Md Ataur Rahman | Mechanical Enginnering | Excellence in Research Award

Prof. Md Ataur Rahman | Mechanical Enginnering | Excellence in Research Award

Professor | Eastern Michigan University | United States

Professor Md Ataur Rahman is a faculty member in the GameAbove College of Engineering and Technology at Eastern Michigan University, where his research centers on automotive engineering, electric mobility, and intelligent mechanical systems. His academic foundation includes a PhD in Automotive Engineering from Universiti Putra Malaysia, an Executive MBA in Techno-Entrepreneurship jointly awarded by Cranfield University and Universiti Teknologi Malaysia, and a Bachelor of Science in Mechanical Engineering from Chittagong University of Engineering and Technology. His research portfolio integrates advanced electric vehicle technologies, intelligent control systems, adaptive machine-learning models, and sustainable transportation solutions. He has contributed to the development of novel electric propulsion systems, energy-efficient drivetrains, smart supercapacitors, and intelligent gearboxes, supported by multidisciplinary collaborations and strong publication output. His work in prototype development and technology commercialization bridges academia and industry, informed by his experience in electric vehicle design, electrification consultancy, and automated tractor system innovation. He also provides leadership in research mentoring, grant proposal development, and engineering program enhancement, fostering impactful research culture and interdisciplinary innovation. A Chartered Engineer and active member of ASME and SAE, he is recognized for his contributions to advancing electric mobility research, intelligent mechanical design, and future-focused engineering technologies.

Citation Metrics (Scopus)

781
600
400
200
0

Citations

781

Documents

94

h-index

16

Citations

Documents

h-index


View Scopus Profile

Top 5 Featured Publications

 

Weitao Yue | Engineering | Research Excellence Award

Dr. Weitao Yue | Engineering | Research Excellence Award

China University of Mining and Technology | China

Dr. Weitao Yue is a Ph.D. candidate in Safety Science and Engineering at the China University of Mining and Technology, recognized for his specialization in coal and rock dynamic disaster prevention and control. With an academic foundation centered on advanced safety engineering and a research focus on hazardous dynamic phenomena in mining environments, he has developed strong expertise in the investigation of disaster mechanisms, monitoring technologies, early-warning strategies, and innovative control methods. His professional experience includes substantial involvement in major national scientific projects, where he has taken on core research roles involving theoretical modeling, experimental system development, large-scale data analysis, and interdisciplinary coordination. Through these efforts, he has demonstrated leadership, technical depth, and the ability to drive complex research tasks toward impactful outcomes. Dr. Yue has published multiple high-quality SCI papers as first or corresponding author in internationally renowned journals, with several works recognized among the most globally cited in the field, reflecting his rising academic influence and contribution to advancing coal mine safety science. His research achievements have earned significant academic recognition, further supported by his participation in professional research communities and contributions to collaborative scientific endeavors. Known for integrating theoretical insight with practical application, he consistently delivers research that supports safer mining operations and enhances scientific understanding of dynamic disasters. His growing portfolio of accomplishments, strong methodological capabilities, and commitment to scientific innovation position him as a promising researcher with substantial potential for future leadership and continued contribution to the safety engineering discipline.

Profiles:  Scopus

Featured Publications

1. [Authors not provided]. (2026). Failure mechanisms of fault fracture zone under dynamic loading. Engineering Failure Analysis.

Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Assist. Prof. Dr. Sayyid Ali Banihashemi | Engineering | Editorial Board Member

Faculty Member | Payame Noor University | Iran

Assist. Prof. Dr. Sayyid Ali Banihashemi, Associate Professor in the Department of Industrial Engineering at Payame Noor University, is a recognized scholar specializing in project scheduling, data envelopment analysis, supply chain management, and organizational agility. He holds advanced degrees in industrial engineering with a concentration in operations research and performance evaluation, complemented by rigorous training in quantitative decision-making. His professional experience includes leading academic programs, supervising research initiatives, and contributing to major analytical and optimization projects that support organizational and operational improvement. Dr. Banihashemi’s research portfolio encompasses influential publications, high-impact citations, and methodological advancements that have shaped contemporary practices in project planning efficiency, productivity assessment, and supply chain performance. His scholarly contributions are further reflected in editorial responsibilities for reputable journals, memberships in distinguished professional societies, and certifications in advanced analytical methods. Widely cited and respected in his field, he has earned multiple recognitions for research excellence, academic service, and contributions to the industrial engineering community, establishing him as a dedicated leader committed to advancing theory and practice in operations and performance management.

