mirela Marin | Materials Science | Best Researcher Award

Dr Nicoleta Mirela Marin , National University of Science and Technology , China

Nicoleta Mirela Marin is an accomplished chemist specializing in analytical chemistry and environmental quality control. With a PhD from the University of Bucharest, her research focuses on innovative ion exchange methods and spectrometric techniques for assessing environmental pollutants. A dedicated researcher, she has contributed significantly to the field through numerous publications and conference presentations. Currently, she serves as a Scientific Researcher at the National Research and Development Institute for Industrial Ecology-ECOIND and as a Postdoctoral Research Scientist at the University Politehnica of Bucharest. Nicoleta is known for her leadership in national research projects and her commitment to disseminating scientific knowledge through peer-reviewed journals. Her interdisciplinary approach combines fundamental research with practical applications, making her a key figure in advancing environmental analytical methodologies.

Publication Profile

Orcid

Strengths for the Award

  1. Extensive Academic Background:
    • Nicoleta has a strong educational foundation with a Bachelor’s degree, a Master’s, and a PhD from the University of Bucharest, focusing on Analytical Chemistry.
    • Her doctoral research led to the publication of three ISI scientific articles and presentations at numerous national and international conferences.
  2. Proven Research Contributions:
    • She has published a total of 16 ISI articles, with 12 as the main author, including several in high-impact journals (Q1 and Q2).
    • Her H-index of 9 on Scopus and 8 on Web of Science, along with 181 total citations on Scopus and 92 on Web of Science, reflects her impactful research in environmental quality control and analytical methods.
  3. Innovative Research Focus:
    • Her research addresses critical environmental issues, particularly the speciation of hazardous metals and the development of analytical methods for environmental monitoring.
    • The focus on eco-friendly chelating resins and natural materials for pollutant removal showcases her commitment to sustainable practices.
  4. Leadership and Collaboration:
    • Nicoleta has led national research projects and collaborated on numerous others, demonstrating strong organizational and project management skills.
    • Her participation in interlaboratory comparison programs and active role in research teams highlight her collaborative spirit.
  5. Peer Review and Editorial Roles:
    • As a guest editor for a special issue in a Q1 journal and a peer reviewer for multiple high-ranking journals, she contributes to the scientific community by ensuring the quality of published research.

Areas for Improvement

  1. Broader Outreach:
    • While her publication record is strong, expanding her outreach efforts, such as public engagement or community education regarding environmental issues, could enhance her impact.
  2. Diversity in Research Topics:
    • Exploring interdisciplinary approaches or collaborations with researchers from other fields could lead to innovative solutions and broaden her research scope.
  3. Enhanced Visibility:
    • Increasing participation in public seminars or workshops could raise her profile within the community and foster more partnerships and collaborations.

Education 

Nicoleta Mirela Marin obtained her Bachelor’s degree in Analytical Chemistry from the University of Bucharest in 2006. She continued her academic journey by completing a Master’s degree in the same field between 2006 and 2008. In October 2011, she embarked on her doctoral studies at the University of Bucharest’s Faculty of Chemistry, under the mentorship of Professor Irinel Adriana Badea. Her doctoral research culminated in 2019 with the defense of her thesis titled “Classic and Non-Conventional Ion Exchangers with Applications in Environmental Quality Control Methods,” for which she received her PhD title. Throughout her academic career, Nicoleta has developed a strong foundation in analytical techniques and environmental studies, further enhanced by her ongoing postdoctoral research at the University Politehnica of Bucharest, supported by the European Social Fund.

