Parveen Fatemeh Rupani | Energy | Best Researcher Award

Dr. Parveen Fatemeh Rupani | Energy | Best Researcher Award

Postdoctoral Research Fellow at Cranfield University,United Kingdom

Dr. Parveen Fatemeh Rupani is an accomplished Environmental Scientist and Bioenergy Specialist with over 10 years of experience in environmental biotechnology and waste-to-energy research. Holding a Ph.D. from Universiti Sains Malaysia, she has published extensively in prestigious journals, garnering over 1,600 citations and an h-index of 19. Currently a Postdoctoral Fellow at Cranfield University, her research focuses on soil health and nutrient recovery. Dr. Rupani’s strengths lie in her strategic planning for green sustainability and strong collaborative skills, while opportunities for improvement include enhancing her public outreach and interdisciplinary collaboration.

Profile:

Strengths for the Award:

  1. Extensive Research Background:
    • Dr. Rupani holds a Ph.D. in Industrial Technology with a focus on Environmental Technology, demonstrating a solid academic foundation.
    • She has over ten years of enriched academic experience, specializing in environmental biotechnology and waste-to-energy technologies.
  2. High Impact Publications:
    • She has published numerous research articles in prestigious international journals, amassing over 1600 citations and an h-index of 19. This indicates her work is widely recognized and influential in her field.
  3. Leadership in Research:
    • Dr. Rupani has consistently taken on leadership roles, including supervising PhD students and managing research projects across various prestigious institutions.
    • Her roles as lead researcher in multiple projects demonstrate her ability to drive impactful research and foster collaboration.
  4. Innovative Approaches:
    • She is known for her innovative strategies in areas like wastewater treatment, bioenergy production, and sustainable waste management, contributing significantly to environmental sustainability.
  5. Professional Engagement:
    • Active participation in editorial roles for various scientific journals and as a guest speaker at international conferences highlights her commitment to advancing her field and mentoring others.
  6. Recognition and Awards:
    • Dr. Rupani has received multiple awards for her research and contributions, including the “Best Oral Presentation” at the International Conference (ICESD) and a “Seal of Excellence” on a Marie Curie fellowship project.

Areas for Improvement:

  1. Broader Interdisciplinary Collaboration:
    • While Dr. Rupani has demonstrated excellent collaboration within environmental science, exploring interdisciplinary research opportunities with fields like social sciences or policy could enhance the impact of her work on sustainable practices.
  2. Increased Public Engagement:
    • Enhancing outreach efforts to share her research findings with broader audiences, including policymakers and the public, could strengthen the application of her research in real-world scenarios.
  3. Focus on Long-term Impact Assessment:
    • Incorporating long-term monitoring and impact assessment into her research projects could provide valuable insights into the sustainability and effectiveness of the bioenergy and waste management systems she develops.

Education:

Dr. Parveen Fatemeh Rupani has a strong academic background in environmental science and technology. She earned her Doctorate of Philosophy in Industrial Technology with a specialization in Environmental Technology from Universiti Sains Malaysia, where she studied from September 2009 to June 2016. Prior to that, she completed her Master of Science in Environmental Science at Pune University (SPPU) from July 2006 to June 2008. Her educational journey began with a Bachelor of Engineering in Agricultural Engineering, focusing on Plant Pathology, which she obtained from Bu Ali Sina University (BASU) between June 2001 and June 2005. This extensive education has equipped her with a solid foundation in environmental biotechnology, waste management, and sustainable practices.

Experience:

Dr. Parveen Fatemeh Rupani is an accomplished Environmental Scientist and Bioenergy Specialist with over ten years of extensive academic and research experience. Her expertise encompasses environmental biotechnology, waste-to-energy processes, and circular economy strategies. Currently, as a Postdoctoral Fellow at Cranfield University, she evaluates the efficacy of organo-mineral fertilizers to enhance soil health and grain quality. Previously, she held positions as a Senior Postdoctoral Fellow at KU Leuven and as an Associate Professor at Jiangsu University, where she led multiple research projects on wastewater sludge treatment, nutrient recovery, and biogas production. Dr. Rupani has mentored numerous PhD students and has been actively involved in high-impact research, evidenced by her impressive publication record with over 1600 citations and an h-index of 19. Additionally, she has participated in various international conferences, delivered keynote speeches, and served on editorial boards for prominent scientific journals, highlighting her significant contributions to the field of environmental science and bioenergy.