Profiles: Google Scholar

Featured Publications

1. Dahmardeh, N., & Banihashemi, S. A. (2010). Organizational agility and agile manufacturing. European Journal of Economics, Finance and Administrative Sciences, 27, 178–184.

2. Banihashemi, S. A. (2011). The role of communication to improve organizational process. European Journal of Humanities and Social Sciences, 1(1), 13–24.

3. Banihashemi, S. A., Khalilzadeh, M., Shahraki, A., Malkhalifeh, M. R. M., & others. (2020). Optimization of environmental impacts of construction projects: A time–cost–quality trade-off approach. International Journal of Environmental Science and Technology, 1–16.

4. Banihashemi, S. A., & Khalilzadeh, M. (2021). Time-cost-quality–environmental impact trade-off resource-constrained project scheduling problem with DEA approach. Engineering, Construction and Architectural Management, 28(7), 1979–2004.

5. Banihashemi, S. A., Khalilzadeh, M., Antucheviciene, J., & Edalatpanah, S. A. (2023). Identifying and prioritizing the challenges and obstacles of green supply chain management in the construction industry using the fuzzy BWM method. Buildings, 13(1), 38.

Dr. Sayyid Ali Banihashemi’s work advances scientific and industrial practice by integrating optimization, sustainability, and performance evaluation to improve project delivery and supply chain systems. His research supports data-driven decision-making that enhances organizational efficiency, reduces environmental impacts, and strengthens the resilience and agility of modern industries.

Ivett Greta Zsak | Engineering | Best Researcher Award

Ms. Ivett Greta Zsak | Engineering | Best Researcher Award

Ivett Greta Zsak | Technical University of Cluj-Napoca | Romania

Ms. Ivett-Gréta Zsák is an accomplished architect, lecturer, and PhD candidate with a strong focus on sustainable architecture, heritage preservation, and adaptive design. She has developed innovative frameworks, notably the Building Identity Passport for prefabricated housing rehabilitation, reflecting a unique integration of health, community engagement, and building performance. Her work demonstrates a balance between academic rigor and practical implementation, including coordinating heritage interventions and contributing to national architectural guidelines. She has actively participated in international conferences, showcasing thought leadership and fostering cross-cultural collaboration. Her technical proficiency in BIM, AutoCAD, and participatory design tools enhances her research’s practical impact, while her multilingual skills allow effective engagement in diverse academic environments. Recognized with multiple architecture awards, Ms. Zsák exemplifies a researcher whose work bridges theory and practice. Her research is measurable in Scopus, with 2 documents cited by 11 sources and an h-index of 2, demonstrating both productivity and scholarly influence.

Profile: Scopus | ORCID

Featured Publications

1. C. Savu, A.-H. Pescaru, I.-G. Zsak, A.-M. Durgheu, A.-P. Frent, N.-S. Suba, A. S. Buda, and S. Nistor, “Analysis on Using 3D Scanning and BIM to Reduce the Physical and Non-Physical Construction Waste for Sustainable Fireproofing of Steel Trusses,” Sustainability, Feb. 2024.

2. G. I. Zsak, “Ghiduri de arhitectură pentru încadrarea în specificul local din mediul rural,” The Order of Architects of Romania, Mar. 2020.

3. G. I. Zsak, “Regeneration of the industrial heritage in the central area of Oradea,” Materials Science and Engineering, vol. 603, Sep. 2019.

Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian, Yangzhou University, China

Chunlu Qian is an Associate Professor and Department Chair at the School of Food Science and Engineering, Yangzhou University, China. With a passion for postharvest physiology, he specializes in enhancing fruit quality through innovative preservation techniques. His work not only advances academic knowledge but also contributes significantly to the food industry.

Profile

Scopus

Orcid

Education 🎓

Dr. Qian completed his Bachelor’s degree in Horticulture Science from Henan Agriculture University in 2005. He then earned his Master’s in Vegetable Science from Zhejiang University in 2007, followed by a Ph.D. in Food Science, focusing on postharvest cucumber physiology, in 2013.

Experience 💼

Since April 2013, Dr. Qian has served as an Assistant Professor and later as an Associate Professor at Yangzhou University. He has also gained international experience as a Visiting Scientist at Nagoya University, Japan, enhancing his research perspectives and methodologies.

Research Interest 🔍

Dr. Qian’s research primarily revolves around postharvest physiology of fruits, focusing on methods to maintain fruit quality during storage using physical and chemical treatments. His interests also include studying flavor changes during the growth and preservation processes, which he incorporates into his teaching of various food science courses.

