Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Prof. Helio de Lucena Lira | Materials Science | Sustainable Innovation Pioneer Award

Professor | Universidade Federal de Campina Grande | Brazil

Prof. Helio de Lucena Lira is a distinguished professor at the Universidade Federal de Campina Grande, recognized for his expertise in Materials Engineering with a focus on ceramics. He holds a doctoral degree in Chemistry from the University of Glasgow, a master’s degree in Process Engineering, and a bachelor’s degree in Industrial Chemistry from the Universidade Federal da Paraíba. Over his career, he has held significant academic positions, including full professorship and leadership in both undergraduate and postgraduate programs in Materials Engineering and Chemical Engineering, where he has supervised numerous research projects and guided graduate students. His research centers on the development of ceramic membranes, microfiltration technologies, advanced ceramics, and the sustainable utilization of industrial residues, contributing substantially to materials innovation and environmental applications. Prof. Lira has authored an extensive body of publications that are widely cited in his field, reflecting the impact and relevance of his work. He has been recognized as a productivity fellow by CNPq and has participated in international training programs, enhancing his expertise in fine ceramics. His professional service includes active roles in research development, curriculum leadership, and mentorship, demonstrating a sustained commitment to advancing scientific knowledge and fostering the next generation of engineers and researchers. Prof. Lira’s distinguished career exemplifies excellence in research, education, and professional leadership.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Ceramic membranes production using quartzite waste for treatment of domestic wastewater, International Journal of Applied Ceramic Technology, 2025.

2. Sustainable ceramic membranes from clays and mining wastes by rapid sintering process, Materials Research, 2025.

3. Structure and morphological properties of cobalt-oxide-based (Co3O4) materials as electrodes for supercapacitors: A brief review. Full text unavailable.

4. TiO2 and Ag-TiO2 nanofibrous aerogels by SBS method and freeze-casting: Treatment of contaminated water, Materials Letters, 2024.

5. Development of asymmetric ceramic membranes for dairy wastewater treatment – A comparison between co-sintering and conventional firing process, Journal of Water Process Engineering, 2024.

Alexander Lenshin | Materials Science | Best Researcher Award


Dr. Alexander Lenshin | Materials Science | Best Researcher Award

Leading researcher at Voronezh State University, Russia

Dr. Alexander Sergeevich Lenshin is a distinguished physicist and researcher, holding a Doctorate in Physical and Mathematical Sciences and serving as a leading researcher and associate professor at Voronezh State University. With over 14 years of academic and scientific experience, he has authored more than 100 publications, including numerous papers in high-impact Q1 journals. His research focuses on nanostructured materials, semiconductor heterostructures, and advanced 3D printing technologies. Dr. Lenshin has successfully led prestigious grants from the President of the Russian Federation, RFBR, and RSF, and serves as an expert for the Russian Science Foundation. He actively mentors graduate students and contributes to educational program development. His achievements have earned him regional awards and national recognition, including inclusion in the Strategic Talent Reserve of the Ministry of Science and Higher Education. Committed to both scientific excellence and education, Dr. Lenshin exemplifies the qualities of a leading researcher and academic innovator.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Alexander Sergeevich Lenshin received his foundational education at Voronezh State University, where he completed his Bachelor’s degree in 2004 and Master’s degree in 2006 in physics-related disciplines. He earned his Candidate of Physical and Mathematical Sciences (Ph.D. equivalent) in 2009 and his Doctor of Sciences degree in 2021 from the same institution, signifying a high level of academic excellence in the Russian academic hierarchy. His academic journey reflects a consistent commitment to deepening his expertise in physics and materials science. Beyond his formal education, Dr. Lenshin has completed numerous advanced training and professional development programs, including qualifications in semiconductor device project management, digital science and technology, labor safety, and strategic leadership. These programs have further enhanced his interdisciplinary competence and administrative capacity in the scientific and academic community. His academic foundation is both rigorous and diverse, equipping him for leadership roles in research and higher education.

Professional Experience

Dr. Lenshin has amassed over 14 years of experience in higher education and scientific research. He is currently a leading researcher and associate professor at Voronezh State University, where he teaches core physics courses and specialized subjects such as additive technologies in microelectronics. His professional activities span teaching, research supervision, curriculum development, and administrative contributions. He has mentored graduate and postgraduate students and actively promotes their participation in national and international scientific conferences. In addition to his academic duties, he plays a vital role in institutional development by contributing to the design of postgraduate training programs in physical sciences. His service also includes judging student science tournaments and mentoring innovation leagues, showcasing his dedication to student engagement and scientific outreach. Dr. Lenshin’s career is characterized by a balance of teaching, mentorship, and high-level scientific inquiry, making him a well-rounded academic professional and a key figure in advancing physics education and research.

Research Interest

Dr. Alexander Lenshin’s research focuses on the physics and engineering of low-dimensional nanostructures, advanced materials, and semiconductor heterostructures. His work includes the study of porous silicon, GaN/SiC-based hybrid structures, and polylactide-based polymers, with applications in microelectronics, photonics, and optoelectronics. He is particularly interested in the morphological, optical, and structural characterization of materials using methods such as Raman spectroscopy, molecular beam epitaxy, and various nano-fabrication techniques. A key theme in his research is understanding and controlling the physical properties of hybrid systems to optimize their functional performance in real-world applications. His interdisciplinary approach merges materials science with applied physics and nanoengineering. Dr. Lenshin’s scientific contributions are evidenced by more than 100 published works, many in top-tier journals, and his leadership in several funded research projects. His research stands at the forefront of modern materials science and has implications for next-generation electronic and photonic devices.

