Yongho Lee | Engineering | Best Researcher Award

Dr. Yongho Lee | Engineering | Best Researcher Award

Researcher at Kwangwoon University, South Korea

Yongho Lee, born on November 15, 1991, is an accomplished researcher and engineer specializing in RF communication, antenna design, and semiconductor technologies. With a strong foundation in electrical engineering, he has contributed significantly to cutting-edge research in areas such as CMOS RF transmitters, phased arrays, and wireless communication systems. Currently, he is a postdoctoral researcher at UCLA, California, after having completed a similar position at Kwangwoon University, Seoul, Korea. Throughout his academic and professional journey, Yongho has demonstrated exceptional skills in advanced tools like Virtuoso, SpectreRF, and Matlab, as well as expertise in programming languages such as C++, Python, and C#. His work is recognized for its innovative approach to solving complex problems, particularly in the realm of high-frequency communications and antenna systems. As a mentor and lecturer, he has also demonstrated a passion for teaching and guiding the next generation of engineers in microelectronics. With a drive for both academic excellence and practical technological advancements, Yongho continues to make valuable contributions to his field, gaining international recognition for his achievements.

Professional Profile

Education

Yongho Lee’s academic journey began with a Bachelor of Science degree from Daejin University in Pocheon, Korea, where he laid the groundwork for his future studies in electrical engineering. Afterward, he pursued a Master of Science degree at Kwangwoon University, Seoul, Korea, where his focus shifted toward advanced research in RF and semiconductor technologies. This foundation prepared him for his doctoral studies at the same institution, where he earned a Ph.D. in 2023. Throughout his academic career, Yongho has gained in-depth knowledge of complex topics such as phased-array antennas, RF IC design, and wireless communication systems. His educational path has been marked by a strong emphasis on both theoretical principles and practical applications. He further honed his skills during his time as a postdoctoral researcher, applying his knowledge to real-world projects at renowned institutions like UCLA and Kwangwoon University. With a solid academic foundation and a drive for innovation, Yongho continues to excel in his field, pushing the boundaries of current research in RF technologies.

Professional Experience

Yongho Lee has had a distinguished professional career with extensive experience in both academia and industry. His most recent position as a postdoctoral researcher at UCLA, California, allowed him to delve into advanced projects in RF communication and semiconductor technologies. Prior to this, he served as a postdoctoral researcher at Kwangwoon University, Seoul, Korea, where he contributed significantly to multiple high-profile projects, including the development of RF transmitters, antennas, and phase shifters. Additionally, Yongho gained practical industry experience during an internship at Kings Information & Network Co., Ltd. in Hanam, Korea, where he was involved in various technology development projects. His work experience spans both theoretical research and the practical application of cutting-edge technologies, providing him with a well-rounded skill set. Throughout his career, he has demonstrated a keen ability to bridge the gap between academic research and real-world technological solutions, making him a highly valued contributor to his field.

Research Interests

Yongho Lee’s primary research interests lie in the fields of RF communication, antenna design, and semiconductor technologies, with a focus on high-frequency applications such as 60GHz and 220GHz wireless systems. His research has significantly contributed to the development of advanced CMOS RF transmitters, phased-array antennas, and frequency synthesizers, with an emphasis on low power consumption, miniaturization, and improved performance. He has also worked extensively on the development of novel calibration techniques for RF systems and the integration of advanced antennas for mobile communication and satellite receiver applications. Another key area of his research is the design of high-performance, low-cost RF components for next-generation wireless devices, including Bluetooth and IoT technologies. Yongho’s work not only advances theoretical knowledge but also aims to address practical challenges in wireless communication, including signal integrity, power efficiency, and system integration. His diverse research portfolio reflects a strong commitment to pushing the boundaries of current technology and solving real-world problems in communication systems.

Awards and Honors

Throughout his career, Yongho Lee has earned several accolades in recognition of his exceptional contributions to research and engineering. His achievements in the development of advanced RF communication systems and antenna designs have earned him recognition both within academic circles and in the industry. In particular, his work on the 220GHz 16nm CMOS phased array and his innovations in the development of low-profile phased-array antennas for satellite receivers have garnered significant attention. Although specific awards and honors are not listed in his profile, his involvement in highly funded and impactful research projects speaks to the level of recognition he has received within the scientific community. His research contributions continue to influence the development of next-generation wireless communication systems, further solidifying his standing as a leading researcher in his field. Moving forward, his continued work and potential future awards will undoubtedly add to his growing reputation as a prominent figure in RF and semiconductor research.