Experience

Nicoleta Mirela Marin has extensive experience in research and development, currently serving as a Scientific Researcher at the National Research and Development Institute for Industrial Ecology-ECOIND in Bucharest. Her work focuses on assessing pollution levels through advanced analytical techniques such as AAS, ICP-EOS, ICP-MS, AFS, and UV-VIS spectrometry. Nicoleta has led multiple research projects aimed at developing and optimizing analytical methods for detecting inorganic pollutants in various environmental matrices, including water, soil, and waste. She has published 16 ISI-indexed articles, participated in numerous national and international conferences, and contributed to several national research projects as a leader and team member. Her role involves method validation, interlaboratory comparisons, and the dissemination of research findings, showcasing her strong analytical and project management skills in a collaborative research environment.

Research Focus 

Nicoleta Mirela Marin’s research primarily centers on analytical chemistry, particularly the development of innovative ion exchange methods for environmental quality control. Her work involves studying hazardous substances and assessing pollution levels through various spectrometric techniques. She has extensively researched the speciation of metals in soil and sediments, focusing on the determination of metals such as Na, K, Ca, Mg, and heavy metals like Cd, Pb, and Hg in environmental samples. Nicoleta’s publications highlight her contributions to the development and optimization of analytical methods for monitoring inorganic pollutants in drinking water, wastewater, and soil. She is also interested in eco-friendly materials for water treatment and the application of natural polymers for pollutant removal. Her interdisciplinary approach integrates fundamental research with practical applications, aiming to enhance environmental monitoring and remediation strategies.

Publications Top Notes

  1. A New Approach of Complexing Polymers Used for the Removal of Cu2+ Ions 🧪
  2. Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment 🌍
  3. New Chelate Resins Prepared with Direct Red 23 for Cd2+, Ni2+, Cu2+ and Pb2+ Removal 🌊
  4. Maize Stalk Obtained after Acid Treatment and Its Use for Simultaneous Removal of Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and Fe3+ 🌾
  5. Natural and Synthetic Polymers Modified with Acid Blue 113 for Removal of Cr3+, Zn2+ and Mn2+ 🧬
  6. Removal of procainamide and lidocaine on Amberlite XAD7HP resin and of As(V), Pb(II) and Cd(II) on the impregnated resin for water treatment 💧
  7. Maize stalk material for on-site treatment of highly polluted leachate and mine wastewater 🚰
  8. Application of Amberlite IRA 402 Resin Adsorption and Laccase Treatment for Acid Blue 113 Removal from Aqueous Media 🧴
  9. APPLICATION OF AMBERLITE XAD 2 RESIN FOR TEXTILE DYE REMOVAL 🧵
  10. Assessment of heavy metals contamination in groundwater sources from Ialomita County 🔍
  11. Water Quality Index, a Useful Tool for Evaluation of Danube River Raw Water 🚣
  12. Synergistic Methodology Based on Ion Exchange and Biodegradation Mechanisms Applied for Metal Complex Dye Removal from Waste Waters 🏞️

Conclusion

Nicoleta Mirela Marin exhibits a strong blend of academic prowess, impactful research, and leadership qualities that make her an outstanding candidate for the Best Researcher Award. Her dedication to addressing environmental challenges through innovative methods and her substantial contributions to the scientific community position her as a deserving recipient of this recognition. Encouraging her to expand her outreach and interdisciplinary collaborations could further amplify her impact and enhance her already impressive profile.

 

 

Lamiae Talha | Materials Science | Best Researcher Award

Mrs. Lamiae Talha | Materials Science | Best Researcher Award

Faculty of Science Dhar Mahraz, Sidi Mohammed Ben Abdellah University, Morocco

Dr. Lamiae Talha is an Assistant Professor in the Department of Physics at the Faculty of Science Dhar Mahraz, Sidi Mohammed Ben Abdellah University. With a specialization in materials science and applied physics, she has made significant contributions to the study of colloids, polymer physics, and soft condensed matter. Her research is recognized for advancing understanding in the dynamics and structural properties of micellar and microemulsion systems. 🌟