Research Focus:

Dr. Parveen Fatemeh Rupani’s research focuses on environmental biotechnology, particularly the transformation of waste into bioenergy and sustainable practices. Her work encompasses various aspects of bioenergy production, including the anaerobic digestion of organic waste, the valorization of wastewater sludge, and the development of novel fertilizers to enhance soil health. She employs advanced methodologies, such as microbial community analysis and the use of hyperthermophilic bacteria, to investigate the biological mechanisms underlying waste degradation and energy recovery. Dr. Rupani’s commitment to green sustainability is evident in her strategic implementation of circular economy principles and her extensive contributions to high-impact research publications, which emphasize innovative solutions for environmental challenges.

Publications Top Notes:

  • Vermicomposting of Green Organic Wastes Using Eisenia Fetida Under Field Conditions: a Case Study of a Green Campus
    • Authors: Rupani, P.F., Embrandiri, A., Garg, V.K., Dewil, R., Appels, L.
    • Year: 2023
    • Citations: 7
  • Biowastes of slaughterhouses and wet markets: an overview of waste management for disease prevention
    • Authors: Al-Gheethi, A., Ma, N.L., Rupani, P.F., Mohamed, R.M.S.R., Soon, C.F.
    • Year: 2023
    • Citations: 18
  • Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies
    • Authors: Zabed, H.M., Akter, S., Rupani, P.F., Ragauskas, A.J., Qi, X.
    • Year: 2023
    • Citations: 11
  • Review on waste biomass valorization and power management systems for microbial fuel cell application
    • Authors: Ahanchi, M., Jafary, T., Yeneneh, A.M., Tabatabaei, M., Aghbashlo, M.
    • Year: 2022
    • Citations: 25
  • Changes in the microbiota during biological treatment of palm oil mill waste: A critical review
    • Authors: Rupani, P.F., Embrandiri, A., Rezania, S., Domínguez, J., Appels, L.
    • Year: 2022
    • Citations: 8
  • Novel approach to ammonia recovery from anaerobic digestion via side-stream stripping at multiple pH levels
    • Authors: Palakodeti, A., Rupani, P.F., Azman, S., Dewil, R., Appels, L.
    • Year: 2022
    • Citations: 7

Conclusion:

Dr. Parveen Fatemeh Rupani exemplifies the qualities of an outstanding researcher. Her extensive experience, high-impact publications, leadership in innovative projects, and dedication to advancing environmental sustainability make her a deserving candidate for the Best Researcher Award. By addressing her areas for improvement, she can further enhance her contributions to environmental science and policy, ensuring that her work continues to influence future generations.

Farid Touati | Energy and Environment | Best Researcher Award

Prof Farid Touati | Energy and Environment | Best Researcher Award

Prof Farid Touati, Qatar University, Qatar

Professor Farid Touati is a distinguished faculty member in the Electrical Engineering Department at Qatar University, specializing in electronics and embedded systems. With extensive academic and professional experience spanning multiple countries, including Japan, Tunisia, Saudi Arabia, and the USA, he has made significant contributions to both research and teaching. His work in sensors, biomedical systems, and organic electronics reflects his commitment to advancing engineering education and innovation. Professor Touati is recognized for his influential research, innovative teaching methods, and active role in industry collaborations.

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Academic Background:
    • Farid Touati has a robust educational background with a Ph.D. and habilitation qualification in Electrical Engineering. His academic credentials are complemented by continuing education and workshops, showing a commitment to staying current in his field.
  2. Significant Research Contributions:
    • He has published several papers in reputable journals and conferences, with notable contributions to various fields including sensors, embedded systems, biomedical systems, and organic electronics.
    • His work has been recognized internationally, with multiple citations and awards for his research, such as the Distinguished Scientist Award and various Best PhD Dissertation Awards.
  3. Awards and Recognition:
    • He has received numerous accolades for his research and academic contributions, including the Distinguished Scientist Award (April 2021) and top-cited scholar recognition by Stanford University since 2019.
    • His research outcomes have been highlighted in prominent conferences and publications, adding to his credibility as a leading researcher.
  4. Innovative Projects:
    • His involvement in innovative projects, such as the TRL8 product on air quality monitoring and successful consultancy projects, demonstrates his capability to translate research into practical applications.
  5. Supervision and Mentorship:
    • He has successfully supervised students who have won prestigious competitions and awards, indicating his effectiveness as a mentor and educator.
  6. Industry Engagement:
    • His experience with industry collaborations and consultancy, such as the project with Daewoo Shipbuilding & Marine Engineering, reflects his ability to bridge the gap between academia and industry.

