Štefan Ondočko | Engineering | Best Researcher Award

Assist. Prof. Dr. Štefan Ondočko | Engineering | Best Researcher Award

Assistant professors, Technical University of KoΕ‘ice, Slovakia

Profile

Scopus

Ing. Štefan Ondočko, PhD, is an Assistant Professor at the Technical University of Koőice, specializing in mechanical engineering with a focus on production systems and robotics. His extensive experience spans both academia and industry, contributing to the advancement of robotic technologies.

Education πŸŽ“

Ε tefan earned his degree in Mechanical Engineering from the Technical University of KoΕ‘ice (1996–2004), specializing in Instrumentation, Control, and Automation Technology. He later completed his PhD in Mechanical Engineering, focusing on Production Technology, in 2023.

Experience πŸ’Ό

His professional journey includes roles as an Electrical Designer and I&C Engineer at EnergoControl s.r.o and SMZ JelΕ‘ava a.s., along with significant teaching responsibilities at the Technical University of KoΕ‘ice since 2019. Ε tefan currently focuses on applied research and development in robotic and production technologies.

Research Interests πŸ”¬

Ε tefan’s research interests lie in the integration of robotics in production systems, particularly in modular robotics and automation technology. He actively engages in grant projects that advance educational tools and methodologies in these fields.

Awards πŸ†

In 2023, Ε tefan received a diploma for the Best Contribution at the 20th International Scientific Conference of Engineering Doctorates of Technical Universities, highlighting his impactful work in mechanical engineering.

Publications Top Notes πŸ“š

  1. Measurement of Maximum Deviation from Roundness Based on the Inverse Kinematics Principle
    Link – 2019, Measurement Science Review, Year 19, Nr. 6.
  2. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, Applied Sciences, Year 11, Nr. 3.
  3. Comparison of Selected Numerical Methods for the Calculation of Inverse Kinematics of Nonstandard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, MM Science Journal, June.
  4. Mapping Robot Singularities Through the Monte Carlo Method
    Link – 2022, Applied Sciences, Year 12, Nr. 16.
  5. Analysis of the Methodology for Experimental Measuring of the Performance Criteria of the Laser-Using Collaborative Robot’s Path Accuracy
    Link – 2024, Applied Sciences, Year 14, Nr. 4.

Aakriti | Engineering | Research and Development Achievement Award

Ms. Aakriti | Engineering | Research and Development Achievement Award

PhD student at CSIR-Central Building Research Institute, India

Aakriti Baliyan is a PhD candidate in Chemical Sciences, specializing in the synthesis of chemical additives from FGD gypsum for sustainable building materials. Her research focuses on green materials, contributing to low-carbon construction solutions. Aakriti has a strong publication record and extensive experience in waste utilization, including the development of water-resistant binders and hybrid cementitious materials. She possesses a diverse technical skill set, including Life Cycle Assessment and various analytical techniques. With a background in mentoring and interdisciplinary collaboration, Aakriti is dedicated to advancing sustainable practices in her field.

Profile:

Google scholar

Strengths for the Award:

  1. Innovative Research Focus:
    • Aakriti’s PhD research on utilizing FGD gypsum for developing chemical additives and composite binders represents a significant contribution to sustainable building materials. This aligns well with current environmental priorities.
  2. Strong Publication Record:
    • Aakriti has a notable number of publications in reputable journals, demonstrating her ability to conduct impactful research. Her articles address critical issues in low-carbon construction, showcasing her expertise and commitment to advancing the field.
  3. Interdisciplinary Collaboration:
    • Her collaborative work with NTPC and involvement in various interdisciplinary projects highlight her ability to work effectively in team settings, enhancing the practical applicability of her research.
  4. Technical Proficiency:
    • Aakriti possesses extensive technical skills and research methodologies, such as Life Cycle Assessment (LCA) and various analytical techniques. This versatility enables her to tackle complex research problems effectively.
  5. Mentorship and Outreach:
    • She has mentored graduate students and engaged in workshops, which reflects her commitment to knowledge sharing and capacity building in her field.