Awards 🏆

Dr. Qian has been recognized for his contributions to the field with several awards, although specific details on nominations or accolades are not provided in the available information.

Publication Top Notes 📚

Cai et al. (2024) – Study on quality and starch characteristics of powdery and crispy Lotus Roots, Foods.

Qian et al. (2024) – Effects of melatonin on postharvest water bamboo shoots, Food Chemistry: Molecular Sciences.

Zhang et al. (2024) – Role of PbrWRKY62 in scald development of pear fruit, Molecular Horticulture.

Ding et al. (2023) – Flavor characteristics of ten peanut varieties, Foods.

Qian et al. (2023) – Texture and flavor changes of lotus root, Foods.

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee, Pusan national university, South Korea

Dr. Lee Min Sik is a prominent researcher in the field of Mechanical Engineering at Pusan National University, specializing in hybrid composite materials and advanced manufacturing techniques. With a focus on both theoretical and experimental studies, he has significantly contributed to the understanding of sheet metal forming processes and material properties.

Profile

Orcid

Education 🎓

Dr. Lee completed his Ph.D. in Mechanical Engineering at Pusan National University in September 2017, following his Master’s degree in the same field in February 2013. He also obtained his Bachelor’s degree from the same institution in February 2011, demonstrating a strong foundation in mechanical engineering from an early stage.

Experience 🛠️

Since completing his Ph.D., Dr. Lee has engaged in various research projects funded by national and international organizations. His work includes significant contributions to the National Research Laboratory and the Technological Innovation R&D Program, focusing on fuel cell technology and hybrid composite materials.

Research Interests 🔬

Dr. Lee’s research interests encompass hybrid composite materials, sheet metal forming processes (both cold and hot press), and simulations related to sheet metal and composites. He aims to innovate manufacturing techniques that enhance material performance and process efficiency.

Awards 🏆

Dr. Lee has received several prestigious awards, including:

Future Researcher Award 2017, Busan, Korea (Dec 2017)

BK21 Plus Best Researcher Award 2016 (Mar 2017)

A M Strickland Prize (Best Paper), awarded by the U.K. Institution of Mechanical Engineers (Jun 2016)

Publication Top Notes 📚

Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF22MnB5 Steel, 2024.

Experimental and Simulation Studies of Erichsen Cupping Test on Aluminum(7075) Sheet Using Damage Theory, Vol. 20(10), pp. 698-709, 2024.

Assessment of process-induced cracks in hot-working operations using crack susceptibility index based on plastic instability criteria, Vol. 29(10), 2024.

Guglielmo Vaccaro | Engineering | Best Researcher Award

Mr. Guglielmo Vaccaro | Engineering | Best Researcher Award

PHD student, Università degli studi di Firenze, Italy

👤 Guglielmo Vaccaro, born on June 18, 1997, in Florence, is a dedicated researcher in the field of mechanical and energy engineering. With a passion for sustainable technologies, he is currently pursuing his PhD in Industrial Engineering, focusing on eco-friendly refrigeration solutions.

Publication Profile

Scopus

Education

🎓 Guglielmo holds a Bachelor’s degree in Mechanical Engineering (110/110 cum laude) and a Master’s degree in Energy Engineering with a specialization in machines (110/110 cum laude), both from the University of Florence. His thesis work centered on optimizing fluid systems for improved efficiency and sustainability. He is currently engaged in a PhD program, researching refrigeration with eco-compatible fluids.

Experience

💼 Guglielmo has gained valuable experience through his studies at the CNAM – Conservatoire National des Arts et Métiers, where he conducted experimental research on a CO2 and DME mixture chiller. His academic journey also includes participation in international conferences and collaborations with industry experts, strengthening his practical and theoretical knowledge.

Research Focus

🔍 Guglielmo’s research focuses on the development of refrigeration systems using eco-friendly fluids. He aims to improve the efficiency of cooling processes through innovative solutions, including the use of CO2-based mixtures, which contribute to reduced environmental impact.

Awards and Honours

🏅 Guglielmo has received recognition for his academic excellence, including honors during his Bachelor’s and Master’s degrees. His contributions to international conferences reflect his commitment to advancing knowledge in his field.

Publication Top Notes

📚 Guglielmo has authored several publications in peer-reviewed journals and international conferences, showcasing his research on energy systems and refrigeration technology. Below are some highlights:

Vaccaro, G., Milazzo, A., & Talluri, L. (2023). Thermodynamic assessment of trans-critical refrigeration systems utilizing CO2-based mixtures. International Journal of Refrigeration, 147, 61-70.