Areas for Improvement

  1. Broadening Research Scope:
    • While his research is diverse, focusing on emerging areas or interdisciplinary fields might further strengthen his profile. For instance, exploring collaborations with other disciplines could enhance the impact of his work.
  2. Increased Publication Impact:
    • Although he has published numerous papers, increasing the impact factor of the journals and conferences where his work is published could further elevate his research profile.
  3. Enhanced Public Engagement:
    • Increasing engagement with the general public through outreach activities or popular science publications could help in demonstrating the broader societal impact of his research.
  4. International Collaboration:
    • Expanding international research collaborations could provide new perspectives and opportunities for innovation. Engaging with global research networks may enhance the visibility and impact of his work.

Education

Professor Farid Touati holds a Habilitation Qualification for Research Leadership from the French Ministry of Higher Education and Research (2007), a Ph.D. (1995), and an M.Sc. (1992) from Nagoya Institute of Technology, Japan. He also earned his B.Sc. in Electrical Engineering from Monastir College of Engineering, Tunisia, in 1988. His educational background, complemented by numerous professional development workshops, underpins his expertise in electrical engineering and education.

Experience

Professor Touati’s career includes roles at Qatar University, Sultan Qaboos University, and Tuskegee University, with prior appointments in Saudi Arabia and Japan. He has served as a Research Associate and Teaching Assistant at Nagoya Institute of Technology and has worked in industry roles, including a consultancy project for Daewoo Shipbuilding & Marine Engineering. His tenure at these institutions highlights his extensive experience in both academia and industry.

Awards and Honors

Professor Touati’s accolades include the Distinguished Scientist Award from Qatar University (2021), recognition among the top 2% cited scholars globally by Stanford University (since 2019), and several Best PhD Dissertation and Graduate Thesis awards. His achievements also encompass prestigious grants, a Gold Medal for Excellent Graduate Student Award, and numerous student competition victories, reflecting his impact on both research and education.

Research Focus

Professor Farid Touati’s research interests lie in sensors, embedded system design, biomedical systems, and organic electronics. His work emphasizes advancing technology in these areas, aiming to improve applications in healthcare, environmental monitoring, and electronics. His innovative research contributes to both fundamental science and practical engineering solutions, with a focus on integrating advanced technologies into real-world applications.

Publication Top Notes

Hierarchical BaTiO3/NiFe2O4 nanocomposite as an efficacious photoanode for photoelectrochemical water splitting

Thermal and mechanical stability of microwave sintered cold compact bismuth telluride thermoelectric material

Synthesis and photoelectrochemical performance of Co doped SrTiO3 nanostructures photoanode

IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19

Autonomous SkyCube Testbench using UAV-Assisted Ka-Band OFDM Transceiver

Conclusion

Farid Touati is a strong candidate for the Research for Best Researcher Award due to his extensive research contributions, significant awards, innovative projects, and effective mentorship. His achievements reflect a high level of expertise and impact in his field. Addressing areas for improvement, such as broadening research scope and increasing public engagement, could further enhance his qualifications. Overall, his demonstrated excellence in research and academia makes him a deserving candidate for the award.

 

 

Yutaka Moritomo | Energy Material Science | Best Researcher Award

Prof. Yutaka Moritomo | Energy Material Science | Best Researcher Award

Professor, University of Tsukuba, Japan

Yutaka Moritomo is a distinguished Professor at the Faculty of Pure and Applied Science, University of Tsukuba, known for his pioneering research in thermoelectric conversion devices and battery technology. With a career spanning over three decades, his work focuses on enhancing the efficiency and performance of electrochemical systems.

Profile

Google Scholar

Strengths

  1. Depth and Breadth of Research: Yutaka Moritomo’s research spans various aspects of physical science, particularly in the fields of materials science, electrochemistry, and energy storage. His work on thermoelectric devices, battery technologies, and organic electronics showcases a deep understanding and significant contribution to these fields.
  2. High-Impact Publications: Moritomo has a strong publication record with numerous papers in high-impact journals such as Nature Materials, J. Phys. Soc. Jpn., and Energy Technology. This indicates a high level of recognition and respect within the scientific community.
  3. Innovative Contributions: His research on liquid thermoelectric devices, concentration-dependent resistance components, and thermorechargeable batteries demonstrates innovation and an ability to address cutting-edge topics. His work on improving battery performance and understanding redox potential in various materials is noteworthy.
  4. Collaborative Efforts: Moritomo has co-authored numerous papers with various researchers, showing his ability to work effectively in collaborative environments. This is crucial for advancing complex scientific research and developing new technologies.
  5. Consistency and Continuity: His consistent publication output and engagement in diverse but related research areas over the years reflect a sustained commitment to scientific inquiry and advancement.