Award and Honor

Dr. Alexander Lenshin has received multiple prestigious awards in recognition of his scientific and educational contributions. He was a recipient of the Young Scientists and Specialists Award of the Voronezh Region in 2022 and previously won the Government of Voronezh Region Prize for Scientific Development in 2013. In 2018, he was awarded an honorary diploma by the city administration for his long-standing contributions to science and education. Dr. Lenshin has twice secured the highly competitive Presidential Grants of the Russian Federation, emphasizing his national standing as a researcher. He has also led projects supported by the Russian Foundation for Basic Research (RFBR) and the Russian Science Foundation (RSF). His role as an expert for the RSF and guest editor for the journal Coatings (MDPI, Scopus Q2) further highlights his influence within the scientific community. In 2024, he was included in the Ministry of Science and Higher Education’s Strategic Talent Reserve, a notable distinction for leadership in science and education.

Conclusion

Dr. Alexander Sergeevich Lenshin is an accomplished physicist, researcher, and educator whose career reflects a deep commitment to advancing science and higher education. With a strong academic foundation, extensive teaching experience, and a prolific research record in advanced materials and nanostructures, he exemplifies scientific leadership. His success in securing competitive research grants and mentoring the next generation of scientists underscores his influence in both national and institutional contexts. Recognized with multiple regional and governmental awards, Dr. Lenshin has demonstrated excellence in both individual and collaborative scientific endeavors. His inclusion in the Strategic Talent Reserve signals national confidence in his potential for higher leadership roles in science and technology policy. As a researcher, mentor, and academic innovator, he embodies the values and qualifications deserving of top honors such as the Best Researcher Award. Dr. Lenshin’s trajectory continues to make significant contributions to the field of physical sciences and the broader research community.

Publications Top Notes

  • Examining the morphology and surface composition of a nanostructured tin film on porous silicon
    Authors: Ksenia B. Kim, Alexander S. Lenshin, Sergei S. Chernenko, Sabukhi Ilich ogly Niftaliev, Andrey I. Chukavin
    Year: 2024
    Citation: DOI: 10.1364/JOT.91.000675

  • Microstructural and hydrophilic properties of polyethylene terephthalate glycol polymer samples with different 3D printing patterns
    Authors: Alexander S. Lenshin, Vera E. Frolova, Sergey A. Ivkov, Evelina P. Domashevskaya
    Year: 2024
    Citation: DOI: 10.17308/kcmf.2024.26/11810

  • Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy
    Authors: P. V. Seredin, N. A. Kurilo, Ali O. Radam, N. S. Builov, D. L. Goloshchapov, S. A. Ivkov, A. S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/10978

  • Comparative studies of nanoscale columnar AlxGa1-xN/AlN heterostructures grown by plasma-assisted molecular-beam epitaxy on cSi, porSi/cSi and SiC/porSi/cSi substrates
    Authors: P.V. Seredin, D.L. Goloshchapov, N.A. Kurilo, Ali Obaid Radam, V.M. Kashkarov, A.S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.1016/j.optmat.2023.114451

  • Structure and composition of a composite of porous silicon with deposited copperAuthors: Alexander S. Lenshin, Kseniya B. Kim, Boris L. Agapov, Vladimir M. Kashkarov, Anatoly N. Lukin, Sabukhi I. Niftaliyev
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/11259

  • Characteristics of the formation and composition of AlxGa1-xN/AlN/por-Si/Si(111) heterostructures grown using a porous silicon buffer layer
    Authors: Alexander S. Lenshin, Pavel V. Seredin, Dmitry S. Zolotukhin, Artemy N. Belyukov, Andrey M. Mizerov, Igor A. Kasatkin, et al.
    Year: 2022
    Citation: DOI: 10.17308/kcmf.2022.24/9055

  • Application of Sorption Analysis in the Study of Various Nanomaterials Used in Electronics Depending on their Composition and Production Conditions
    Authors: A. S. Lenshin, E. V. Maraeva
    Year: 2022
    Citation: DOI: 10.32603/1993-8985-2022-25-1-47-53

  • Features of the two-stage formation of macroporous and mesoporous silicon structures
    Authors: Alexander S. Lenshin, Anatoly N. Lukin, Yaroslav A. Peshkov, Sergey V. Kannykin, Boris L. Agapov, Pavel V. Seredin, Evelina P. Domashevskaya
    Year: 2021
    Citation: DOI: 10.17308/kcmf.2021.23/3300

  • Influence of electrochemical etching modes in single- and two-stage formation of porous silicon on oxidation of its surface layers under natural conditions
    Authors: Alexander S. Lenshin, Konstantin A. Barkov, Natalya G. Skopintseva, Boris L. Agapov, Evelina P. Domashevskaya
    Year: 2019
    Citation: DOI: 10.17308/kcmf.2019.21/2364