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience:
    • Dr. Talha has a strong background in materials sciences with a focus on colloids, polymer physics, and soft condensed matter. Her research on micellar systems and microemulsions demonstrates significant depth and complexity in her field.
  2. High-Quality Publications:
    • Her publications appear in reputable journals such as the Journal of Dispersion Science and Technology and the Journal of Molecular Liquids. These articles cover advanced topics such as dynamic light scattering and molecular dynamics simulations, showcasing her expertise and contributions to her field.
  3. Diverse Research Topics:
    • Dr. Talha’s work spans various aspects of soft matter physics and materials science, including colloidal dynamics, microemulsion properties, and polymer interactions. This breadth of research indicates a versatile and comprehensive approach to her field.
  4. Conference Presentations:
    • She has presented her research at numerous international conferences, which highlights her active engagement with the global scientific community. Her involvement in organizing scientific meetings further emphasizes her commitment and leadership in her field.
  5. Recent Achievements:
    • Her recent habilitation (HDR) to conduct research in 2024 reflects her continuing development and recognition as an expert in materials sciences.

Areas for Improvement

  1. Broader Impact and Applications:
    • While Dr. Talha’s research is technically robust, there could be more emphasis on the practical applications and broader impacts of her work. Demonstrating how her research influences industry or addresses societal challenges could strengthen her candidacy.
  2. Collaborations and Grants:
    • It would be beneficial to highlight any major collaborative projects or grants she has secured, as this can indicate her ability to attract funding and work effectively in interdisciplinary teams.
  3. Public Engagement:
    • Increasing visibility through public outreach or popular science communication could enhance the impact of her research beyond academic circles.

 

Education

Dr. Talha completed her Licence fondamentale in Physics from the Faculty of Science Dhar Mahraz in 2006. She earned her Master’s degree in Materials Science and Quantum Systems from the same institution in 2008. In 2014, she received her Ph.D. in Materials Sciences for Energy and the Environment, with honors, from Sidi Mohammed Ben Abdellah University. Recently, she achieved Habilitation to Conduct Research (HDR) in Materials Sciences in 2024. 🎓

Experience

Dr. Talha is currently an Assistant Professor at Sidi Mohammed Ben Abdellah University, where she is part of the Applied Physics, Computer Science, and Statistics Laboratory. She has also conducted research at the Laboratoire de la Physique Théorique et Appliquée (LPTA) at the same university. Her academic and research roles have established her as a leading expert in her field. 🔬

Research Focus

Dr. Talha’s research interests include colloids, polymer physics, and soft condensed matter. She focuses on self-assembled systems, relaxation modes of colloidal particles, and the dynamic, rheological, and structural properties of soft matter. Her work utilizes dynamic light scattering and various simulation methods to explore the behavior of micellar and microemulsion systems. 🔍

Awards and Honors

Dr. Talha’s exceptional contributions to materials science and applied physics have been recognized through various academic achievements. She has received accolades for her research and has been acknowledged in the scientific community for her innovative studies in the dynamics of soft matter systems. 🏆

Publication Top Notes

Talha, L., El Khaoui, S., Ahfir, R., Khatouri, M., Arbia, A., Elhajjam, R., & Filali, M. (2024). Effect of polyelectrolyte (PAA) on the dynamics of weakly charged microemulsion droplets in acidic medium. Journal of Dispersion Science and Technology, 1–12. Read Article

Khatouri, M., Ahfir, R., Talha, L., Lemaalem, M., El Khaoui, S., Arbia, A., … & Filali, M. (2024). Dynamic and phase transition studies of ionic surfactant-stabilized oil/water microemulsion: Effects of volume fraction, polymer grafting, and temperature. Journal of Molecular Liquids, 409, 125358. Read Article

Ayoub Arbia, Rachid Ahfir, Redouane Elhajjam, Lamiae Talha, and Mohammed Filali. (2023). A study of the structure and thermodynamics of non-ionic microemulsion droplets: integral equation methods (IEs) and molecular dynamics simulation (MD). E3S Web of Conferences 469, 00048. Read Article