Areas for Improvement

  1. Research Diversity: While Moritomo’s focus on electrochemistry and thermoelectric devices is impressive, diversifying into other emerging fields or interdisciplinary research could broaden his impact and address a wider range of scientific questions.
  2. Impact and Application: Although his research is technically sound, more emphasis could be placed on the practical applications and commercialization of his findings. Translating scientific discoveries into real-world solutions could enhance the societal impact of his work.
  3. Interdisciplinary Integration: Increasing integration with other scientific disciplines, such as integrating his work with developments in computational modeling or advanced materials science, could lead to new insights and applications.
  4. Public Engagement: Greater efforts in public science communication and outreach could help bridge the gap between scientific research and public understanding. This might involve writing more accessible articles or participating in science education initiatives.

Education

Dr. Moritomo earned his PhD in Physics from the University of Tokyo in 1992, where he laid the foundation for his future research in thermoelectric and battery technologies. 🎓

Experience

After completing his PhD, he worked as a JSPS Research Fellow and then held a Postdoctoral position at JRCAT. From 1996 to 2005, he was an Associate Professor at Nagoya University before joining the University of Tsukuba as a Professor in 2005. 🏛️

Research Interests

His research delves into liquid thermoelectric conversion devices, battery performance optimization, and the thermal conductivity of solutions. He aims to advance energy storage and conversion technologies through innovative electrochemical solutions. ⚛️

Awards

Dr. Moritomo has been recognized for his contributions to physics and energy science, though specific awards are not listed. 🏅

Publications Top Notes

T. Aiba and Y. Moritomo, Coated electrode for liquid thermoelectric conversion devices to enhance Fe2+/Fe3+ redox kinetics, Sustain. Energy & Fuel, 2024.

D. Inoue and Y. Moritomo, Concentration dependence of resistance components in solutions containing dissolved Fe2+/Fe3+, RSC Adv., 2024.

K. Nishitani and Y. Moritomo, Thermal conductivity of organic solutions against solute concentration, J. Phys. Soc. Jpn., 2024.

Y. Taniguchi, T. Aiba, T. Kubo, Y. Moritomo, Thermorechargeable Battery composed of mixed electrodes, Future Battery, 2024.

K. Furuuchi, Y. Taniguchi, Y. Bao, H. Niwa, and Y. Moritomo, Battery resistance and its effect on performance of laminate film-type Co-PBA/Ni-PBA tertiary battery, Jpn. J. Appl. Phys., 2024.

Conclusion

Yutaka Moritomo is a highly accomplished researcher with significant contributions to the fields of electrochemistry, materials science, and energy storage. His innovative work and high-impact publications demonstrate a strong case for the “Best Researcher Award.” To further enhance his candidacy, focusing on expanding research diversity, increasing practical applications, and improving public engagement could be beneficial.

Manish Kumar Singla | Fuel Cell | Best Researcher Award

Dr. Manish Kumar Singla | Fuel Cell | Best Researcher Award

Assistant Professor, Chitkara University, India

Dr. Manish Kumar Singla is an Assistant Professor at Chitkara University with a strong background in Electrical Engineering. He has demonstrated leadership skills and a commitment to both academic and extracurricular activities throughout his educational and professional journey.

Profile

Google Scholar

Education 🎓

Dr. Singla pursued his Ph.D. in Electrical Engineering from Thapar Institute of Engineering and Technology (TIET), Patiala, Punjab, India. He completed his Master’s (M.E.) and Bachelor’s (B.Tech) degrees in Electrical Engineering from TIET and GZS College of Engineering, Bathinda, respectively. He also holds a Diploma in Electrical Engineering from PSBTE.

Experience 💼

With 8 months of experience as an Assistant Professor at Chitkara University and prior experience at BFGI, Dr. Singla has honed his teaching and research skills. He has also undertaken various industrial training programs, including stints at 66 KV Grid Station Dabawali Road, Bathinda, and P.K. Transformers & Switchgears.