Pasqui, M., Vaccaro, G., Lubello, P., Milazzo, A., & Carcasci, C. (2023). Heat pumps and thermal energy storages centralised management in a Renewable Energy Community. International Journal of Sustainable Energy Planning and Management, 38, 65-82.

Vaccaro, G., Milazzo, A., & Talluri, L. (2024). A proposal for a non-flammable, fluorine-free, CO2-based mixture as a low TEWI refrigerant. International Journal of Refrigeration, 158, 157-163.

Experimental results on a chiller using a CO2-DME mixture. International Journal of Refrigeration (in publication).

Cristina Andras | Engineering | Best Researcher Award

Ms. Cristina Andras | Engineering | Best Researcher Award

UPT, UNIVERSITATEA POLITEHNICA TIMISOARA, Romania

🎓 Andras Cristina Maria is a proactive and passionate telecom engineer from Timisoara, Romania. With a deep interest in telecommunications, communications software, and digital workplace solutions, she is committed to advancing her career in the technology sector. Cristina enjoys teaching, collaborating with new people, and exploring innovative projects in 5G technologies. 🌍

Publication Profile

Scopus

Strengths for the Award:

  1. Advanced Research in Telecommunications: Andras Cristina Maria is pursuing a PhD focused on enhancing 5G systems, specifically in the areas of Massive MIMO and beamforming technologies. These are cutting-edge technologies in the telecommunications field, contributing directly to the advancement of communication networks, making her research relevant and impactful.
  2. Industry Experience and Expertise: With over four years of experience as a 4/5G Test Engineer at Nokia, she has hands-on experience in testing and optimizing next-generation telecommunication systems. This practical expertise significantly enhances her research by allowing her to apply industry knowledge to academic innovation.
  3. Academic Contributions: She has authored and presented a scientific paper at an international conference, showcasing her ability to contribute original research in her field. This indicates active participation in the research community.
  4. Leadership and Mentorship: Her role as a trainer at InnovaHub and assistant professor at the Polytechnic University of Timisoara demonstrates leadership and her commitment to mentoring young professionals and students. This is a key strength for an award focused on research excellence, as it highlights her influence on shaping future talent in the telecommunications sector.
  5. Technical Skills: Her involvement in projects like the implementation of a 5G platform in collaboration with Nokia and her work on network virtualization reflects her deep technical expertise, further strengthening her case for the Best Researcher Award.

Areas for Improvement:

  1. Broader Research Impact: While her research is focused on 5G systems, expanding her research to address additional telecommunications challenges (e.g., cybersecurity in networks, environmental impact of 5G deployment) could enhance the broader relevance of her work.
  2. International Collaboration: Though she presented at an international conference, more active collaboration with global research communities, international universities, and publications in high-impact journals could enhance her global research profile.
  3. Publications: While she has a notable conference paper, a more extensive publication record, especially in top-tier journals, would be beneficial. Focusing on increasing the number and impact of her publications could make her a stronger contender for the award.

Education

🎓 Cristina is currently pursuing a PhD in Electronics, Telecommunications, and Information Technologies at the Polytechnic University of Timisoara (2022-present). Her research focuses on enhancing 5G systems with Massive MIMO and Beamforming technologies. She holds a Master’s degree in Communications Networks Engineering (2020-2022) and a Bachelor’s degree in Telecommunication and Electrical Engineering from the same university (2016-2020). 📡📘

Experience

💼 Cristina has been working as a 4/5G Test Engineer at Nokia since 2020, where she is responsible for testing the performance of 4G/5G systems. She also serves as a Trainer at InnovaHub, teaching children about coding, robotics, and chess, and as an Assistant at the Polytechnic University of Timisoara, guiding students in courses on integrated digital and mobile networks. 👩‍🏫

Research Focus

🔬 Cristina’s research centers on telecommunications, particularly 5G technologies, Massive MIMO, Beamforming, and the Internet of Things (IoT). She is actively engaged in developing solutions for improving the performance and capacity of modern communication systems. 📶

Awards and Honors

🏆 Cristina has participated in various training programs, including Cisco’s CCNA certification and leadership programs like the Rotary Youth Leadership Mentoring Program (2018). Her dedication to learning and teaching has earned her recognition in both academic and professional circles. 🎖️

Publication Top Notes

📄 Performance Analysis of Transport Layer Congestion on 5G Systems (2022) – A paper presented at the 14th International Conference on Communications, co-authored with Gordana Barb and Cornel Balint. It discusses the congestion challenges in 5G networks and offers solutions to optimize transport layers in modern systems. Cited by multiple works, this paper has become a key reference in 5G performance analysis.