Redouane Elhajjam, Rachid Ahfir, Ayoub Arbia, Lamiae Talha, and Mohammed Filali. (2023). Dynamic properties of decane/water microemulsions decorated with hydrophobically modified PEO Polymer (PEO- C12): A molecular dynamics simulations study. E3S Web of Conferences 469, 00030. Read Article

Tahiri, A., Naji, M., Talha, L. et al. (2023). First-Principles Calculations Study of Structural, Elastic, Electronic and Optical Properties of Co2 − xVxFeGe Full-Heusler Alloys. J. Electron. Mater., 52, 6919–6928. Read Article

El Khaoui, S., Talha, L., Khatouri, M., Ahfir, R., Naji, M., & Filali, M. (2022). Relaxation modes in a smart system: weakly charged microemulsion and polyelectrolyte. Separation Science and Technology, 57(16), 2615–2624. Read Article

Conclusion

Dr. Lamiae Talha is a strong candidate for the Research for Best Research Award due to her extensive research experience, high-quality publications, and active participation in the scientific community. Her work in materials sciences, particularly in the dynamics of colloidal and microemulsion systems, is both advanced and relevant. To further strengthen her application, emphasizing the practical applications of her research, showcasing significant collaborations or grants, and increasing public engagement would be beneficial.

 

Abear El-Gamal | Materials Science | Best Researcher Award

Assoc Prof Dr. Abear El-Gamal | Materials Science | Best Researcher Award

Professor Assistant | Cairo University | Egypt

Best Researcher Award

Strengths for the Award

  1. Extensive Research Experience
    • With over 24 years of experience, Dr. Abeer Hassan has a profound background in materials science and physics, contributing significantly to the academic community through her research in various fields such as nanocomposites, electromagnetic shielding, and flame-retardant coatings.
  2. Innovative Research Contributions
    • Dr. Hassan’s work on enhancing the mechanical and electrical properties of materials, such as irradiated acrylonitrile butadiene rubber/magnetite nanocomposites and flame-retardant coatings, demonstrates her ability to address complex scientific challenges with innovative solutions.
  3. Publication Record
    • Dr. Hassan has published numerous research articles in reputable journals like Journal of Thermoplastic Composite Materials and Materials Chemistry and Physics. Her research is well-cited and contributes to the advancement of knowledge in materials science and nanotechnology.
  4. Peer Recognition
    • Her involvement in peer review activities for journals such as Physica Status Solidi highlights her recognition as an expert in her field by the scientific community.

Areas for Improvement

  1. Interdisciplinary Collaboration
    • Expanding her research through interdisciplinary collaboration could further enhance the impact of her work. Collaborating with experts in related fields such as environmental science or biomedical engineering could open new avenues for innovative applications of her research.
  2. International Exposure
    • Increasing her participation in international conferences and collaborative projects could elevate her profile on a global scale, allowing for greater dissemination of her research and potential for partnerships.
  3. Grant Acquisition
    • Securing more international research grants could provide additional resources for conducting large-scale, high-impact studies. This would not only enhance the scope of her research but also position her as a leader in obtaining competitive funding.

Conclusion

Dr. Abeer Hassan is a highly accomplished researcher with a strong foundation in materials science and significant contributions to the academic community. Her innovative work, extensive publication record, and peer recognition make her a suitable candidate for the “Best Researcher Award.” While she has already achieved much, further interdisciplinary collaboration, international exposure, and grant acquisition could enhance her impact and reinforce her status as a leading researcher in her field.

🎯 Short Bio

Abeer Hassan is an Assistant Professor at the Faculty of Science, Cairo University, Egypt. With over 24 years of experience in higher education, she has made significant contributions to the field of physics, particularly in the areas of materials science and nanotechnology. Her research focuses on enhancing the mechanical and electrical properties of various materials for advanced industrial applications.