Research Interests 🔬

Dr. Singla’s research interests primarily revolve around Fuel Cell technology, Integration of Fuel Cell with Renewable Energy Systems, and the utilization of advanced software like HOMER PRO and PV Syst. His expertise lies in optimization algorithms and parameter estimation techniques for various energy systems.

Awards 🏆

Dr. Singla’s contributions have been recognized through several accolades, including Honorary Fellowship from Jordan University and Appreciation Letters from Purdue, Karamanoglu Mehmetbey, and Sejong University. He serves as an Editorial Board Member of SCI Journals and has received recognition for his publications and patents.

Publications Top Notes 📚

Hydrogen fuel and fuel cell technology for cleaner future: a review (Environmental Science and Pollution Research, 2021) – Cited by 16 articles

Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm (Environmental Science and Pollution Research, 2021) – Cited by 9 articles

Cost-Benefit Comparison of Fuel Cell Based and Battery Based Renewable Energy Systems (International Journal of Energy Research, 2021) – Cited by 13 articles

A novel hybrid particle swarm optimization rat search algorithm for parameter estimation of solar PV and fuel cell model (COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, 2022) – Cited by 4 articles

Hybrid algorithm for parameter estimation of fuel cell (International Journal of Energy Research, 2022) – Cited by 6 articles

Lakshmi Devaraj | Materials for Energy Storage | Best Review Article Award

Assist Prof Dr. Lakshmi Devaraj | Materials for Energy Storage | Best Review Article Award

Assistant Professor, PSG College of Arts and Science, India

🏆 Congratulations to Assistant Professor Dr. Lakshmi Devaraj from PSG College of Arts and Science, India, for receiving the prestigious Best Review Article Award in the field of Materials for Energy Storage! Dr. Devaraj’s exemplary work and dedication have earned them recognition for their significant contributions to advancing knowledge in this vital area of research. This accolade not only highlights Dr. Devaraj’s expertise but also underscores the importance of their research in addressing the global challenges of energy storage. We extend our heartfelt congratulations to Dr. Lakshmi Devaraj and look forward to their continued success in academia. 🎉

Profile

Google scholar

Scopus

Linkedin

Professional Experience

👨‍🏫 Starting my journey as an Entry-Level Assistant Professor in Physics at PSG College of Arts and Science, Coimbatore, India, on March 1, 2022, has been a fulfilling experience. Prior to this role, I served as a Research Associate at Prof. Christopher Selvin’s Luminescence and Solid State Ionics Lab, Bharathiar University, Coimbatore, India, from April 10, 2019, to February 28, 2022. In this position, funded by CSIR, Government of India, I delved into green alloy synthesis, high entropy alloy synthesis, crystal structure simulation, and grant writing. Earlier, I served as a Lecturer at VSB College of Engineering: Technical Campus, India, from July 10, 2012, to June 5, 2013. 🌟

Education

👨‍🎓 With a diverse academic background, I hold a PhD in Physics (2013-2018) from Avinashilingam Institute for Home Science and Higher Education for Women, India. My doctoral research, funded by DST-INSPIRE and supervised by Dr. B. Nalini, focused on enhancing the performance of tin antimonide anodes for all-solid-state batteries. Prior to my PhD, I completed an MSc in Physics (2010-2012) from Avinashilingam Deemed University for Women, India, achieving a CGPA of 9.1/10. My master’s thesis involved studying barium titanate thin films using the spin coating technique, presented at the AMEEA-2012 conference. I commenced my academic journey with a BSc in Physics (2006-2009) from NGM College of Arts and Science, Bharathiar University, India, graduating with a CGPA of 8.4/10. 📚

Research, Innovations and Extension

🔬 With a remarkable track record, they are a dedicated researcher specializing in Li-Ion Batteries and related materials. Their extensive publication record includes 28 research publications in esteemed peer-reviewed international journals and 03 international book chapters, contributing to their robust publication record. With three pending research projects in the final stages, they boast an h-index of 9. Actively engaging in 30 scientific events, including 15 conferences and seminars, they showcase effective knowledge dissemination abilities. Securing prestigious research grants like the DST-ISNPIRE Fellowship, CSIR-RA, and CEFIPRA-ESONN international fellowship, they’ve also demonstrated strong communication and collaboration skills, fostering productive partnerships globally. Their involvement in academic teaching and mentoring underscores their commitment to advancing research and education in the field. 🌟