Areas for Improvement:

  1. Broader Research Impact:
    • While Aakriti has made significant strides in her niche area, expanding her research to include more diverse applications or collaborating with industries outside the construction sector could enhance her overall impact.
  2. Increased Visibility:
    • Engaging more actively in international conferences and networking opportunities could improve her visibility and foster collaborations that enhance her research profile.
  3. Grant Acquisition:
    • Focusing on obtaining research grants can support her projects and facilitate the scaling of her innovative solutions, thus increasing her research’s reach and impact.
  4. Public Engagement:
    • Strengthening efforts in public outreach and education about the benefits of green materials can help raise awareness and promote sustainable practices in construction.

Education:

Aakriti Baliyan holds a Ph.D. in Chemical Sciences from the Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Building Research Institute, Roorkee, where her research focuses on utilizing FGD gypsum for developing chemical additives and composite binders in sustainable construction. Prior to her doctoral studies, she completed an M.Sc. in Applied Chemistry from Amity University Noida, where she worked on polymeric transdermal patches for topical applications. She also earned a B.Ed. in Physical and Biological Sciences from Chaudhary Charan Singh University and a B.Sc. in Life Sciences from the University of Delhi. This diverse educational background has equipped her with strong interdisciplinary knowledge across chemical sciences, education, and applied life sciences.

Experience:

Aakriti Baliyan has extensive research experience in the field of chemical sciences, with a focus on the utilization of industrial byproducts like FGD gypsum for developing sustainable construction materials. Her work includes the synthesis of chemical additives, water-resistant binders, and lightweight plasters, contributing to low-carbon and eco-friendly building solutions. She has collaborated with major national organizations like NTPC and the Department of Science and Technology, working on projects related to both modern construction materials and heritage conservation. Aakriti’s technical expertise spans advanced analytical techniques (SEM, FTIR, LCA) and various scientific software, while her contributions are backed by a strong publication record in peer-reviewed journals. Additionally, she has mentored students and presented her research at international conferences, demonstrating her capability to lead and innovate within her field.

Research Focus:

Aakriti Baliyan’s research primarily focuses on the utilization of industrial byproducts, specifically FGD gypsum, to develop sustainable construction materials. Her work aims to create eco-friendly, low-carbon solutions such as water-resistant binders, lightweight plasters, and hybrid cementitious binders that can be used in both interior and exterior applications. She addresses critical issues like high porosity and poor water resistance in FGD gypsum by synthesizing chemical additives to improve its properties. Her research also includes a Life Cycle Assessment (LCA) to evaluate the environmental impact of these materials, contributing to the advancement of green construction technologies. Additionally, Aakriti’s work extends to the conservation of heritage structures, where she develops gypsum-based repair materials to preserve historical buildings, showcasing her interdisciplinary approach to sustainable materials science.

Publications Top Notes:

  • A Comprehensive Review of Flue Gas Desulphurized Gypsum: Production, Properties, and Applications
    Authors: S. Maiti, N. Jain, J. Malik
    Year: 2023
    Citation: Construction and Building Materials, 393, 131918.
  • Light Weight Plasters Containing Vermiculite and FGD Gypsum for Sustainable and Energy Efficient Building Construction Materials
    Authors: S. Maiti, N. Jain, J. Malik, A. Baliyan
    Year: 2023
    Citation: Journal of The Institution of Engineers (India): Series A, 1-12.
  • Calcium Sulphate Whiskers (CSW) an Innovative Material for Civil Engineering Applications: A Critical Review of Its Preparation, Characterization, Current Trends, and Prospects
    Authors: A. Bhardwaj, S. Maiti, N. Jain, A. Pathak, R. R. Gupta
    Year: 2024
    Citation: Construction and Building Materials, 420, 135624.
  • Development of Sustainable Water-Resistant Binder with FGD Gypsum & Fly Ash, and Its Environmental Impact Evaluation via Carbon Footprint and Energy Consumption Analysis
    Authors: N. Jain, S. Maiti, J. Malik, D. Sondhi
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 37, 101376.
  • Synthesis of Calcium Sulfate Whiskers via Acidification Exploiting FGD Gypsum for Improved Binder Properties
    Authors: P. P., Aakriti, S. Maiti, N. Jain
    Year: 2024
    Citation: Sustainable Chemistry and Pharmacy, 42, 101745.

Conclusion:

Aakriti Baliyan’s research in the field of chemical additives, sustainable construction materials, and waste utilization demonstrates significant potential for her to be a strong candidate for the Best Researcher Award. Her innovative contributions to the development of eco-friendly building materials, strong publication record, technical expertise, and engagement in interdisciplinary projects highlight her as a promising researcher. With further international collaborations and expansion into diverse areas of waste management, Aakriti’s profile would be even more competitive for major research accolades.