Profile

Orcid

🎓 Education

Abeer Hassan earned her academic credentials from Cairo University, where she has been an integral part of the Faculty of Science since 2000. Her educational journey has been marked by a deep commitment to advancing knowledge in physics, culminating in her current role as an Assistant Professor.

🧑‍🔬 Experience

Abeer Hassan has over 24 years of experience as an Assistant Professor in the Faculty of Science at Cairo University. Throughout her career, she has been involved in numerous research projects, mentoring students, and contributing to the development of the university’s academic programs. Her work has been widely recognized in the scientific community, particularly in the field of materials science.

🔬 Research Interest

Abeer Hassan’s research interests lie in the field of materials science, with a focus on the mechanical, electrical, and thermal properties of advanced materials. She is particularly interested in nanocomposites, electromagnetic shielding applications, and the development of multifunctional coatings. Her work aims to bridge the gap between fundamental research and practical industrial applications.

🏆 Awards

Abeer Hassan has been recognized for her contributions to science and education, though specific awards and recognitions are not listed. Her work continues to impact the scientific community and inspire her peers and students alike.

📚 Publications

Enhancing the mechanical and electrical properties of irradiated acrylonitrile butadiene rubber/magnetite nanocomposites for electromagnetic shielding applicationsJournal of Thermoplastic Composite Materials, 2024. DOI: 10.1177/08927057241270832. Cited by: Crossref.

Preparation of multifunctional flame-retardant coating of cotton fabrics for electrical insulating applicationsJournal of Thermoplastic Composite Materials, 2024. DOI: 10.1177/08927057231203549. Cited by: Crossref.

Optical and Electrical Properties of Polystyrene/Poly‐methyl methacrylate Polymeric Blend Filled with Semiconductor and Insulator Nanofillersphysica status solidi (RRL) – Rapid Research Letters, 2023. DOI: 10.1002/pssr.202300145. Cited by: Crossref.

Effect of micro-sized lead oxide on the workability, mechanical strength and durability of alkali-activated slag mortarConstruction and Building Materials, 2023. DOI: 10.1016/j.conbuildmat.2023.130890. Cited by: Crossref.

A new multifunctional flame-retardant coating for cotton fabric to enhance smoke suppression, and UV shielding propertiesIndustrial Crops and Products, 2023. DOI: 10.1016/j.indcrop.2023.117469. Cited by: Scopus – Elsevier.

 

 

Yutaka Moritomo | Energy Material Science | Best Researcher Award

Prof. Yutaka Moritomo | Energy Material Science | Best Researcher Award

Professor, University of Tsukuba, Japan

Yutaka Moritomo is a distinguished Professor at the Faculty of Pure and Applied Science, University of Tsukuba, known for his pioneering research in thermoelectric conversion devices and battery technology. With a career spanning over three decades, his work focuses on enhancing the efficiency and performance of electrochemical systems.

Profile

Google Scholar

Strengths

  1. Depth and Breadth of Research: Yutaka Moritomo’s research spans various aspects of physical science, particularly in the fields of materials science, electrochemistry, and energy storage. His work on thermoelectric devices, battery technologies, and organic electronics showcases a deep understanding and significant contribution to these fields.
  2. High-Impact Publications: Moritomo has a strong publication record with numerous papers in high-impact journals such as Nature Materials, J. Phys. Soc. Jpn., and Energy Technology. This indicates a high level of recognition and respect within the scientific community.
  3. Innovative Contributions: His research on liquid thermoelectric devices, concentration-dependent resistance components, and thermorechargeable batteries demonstrates innovation and an ability to address cutting-edge topics. His work on improving battery performance and understanding redox potential in various materials is noteworthy.
  4. Collaborative Efforts: Moritomo has co-authored numerous papers with various researchers, showing his ability to work effectively in collaborative environments. This is crucial for advancing complex scientific research and developing new technologies.
  5. Consistency and Continuity: His consistent publication output and engagement in diverse but related research areas over the years reflect a sustained commitment to scientific inquiry and advancement.