Publications Top Notes

  1. Augmented photocatalytic and electrochemical activities of Ag tailored LaCoO3 perovskite semiconductor
    • Year: 2018
    • Citations: 32
    • 📝
  2. Study on the influences of calcination temperature on structure and its electrochemical performance of Li2FeSiO4/C nano cathode for lithium ion batteries
    • Year: 2018
    • Citations: 28
    • 🔋
  3. Reinforced photocatalytic reduction of SnO2 nanoparticle by La incorporation for efficient photodegradation under visible light irradiation
    • Year: 2019
    • Citations: 20
    • 💡
  4. Performance of SnSb: Ce, Co alloy as anode for lithium-ion batteries
    • Year: 2017
    • Citations: 20
    • 🔋
  5. Electro analytical studies on indium incorporated SnSb alloy anode for Li-ion batteries
    • Year: 2017
    • Citations: 16
    • 🔋
  6. Enhanced visible light photocatalytic performance of SnO2 nanoparticle co-doped with (Co, Nb) for organic dye degradation
    • Year: 2020
    • Citations: 15
    • 💡
  7. Augmented conductivity in Li3xLa2/3−xTiO3 nanoparticles: all-solid-state Li-ion battery applications
    • Year: 2020
    • Citations: 12
    • 🔋
  8. Structural rearrangement by Ni, Cr doping in zinc cobaltite and its influence on supercapacitance
    • Year: 2021
    • Citations: 9
  9. Chitosan based biopolymer electrolyte reinforced with V2O5 filler for magnesium batteries: an inclusive investigation
    • Year: 2022
    • Citations: 7
    • 🔋
  10. Tamarind seed polysaccharide biopolymer-assisted synthesis of spinel zinc iron oxide as a promising alternate anode material for lithium-ion batteries
    • Year: 2020
    • Citations: 7
    • 🔋

 

Djamila Rekioua | Renewable energies | Best Researcher Award

Prof. Djamila Rekioua | Renewable energies | Best Researcher Award

Professor, University of Bejaia, Algeria

🎓 REKIOUA, born ZIANI Djamila on September 4, 1963, in Algiers, Algeria, is affiliated with the University of Bejaia, Faculty of Technology. Her professional address is located at 06000 Bejaia, Algeria. With a rich background in academia, REKIOUA contributes significantly to the academic landscape, particularly in the field of technology. Her dedication to education and research exemplifies her commitment to advancing knowledge and nurturing future generations of professionals. Through her work, she continues to make meaningful contributions to her field and inspire others in the pursuit of excellence.

Profile

orcid

researchgate

webofscience

Citations

h-index (scopus): 36
CitationScopus: 3616
D-index: 30
h-index(google scholar):41
CitationGoogle scholar:5841

Teachings

📚 REKIOUA excels in teaching diverse subjects including “Dimensionnement des systèmes à énergies renouvelables,” “Commande des machines électriques,” “Introduction aux énergies renouvelables,” and “Systèmes multi sources à énergies renouvelables.” Additionally, she has played a pivotal role in creating new masters programs, serving as a leader in specialty and master’s degree programs. Her contributions extend beyond teaching to encompass the development of various educational resources and materials. Through her efforts, REKIOUA continues to enrich the academic landscape, preparing students for careers in renewable energy and related fields with innovation and dedication.

Areas of Interest

📘 With expertise spanning “Commande des machines électriques,” “Identification et modélisation des machines électriques,” “Production de l’énergie électrique,” and more, REKIOUA’s research portfolio encompasses 72 publications, including 46 indexed communications, 17 book chapters, and 5 editorials. Her extensive contributions extend to the realm of academia with 4 authored books. Focusing on renewable energy systems such as photovoltaic and wind systems, as well as fuel cells and multi-source renewable energy system management, REKIOUA’s work significantly impacts the field. Her dedication to advancing knowledge in electrical engineering and renewable energy is evident through her prolific publication record and scholarly endeavors. 🌟

Publications Top Notes

Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries, Scientific Reports 13 (1), 21830, 2023 🌬️🌞🔋

Optimized Power Management Approach for Photovoltaic Systems with Hybrid Battery-Supercapacitor Storage, Sustainability 15 (19), 14066, 2023 🌞🔋

Energy Storage Systems for Photovoltaic and Wind Systems: A Review, Energies 16 (9), 3893, 2023 🌞🌬️🔋

Power Management Control of an Autonomous Photovoltaic/Wind Turbine/Battery System, Energies, 16(5), 2286, 2023 🌞🌬️🔋

Hybrid Renewable Energy Systems: Optimization and Power Management Control, Ed. Springer, 2020 🌿🔋