Conclusion

Yongho Lee is highly qualified for the “Best Researcher Award,” with his strong academic credentials, advanced technical expertise, and significant contributions to research and teaching. To further enhance his candidacy, a more detailed track record of published research and a stronger public presence in the research community could solidify his standing as an influential researcher.

Publications Top Noted

  • Article

    • Title: A 28 GHz GaN 6-Bit Phase Shifter MMIC with Continuous Tuning Calibration Technique
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Journal: Sensors (Switzerland), 2024
    • Citations: 0 citations
  • Conference Paper

    • Title: A 28 GHz 5-Bit Phase Shifter MMIC with 5.4° RMS Phase Error in GaN HEMT Process
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Citations: 1 citation
    • Source Information: Not available

 

Mengyao Li | Engineering | Best Researcher Award

Dr. Mengyao Li | Engineering | Best Researcher Award

Student at Nanyang Technological University Singapore

Mengyao Li is a dedicated researcher specializing in electromagnetic fields, metasurfaces, and frequency-selective structures. With a strong academic foundation and a passion for advancing next-generation communication and radar technologies, Li has made significant contributions to the field of low-RCS antenna-radome systems, lens antennas, and THz reconfigurable intelligent surfaces. His research focuses on innovative solutions that enhance wave manipulation, beamforming, and scattering control, making a direct impact on applications in wireless communication and stealth technology. As a Ph.D. candidate at Nanyang Technological University (NTU), Singapore, under the guidance of Prof. Shen Zhongxiang (IEEE Fellow), Li has published extensively in top-tier journals and continues to explore novel electromagnetic solutions. His work not only bridges theoretical advancements with practical applications but also aligns with the future demands of 6G wireless networks and advanced sensing technologies, solidifying his position as an emerging expert in the field.

Professional Profile

Education

Mengyao Li began his academic journey with a B.S. in Electrical Engineering from the Communication University of China, Beijing, specializing in Telecommunication Engineering. Graduating in 2020 with a GPA of 3.59/4.0, he ranked among the top 8% of students and was recognized as an Outstanding Graduate of Beijing. His undergraduate research focused on reconfigurable frequency-selective absorbers, laying a strong foundation for his future work. In January 2021, he pursued a Ph.D. in Electrical and Electronic Engineering at Nanyang Technological University, Singapore, specializing in Electromagnetic Fields and Microwave Technology. Under the supervision of Prof. Shen Zhongxiang, his doctoral research centers on low-RCS integrated radome and antenna systems, aiming to develop advanced solutions for stealth technology and wireless communication. Throughout his academic career, Li has demonstrated strong analytical skills and research capabilities, contributing to the advancement of electromagnetic and antenna engineering.

Professional Experience

As a Ph.D. researcher at Nanyang Technological University, Mengyao Li has been actively engaged in cutting-edge research in the field of electromagnetic wave manipulation, metasurfaces, and antenna systems. His professional work focuses on designing low-RCS antennas, frequency-selective structures, and THz reconfigurable intelligent surfaces, contributing to innovations in stealth technology and high-frequency communication. Collaborating with leading academics and industry experts, he has developed practical solutions for beam manipulation, conformal lens antennas, and ultra-wideband absorptive structures. His research has been published in top IEEE journals, showcasing his ability to bridge theoretical concepts with practical engineering applications. In addition to research, he actively mentors junior researchers, contributes to technical discussions, and engages in academic collaborations to advance antenna and metamaterial technologies. His expertise and technical acumen make him a promising figure in the field of advanced electromagnetic applications.

Research Interests

Mengyao Li’s research interests lie at the intersection of electromagnetic wave engineering, metasurfaces, and reconfigurable intelligent surfaces (RIS), with a strong emphasis on low-RCS antenna-radome systems, lens antennas, and THz wireless communication. His work on low-scattering antenna structures contributes to stealth and radar applications, while his innovative metasurface designs enable advanced beam steering and polarization control. Additionally, he explores MEMS-based THz metasurfaces, which hold promise for 6G wireless networks and high-frequency communication systems. His research on frequency-selective structures and transmissive antennas bridges the gap between traditional electromagnetic theory and modern reconfigurable technologies. By integrating material science, physics, and advanced fabrication techniques, Li’s research aims to create high-performance, miniaturized, and dynamically tunable electromagnetic structures, making a significant impact on next-generation wireless technologies and radar systems.