Areas for Improvement

  1. Research Diversity: While Moritomo’s focus on electrochemistry and thermoelectric devices is impressive, diversifying into other emerging fields or interdisciplinary research could broaden his impact and address a wider range of scientific questions.
  2. Impact and Application: Although his research is technically sound, more emphasis could be placed on the practical applications and commercialization of his findings. Translating scientific discoveries into real-world solutions could enhance the societal impact of his work.
  3. Interdisciplinary Integration: Increasing integration with other scientific disciplines, such as integrating his work with developments in computational modeling or advanced materials science, could lead to new insights and applications.
  4. Public Engagement: Greater efforts in public science communication and outreach could help bridge the gap between scientific research and public understanding. This might involve writing more accessible articles or participating in science education initiatives.

Education

Dr. Moritomo earned his PhD in Physics from the University of Tokyo in 1992, where he laid the foundation for his future research in thermoelectric and battery technologies. 🎓

Experience

After completing his PhD, he worked as a JSPS Research Fellow and then held a Postdoctoral position at JRCAT. From 1996 to 2005, he was an Associate Professor at Nagoya University before joining the University of Tsukuba as a Professor in 2005. 🏛️

Research Interests

His research delves into liquid thermoelectric conversion devices, battery performance optimization, and the thermal conductivity of solutions. He aims to advance energy storage and conversion technologies through innovative electrochemical solutions. ⚛️

Awards

Dr. Moritomo has been recognized for his contributions to physics and energy science, though specific awards are not listed. 🏅

Publications Top Notes

T. Aiba and Y. Moritomo, Coated electrode for liquid thermoelectric conversion devices to enhance Fe2+/Fe3+ redox kinetics, Sustain. Energy & Fuel, 2024.

D. Inoue and Y. Moritomo, Concentration dependence of resistance components in solutions containing dissolved Fe2+/Fe3+, RSC Adv., 2024.

K. Nishitani and Y. Moritomo, Thermal conductivity of organic solutions against solute concentration, J. Phys. Soc. Jpn., 2024.

Y. Taniguchi, T. Aiba, T. Kubo, Y. Moritomo, Thermorechargeable Battery composed of mixed electrodes, Future Battery, 2024.

K. Furuuchi, Y. Taniguchi, Y. Bao, H. Niwa, and Y. Moritomo, Battery resistance and its effect on performance of laminate film-type Co-PBA/Ni-PBA tertiary battery, Jpn. J. Appl. Phys., 2024.

Conclusion

Yutaka Moritomo is a highly accomplished researcher with significant contributions to the fields of electrochemistry, materials science, and energy storage. His innovative work and high-impact publications demonstrate a strong case for the “Best Researcher Award.” To further enhance his candidacy, focusing on expanding research diversity, increasing practical applications, and improving public engagement could be beneficial.

Bantamlak Birlie Kassie | Natural fiber extraction | Best Researcher Award

Mr. Bantamlak Birlie Kassie | Natural fiber extraction | Best Researcher Award

Lecturer and researcher, Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology, Ethiopia

Bantamlak Birlie is a dedicated lecturer and researcher at Bahir Dar University Ethiopian Institute of Textile and Fashion Technology. With a strong foundation in textile engineering, he holds a Master of Science in Textile Manufacturing and Material Science and Engineering, alongside a Bachelor of Science in Textile Engineering. Over the past seven years, his academic and research pursuits have significantly contributed to the field, focusing on the extraction and characterization of natural cellulosic fibers for eco-friendly composite manufacturing. His commitment to innovation drives him to continually explore and implement sustainable practices within the textile industry.