Liheng Wu | Engineering | Best Paper Award

Ms. Liheng Wu | Engineering | Best Paper Award

postdoc researcher, Southeast University, China

Liheng Wu is a dedicated researcher from China, specializing in kinematics, dynamics, compliant mechanisms, and robotics. Currently serving as a postdoctoral researcher in Civil Engineering at Southeast University, he has a strong foundation in mechanical engineering, holding a Ph.D. from Tianjin University. Liheng is passionate about innovative engineering solutions, particularly in tensegrity structures and metamaterials. πŸŒπŸ”§

Publication Profile

Scopus

Strengths for the Award

  1. Diverse Research Areas: Liheng’s expertise spans kinematics, dynamics, compliant mechanisms, robotics, and metamaterials, showcasing a versatile skill set.
  2. Innovative Contributions: His published works demonstrate significant advancements, such as: The development of a matrix method for linkages. Novel tensegrity structures and their stability analyses, indicating his ability to push the boundaries of current research.
  3. High-Quality Publications: Liheng has published in reputable journals and conferences, which speaks to the quality and impact of his research. His papers cover both theoretical advancements and practical applications, enhancing their relevance.
  4. Research Highlights: His contributions to higher-order curvature analysis, new mechanisms, and solitary waves in transmission networks illustrate his ability to tackle complex problems in mechanical engineering.

Areas for Improvement

  1. Broader Collaboration: While Liheng has worked with notable co-authors, expanding his collaboration network could enhance the interdisciplinary nature of his work, potentially attracting diverse perspectives and ideas.
  2. Application Focus: Emphasizing real-world applications or case studies in his future research could improve the practical impact of his findings and make them more accessible to industry stakeholders.
  3. Presentation Skills: Engaging more in public speaking or presentations at conferences may enhance his visibility in the research community and foster connections that can lead to future collaborations.

Education

Liheng completed his Ph.D. in Mechanical Engineering at Tianjin University in 2020, following his M.S. from Hebei University of Technology in 2013 and a B. Eng. from Chongqing Business and Technology University in 2010. His academic journey reflects a robust commitment to advancing mechanical engineering principles. πŸŽ“πŸ“š

Experience

Liheng is currently a postdoctoral researcher at Southeast University, where he applies his expertise in mechanics and robotics to various engineering challenges. His previous academic roles have equipped him with substantial knowledge and skills in both theoretical and practical aspects of mechanical systems. πŸ› οΈπŸ’Ό

Research Focus

His research interests include kinematics, dynamics, compliant mechanisms, tensegrity structures, morphing wings, and soliton behavior in metamaterials. Liheng is particularly focused on the development of novel mechanical designs that enhance performance and functionality in engineering applications. πŸ”βœ¨

Awards and Honours

Liheng has received recognition for his innovative contributions to mechanical engineering, including awards for his published research and presentations at international conferences. His work has garnered attention for its practical implications in advanced engineering fields. πŸ†πŸŒŸ

Publication Top Notes

A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility (2020, Mechanisms and Machine Theory)

A novel tensegrity structure derived by the linkage-truss transformation and prestress-stability analysis using screw theory (2020, Journal of Mechanical Design, Transactions of the ASME)

Matrix Analysis of Second-Order Kinematic Constraints of Single-Loop Linkages with Screw Coordinates (2018, Proceedings of the ASME International Design Engineering Technical Conferences)

Analyzing Higher-Order Curvature of Four-Bar Linkages with Derivatives of Screws (2024, Machines)

Generalized prismatic tensegrity derived by dihedral symmetric lines (2024, International Journal of Solids and Structures, accepted)

Conclusion

Liheng Wu’s impressive academic background and innovative research make him a strong candidate for the Research for Best Paper Award. His contributions to the fields of kinematics and tensegrity structures are particularly noteworthy. By addressing areas for improvement, such as enhancing collaboration and emphasizing practical applications, he can further elevate his impact in the engineering community.