Awards and Honors

Throughout his academic journey, Mengyao Li has received multiple recognitions for his research excellence. As an Outstanding Graduate of Beijing, he was acknowledged for his academic performance and early contributions to telecommunication engineering. His Ph.D. research at NTU has been supported by prestigious funding, reflecting the significance of his work in low-RCS antenna systems and metasurface engineering. His journal publications in IEEE Transactions on Antennas and Propagation and IEEE Antennas Wireless Propagation Letters further highlight his research impact in the field. Li’s innovative contributions to reconfigurable intelligent surfaces and frequency-selective radomes have been well-received in the academic community, earning him invitations to collaborate with leading researchers. With his strong research background and growing influence in electromagnetic wave control and antenna design, he continues to make valuable contributions to the field, positioning himself as a rising expert in advanced electromagnetics and wireless technology.

Conclusion

Mengyao Li is a strong candidate for the Best Researcher Award, with a solid publication record, cutting-edge research contributions, and expertise in emerging electromagnetic technologies. However, improving the real-world impact, conference visibility, and interdisciplinary collaboration could further solidify the case for this award. If these areas are strengthened, Mengyao Li could become a leading figure in electromagnetic and metasurface research.

Publications Top Noted

  • Y. Ding, M. Li, J. Su, Q. Guo, H. Yin, Z. Li, J. Song – 2020 – 70 citations
    “Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch.”
    IEEE Transactions on Antennas and Propagation 69 (3), 1493-1504

  • M. Li, L. Zhou, Z. Shen – 2021 – 30 citations
    “Frequency selective radome with wide diffusive bands.”
    IEEE Antennas and Wireless Propagation Letters 21 (2), 327-331

  • M. Li, Z. Shen – 2023 – 13 citations
    “Low-RCS transmitarray based on 2.5-D cross-polarization converter.”
    IEEE Transactions on Antennas and Propagation 71 (7), 5828-5837

  • M. Li, Z. Shen – 2023 – 5 citations
    “Integrated diffusive antenna array of low backscattering.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li, Z. Shen – 2022 – 3 citations
    “Hybrid Frequency Selective Rasorber Combining 2-D and 3-D Resonators.”
    2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, J. Su – 2020 – 1 citation
    “Wideband frequency-selective absorber based on metal cross ring.”
    2020 IEEE MTT-S International Microwave Workshop Series on Advanced

  • M. Li, Z. Shen – 2024 – Not yet cited
    “Hybrid Rasorber Based on 3-D Bandpass Frequency-Selective Structures.”
    IEEE Antennas and Wireless Propagation Letters

  • M. Li – 2024 – Not yet cited
    “Integrated radome and antenna systems of low radar cross section.”
    Nanyang Technological University (Ph.D. Dissertation)

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Highly Selective Third-Order Bandpass Frequency Selective Surface.”
    2023 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2023 – Not yet cited
    “Transmission Phase Controllable Rasorber Using All-Metal Cross-Polarization Converter.”
    2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI

  • M. Li, Z. Shen – 2022 – Not yet cited
    “Low-RCS Transmitarray Using Phase Controllable Absorptive Frequency-Selective Structure.”
    2022 International Conference on Electromagnetics in Advanced Applications

  • M. Li, Z. Shen – 2021 – Not yet cited
    “RCS Reduction of Slot Antenna Array Using Coding Metasurfaces.”
    2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI

Arvind Chaurasiya | Engineering | Best Researcher Award

Mr. Arvind Chaurasiya | Engineering | Best Researcher Award

Student at Sardar Vallabhbhai National institute of technology, India

Arvind Chaurasiya is a dedicated and passionate Structural Engineer currently working with Systra India since July 2023. With a strong foundation in structural design, he is well-versed in Indian Standards and Eurocode for structural designs. Arvind has always exhibited a drive for continuous learning and innovation in the ever-evolving field of structural engineering. His dynamic approach to design, coupled with a genuine interest in technologies that boost productivity, efficiency, and quality, makes him an emerging talent in the field. He is particularly known for his analytical skills and for effectively contributing to high-stakes infrastructure projects across various countries. Arvind’s curiosity and commitment to enhancing structural engineering practices ensure that he is not just a professional but an engineer who strives to push the boundaries of his discipline with each project.