Profile

google Scholar

Education 🎓

Bantamlak Birlie’s educational journey is rooted in textile engineering and manufacturing. He earned a Master of Science in Textile Manufacturing and Material Science and Engineering, which provided him with advanced knowledge and skills in the field. Prior to this, he completed a Bachelor of Science in Textile Engineering. His education has equipped him with a deep understanding of textile materials and processes, laying a solid foundation for his career as a researcher and lecturer at Bahir Dar University.

Experience 💼

With seven years of experience as a lecturer and researcher at Bahir Dar University, Bantamlak Birlie has developed a robust academic and professional portfolio. His role involves teaching, guiding graduate students, and conducting significant research projects. His expertise lies in the extraction and characterization of natural cellulosic fibers for green composite applications, as well as eco-friendly textile waste effluent treatment and biobased flame retardancy of textile polymers. His work not only advances academic knowledge but also promotes sustainable practices in the textile industry.

Research Interests 🔍

Bantamlak Birlie’s research interests are centered around sustainable and eco-friendly materials within the textile industry. He focuses on the extraction and characterization of natural cellulosic fibers, aiming to develop green composites that reduce environmental impact. His work also extends to treating textile waste effluent and enhancing the flame retardancy of textile polymers using biobased materials. These research endeavors reflect his commitment to promoting sustainability and innovation in textile manufacturing.

Awards 🏆

Bantamlak Birlie’s dedication to research and innovation in textile engineering has earned him recognition within the academic community. His impactful work on sustainable materials and eco-friendly practices in the textile industry positions him as a strong candidate for the Best Research Award. Through his contributions to both academia and industry, he continues to inspire positive change and drive advancements in sustainable textile technologies.

Publications Top Notes📚

“Extraction and Characterization of Natural Cellulosic Fibers for Eco-Friendly Composite Manufacturing” (2020) – Journal of Textile Science & Engineering, cited by 2 articles.

“Eco-Friendly Textile Waste Effluent Treatment” (2019) – International Journal of Environmental Science and Technology, cited by 1 article.

“Biobased Flame Retardancy of Textile Polymers” (2021) – Journal of Materials Science Research, cited by 1 article.

“Sustainable Practices in Textile Manufacturing” (2022) – Journal of Cleaner Production, cited by 1 article.

“Innovations in Green Composite Applications” (2023) – Advanced Materials Research

Mandava Venkata Basaveswara Rao | Organic synthesis | Best Researcher Award

Prof. Mandava Venkata Basaveswara Rao | Organic synthesis | Best Researcher Award

Professor, Dean, Krishna University, India

Professor Mandava Venkata Basaveswara Rao, renowned for his pioneering work in organic synthesis, has been honored with the prestigious Best Researcher Award. As a distinguished figure and Dean at Krishna University, India, Prof. Rao has consistently demonstrated unparalleled expertise in his field, contributing significantly to advancements in organic chemistry. His dedication and innovative approach have not only enriched the academic community but also inspired countless budding researchers. This recognition highlights his exceptional commitment to excellence and serves as a testament to his invaluable contributions to the scientific community. 🏆🔬

Profile

Google Scholar

Education 🎓

Mandava Venkata Basaveswara Rao pursued his educational journey with a fervor for chemistry and interdisciplinary studies. He completed his B.Sc. in Chemistry, Physics, and Mathematics from P.B. Siddhartha College, Nagarjuna University, in 1988, followed by an M.Sc. in Organic Chemistry from Andhra University in 1991. He then delved deeper into the realm of Synthetic Organic Chemistry, earning his Ph.D. from North-Eastern Hill University, Central University, with a thesis titled “New Synthetic Strategies for Heterocycles of Biological Interest” under the guidance of Prof. H. Junjappa F.N.A, F.N.Sc., in 1997. Later, in 2009, he expanded his expertise with a M. Tech. in Computer Science and Technology from GITAM University.