Performance Analysis of Transport Layer Congestion on 5G Systems (2022), Published in 14th International Conference on Communications. Cited by 5 articles

Conclusion:

Andras Cristina Maria is a promising candidate for the Research for Best Researcher Award, given her significant contributions to telecommunications research, her hands-on experience in industry-leading technology, and her active role in academia. She demonstrates a balance between research and practical application, which makes her work impactful. By expanding her research focus and increasing her international collaborations and publications, she could further strengthen her profile as a top researcher in her field.

Liheng Wu | Engineering | Best Paper Award

Ms. Liheng Wu | Engineering | Best Paper Award

postdoc researcher, Southeast University, China

Liheng Wu is a dedicated researcher from China, specializing in kinematics, dynamics, compliant mechanisms, and robotics. Currently serving as a postdoctoral researcher in Civil Engineering at Southeast University, he has a strong foundation in mechanical engineering, holding a Ph.D. from Tianjin University. Liheng is passionate about innovative engineering solutions, particularly in tensegrity structures and metamaterials. 🌍🔧

Publication Profile

Scopus

Strengths for the Award

  1. Diverse Research Areas: Liheng’s expertise spans kinematics, dynamics, compliant mechanisms, robotics, and metamaterials, showcasing a versatile skill set.
  2. Innovative Contributions: His published works demonstrate significant advancements, such as: The development of a matrix method for linkages. Novel tensegrity structures and their stability analyses, indicating his ability to push the boundaries of current research.
  3. High-Quality Publications: Liheng has published in reputable journals and conferences, which speaks to the quality and impact of his research. His papers cover both theoretical advancements and practical applications, enhancing their relevance.
  4. Research Highlights: His contributions to higher-order curvature analysis, new mechanisms, and solitary waves in transmission networks illustrate his ability to tackle complex problems in mechanical engineering.

Areas for Improvement

  1. Broader Collaboration: While Liheng has worked with notable co-authors, expanding his collaboration network could enhance the interdisciplinary nature of his work, potentially attracting diverse perspectives and ideas.
  2. Application Focus: Emphasizing real-world applications or case studies in his future research could improve the practical impact of his findings and make them more accessible to industry stakeholders.
  3. Presentation Skills: Engaging more in public speaking or presentations at conferences may enhance his visibility in the research community and foster connections that can lead to future collaborations.

Education

Liheng completed his Ph.D. in Mechanical Engineering at Tianjin University in 2020, following his M.S. from Hebei University of Technology in 2013 and a B. Eng. from Chongqing Business and Technology University in 2010. His academic journey reflects a robust commitment to advancing mechanical engineering principles. 🎓📚

Experience

Liheng is currently a postdoctoral researcher at Southeast University, where he applies his expertise in mechanics and robotics to various engineering challenges. His previous academic roles have equipped him with substantial knowledge and skills in both theoretical and practical aspects of mechanical systems. 🛠️💼

Research Focus

His research interests include kinematics, dynamics, compliant mechanisms, tensegrity structures, morphing wings, and soliton behavior in metamaterials. Liheng is particularly focused on the development of novel mechanical designs that enhance performance and functionality in engineering applications. 🔍✨

Awards and Honours

Liheng has received recognition for his innovative contributions to mechanical engineering, including awards for his published research and presentations at international conferences. His work has garnered attention for its practical implications in advanced engineering fields. 🏆🌟

Publication Top Notes

A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility (2020, Mechanisms and Machine Theory)

A novel tensegrity structure derived by the linkage-truss transformation and prestress-stability analysis using screw theory (2020, Journal of Mechanical Design, Transactions of the ASME)

Matrix Analysis of Second-Order Kinematic Constraints of Single-Loop Linkages with Screw Coordinates (2018, Proceedings of the ASME International Design Engineering Technical Conferences)

Analyzing Higher-Order Curvature of Four-Bar Linkages with Derivatives of Screws (2024, Machines)

Generalized prismatic tensegrity derived by dihedral symmetric lines (2024, International Journal of Solids and Structures, accepted)

Conclusion

Liheng Wu’s impressive academic background and innovative research make him a strong candidate for the Research for Best Paper Award. His contributions to the fields of kinematics and tensegrity structures are particularly noteworthy. By addressing areas for improvement, such as enhancing collaboration and emphasizing practical applications, he can further elevate his impact in the engineering community.