Professional Profile

Education

Arvind Chaurasiya completed his education with a Bachelor’s degree in Civil Engineering, which laid the foundation for his career in structural engineering. Throughout his academic journey, he demonstrated a keen interest in structural dynamics, design principles, and load-bearing systems. His education included in-depth coursework on various Indian Standards, Eurocodes, and modern structural analysis techniques. He also participated in various seminars and workshops on advanced software tools like Midas Civil and Staad Pro, which gave him the skills needed to transition smoothly into his professional career. Arvind’s educational background not only provided him with a solid technical base but also instilled in him a passion for lifelong learning, driving him to continuously explore new technologies and approaches in structural design.

Professional Experience

Arvind’s professional experience includes working on several high-profile international projects that have honed his skills in structural design and analysis. Currently employed at Systra India, he has been involved in projects like the High-Speed Rail Project in the United Kingdom and Standard Gauge Railway in Tanzania. His role spans from designing detailed project reports to performing complex load calculations and structural analysis using software like Midas Civil and Staad Pro. Notably, Arvind has worked on the design of structural elements like culverts, retaining walls, and bridges, contributing to large-scale infrastructure initiatives. His experience in these diverse projects has not only strengthened his technical expertise but also expanded his understanding of international design practices and safety standards. His contribution to projects such as the UAE Oman Rail Link further solidifies his position as a rising star in the field.

Research Interests

Arvind’s primary research interest lies in improving the efficiency and sustainability of structural designs. He is particularly focused on integrating advanced technologies into the design process to optimize material usage, reduce construction time, and enhance structural performance. Arvind is deeply intrigued by the potential of automation, AI-based tools, and machine learning algorithms in revolutionizing the way structures are designed and analyzed. His goal is to explore innovative ways of designing energy-efficient, eco-friendly, and cost-effective infrastructure systems that align with the growing emphasis on sustainable development. Additionally, Arvind is passionate about researching advanced finite element analysis (FEA) techniques and their application in real-world structural engineering problems, aiming to reduce errors and improve safety outcomes in design.

Awards and Honors

Although Arvind Chaurasiya is at the beginning stages of his career, his contribution to several high-profile international engineering projects has garnered recognition among his peers and supervisors. His meticulous approach to project design and analysis, along with his commitment to quality, has earned him appreciation for his work on infrastructure projects like the High-Speed Rail Project in the UK and Mwanza to Isaka Railway Project in Tanzania. Though still early in his career, Arvind’s ongoing focus on developing innovative structural designs and utilizing cutting-edge technologies has positioned him as a promising candidate for future awards and honors. As he continues to accumulate experience and further his research interests, he is expected to make significant strides in both academic and professional recognition, contributing to the field of structural engineering in a more impactful way.

Conclusion

Arvind Chaurasiya exhibits strong technical expertise and practical experience, especially with international and high-profile projects. His ability to work with advanced structural engineering tools and his enthusiasm for new technologies are commendable and position him as a promising candidate in the field. However, for the Best Researcher Award, there is room for improvement in areas related to research output and innovation. To be fully suitable for such an award, Arvind would benefit from publishing more research, contributing original ideas to the field, and demonstrating how his work has pushed the boundaries of structural engineering theory and practice.

Publications Top Noted

1. Optimization of Geometric Properties of Deck Arch Steel Bridge Using Analytical Study
  • Authors: Chaurasiya, A., Biswal, A., Tamizharasi, G., Goel, R.
  • Year: 2025
  • Publication: Lecture Notes in Civil Engineering, Volume 550, pp. 173–180.
  • Citations: 0
2. Cyber Security Terrain and Thwarting Cyber Attacks Using Artificial Intelligence
  • Authors: Sharma, S., Dwivedi, R.K., Upadhyay, N., Kashyap, P., Chaurasiya, A.K.
  • Year: 2024
  • Publication: Lecture Notes in Electrical Engineering, Volume 1191, pp. 679–685.
  • Citations: 0