Experience 💼

Mandava Venkata Basaveswara Rao has honed his skills and contributed significantly to the field of Bio-Organic Chemistry through various positions and experiences. He served as a Post Doctoral Fellow in Bio-Organic Chemistry at the prestigious National Institute of Immunology, New Delhi. Additionally, he broadened his horizons through an enriching international experience as a Post Doctoral Fellow at the Chemistry Department, National Tsing Hua University, Tsinchu, Taiwan.

Research Interests 🔬

Mandava Venkata Basaveswara Rao’s research interests are deeply rooted in the design, identification, isolation, synthesis, and biological profiling of molecules and materials. His passion lies in exploring innovative strategies to synthesize compounds of biological significance and understanding their potential applications in various domains, from pharmaceuticals to materials science.

Awards and Recognitions 🏆

Throughout his illustrious career, Mandava Venkata Basaveswara Rao has been honored with several prestigious awards and recognitions, including the Andhra Pradesh State Government Best State Teacher award in 2011 and the Prof. L.R. Row Memorial Award from the Science City of Andhra Pradesh in 2018. His contributions have been acknowledged by esteemed institutions like APCOST and the Indian Council of Chemists, further solidifying his reputation as a distinguished figure in the scientific community.

Publications 📚

“Catalysis by molecular iodine: a rapid synthesis of 1, 8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents” (2012) – 131 citations

“Plants with antidiabetic activities and their medicinal values” (2012) – 82 citations

“Ultrasound-based approach to spiro-2,3-dihydroquinazolin-4(1H)-ones: their in vitro evaluation against chorismate mutase” (2013) – 79 citations

“Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysis” (2012) – 76 citations

“Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti …” (2012) – 73 citations

 

DEBELA NEGASA GURMU | Material Engineering | Best Researcher Award

Mr. DEBELA NEGASA GURMU | Material Engineering | Best Researcher Award

PhD Student, Silesian university of technology, Poland

Mr. Debelo Negasa Gurmu, a PhD Student at the Silesian University of Technology in Poland, has been honored with the Best Researcher Award in Material Engineering. His dedication and innovative contributions to the field have garnered recognition and admiration from peers and mentors alike. Through rigorous research and experimentation, Mr. Gurmu has made significant strides in advancing knowledge and understanding in material engineering. 🏆 His commitment to excellence and tireless pursuit of academic excellence serve as an inspiration to aspiring researchers worldwide.

Profile

Google Scholar

Education 📚

Debela Negasa Gurmu embarked on his academic journey from Sombo Dede Elementary School in Oromia, Ethiopia, progressing to Shambu Senior Secondary School for his high school education. He then pursued his preparatory education at Shambu Preparatory School before earning his Bachelor of Science in Mechanical Engineering from Ambo University. Debela continued his academic pursuit, attaining a Master of Science in Mechanical Engineering from Addis Ababa Science And Technology University. Currently, he is pursuing a Ph.D. in Material Engineering at Silesian University of Technology in Gliwice, Poland.

Experience 💼

With a diverse background, Debela Negasa Gurmu commenced his professional journey as an Assistant Lecturer at Ambo University. He later advanced to the position of University Engineering Lecturer. Currently, he engages in research and academic pursuits at Silesian University of Technology, contributing significantly to the field of material engineering.

Research Interests 🧪

Debela Negasa Gurmu’s research interests revolve around investigating the mechanical properties of composite materials and their applications in structural components. He is particularly intrigued by the effect of fiber reinforcement on the mechanical behavior of polymers. His work delves into both experimental and numerical analyses to explore these phenomena.

Awards 🏆

Debela Negasa Gurmu has garnered recognition for his academic excellence, earning accolades such as the Excellent Thesis Award during his Master’s program. His dedication and scholarly achievements have been acknowledged at various academic conferences and seminars.

Publications Top Notes 📝

Experimental Investigation on Effect of Weight Fraction of Sisal Fiber on Mechanical Properties of Sisal-E-Glass Hybrid Polymer Composites (2023)

Numerical Analysis of Fiber Reinforced Composite Material for Structural Component Application (2024)