 

SATYAVARTA KUMAR PRINCE | Engineering | Best Researcher Award

Dr. SATYAVARTA KUMAR PRINCE | Engineering | Best Researcher Award

Ph.D, National Institute of Technology, Meghalaya, India

πŸŽ“ Dr. Satyavarta Kumar Prince is a distinguished Electrical Engineer with a Ph.D. from NIT Meghalaya. He has gained expertise in the protection schemes for DC microgrids, particularly in grid-connected and islanded modes. As a Research Associate at NIT Meghalaya, he has contributed significantly to the field of Electrical Engineering, focusing on power quality and microgrid protection.

Publication Profile

Google Scholar

Strengths for the Award:

  1. Academic Background: Dr. Satyavarta Kumar Prince has a solid academic foundation with a Ph.D. in Electrical Engineering from NIT Meghalaya. His research is focused on protection schemes for DC microgrids, a cutting-edge topic in electrical engineering.
  2. Research Experience: As a Research Associate at NIT Meghalaya, he gained practical experience in his field, contributing to his depth of knowledge and expertise.
  3. Publications: He has published multiple papers in high-impact journals, such as IEEE Transactions on Industry Applications and International Journal of Green Energy, showcasing his contributions to the field of electrical engineering, particularly in the area of microgrid protection.
  4. Recognition: His work has been recognized by the scientific community, as evidenced by his publications in well-regarded journals with substantial impact factors.
  5. GATE Qualification: He qualified for GATE twice, demonstrating his strong grasp of electrical and electronics engineering principles.

Areas for Improvement:

  1. Broader Impact: While his research is impressive, the focus is primarily on DC microgrids. Expanding his research to include other areas of electrical engineering could enhance his profile.
  2. Professional Development: Engaging in additional research projects, collaborations, or gaining international exposure could further bolster his candidacy.
  3. Teaching and Mentorship: There is no mention of teaching or mentorship roles, which are often valued in research awards. Contributing to the academic growth of others could be an area for development.
  4. Leadership Roles: Involvement in leading research projects, conferences, or professional organizations could strengthen his profile.

 

Education

πŸŽ“ Dr. Prince completed his Ph.D. in Electrical Engineering from NIT Meghalaya in 2023, achieving a CGPA of 8.60. His doctoral research focused on protection schemes for DC microgrids. He also holds an M.Tech. in Power and Energy Systems from NIT Meghalaya, completed in 2018, and a B.Tech. in Electrical and Electronics Engineering from Magadh University, where he graduated with 72.89% in 2011.

Experience

πŸ’Ό Dr. Prince served as a Research Associate in the Electrical Engineering Department at NIT Meghalaya from March 2023 to November 2023. His work involved advanced research on microgrid protection schemes, contributing to the academic and research environment at the institute.

Research Focus

πŸ”¬ Dr. Prince’s research primarily focuses on the protection of DC microgrids in various operational scenarios, including grid-connected and islanded modes. His work aims to enhance power quality and develop resilient protection mechanisms for modern electrical systems.

Awards and Honours

πŸ† Dr. Prince has successfully qualified GATE in Electrical and Electronics Engineering in both 2016 and 2017, demonstrating his strong foundational knowledge in the field.

Publication Top Notes

πŸ“š Dominant/Lower Order Harmonic Injection-based Electric Fault Detection for DC Microgrids in Grid Coupled/Decoupled Scenarios
Published in IEEE Transactions on Industry Applications (2023), DOI: 10.1109/TIA.2023.3332314
Cited by: 4 articles

πŸ“š Protection of DC Microgrids based on Complex Power during Faults in On/Off-Grid Scenarios
Published in IEEE Transactions on Industry Applications (2023), Volume 59, Issue 1, pp. 244-254
Cited by: 12 articles

πŸ“š Resilient Bus-Bar Protection Scheme for DC Microgrids Connected to AC Electric Grids
In-Press in International Journal of Green Energy (Taylor & Francis)
Cited by: 2 articles

πŸ“š Challenges and Advancements in Protection of DC Microgrid System-A Comprehensive Review
Published in Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (2022), Volume 44, Issue 4, pp. 10481-10505
Cited by: 15 articles

Conclusion:

Dr. Satyavarta Kumar Prince is a strong candidate for the Research for Best Researcher Award. His academic achievements, research publications, and contributions to the field of electrical engineering, particularly in microgrid protection, make him a noteworthy contender. However, broadening his research scope, engaging in more diverse professional activities, and taking on leadership roles could further enhance his candidacy