Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian | Engineering | Best Researcher Award

Assoc Prof. Dr. Chunlu Qian, Yangzhou University, China

Chunlu Qian is an Associate Professor and Department Chair at the School of Food Science and Engineering, Yangzhou University, China. With a passion for postharvest physiology, he specializes in enhancing fruit quality through innovative preservation techniques. His work not only advances academic knowledge but also contributes significantly to the food industry.

Profile

Scopus

Orcid

Education 🎓

Dr. Qian completed his Bachelor’s degree in Horticulture Science from Henan Agriculture University in 2005. He then earned his Master’s in Vegetable Science from Zhejiang University in 2007, followed by a Ph.D. in Food Science, focusing on postharvest cucumber physiology, in 2013.

Experience 💼

Since April 2013, Dr. Qian has served as an Assistant Professor and later as an Associate Professor at Yangzhou University. He has also gained international experience as a Visiting Scientist at Nagoya University, Japan, enhancing his research perspectives and methodologies.

Research Interest 🔍

Dr. Qian’s research primarily revolves around postharvest physiology of fruits, focusing on methods to maintain fruit quality during storage using physical and chemical treatments. His interests also include studying flavor changes during the growth and preservation processes, which he incorporates into his teaching of various food science courses.

Awards 🏆

Dr. Qian has been recognized for his contributions to the field with several awards, although specific details on nominations or accolades are not provided in the available information.

Publication Top Notes 📚

Cai et al. (2024) – Study on quality and starch characteristics of powdery and crispy Lotus Roots, Foods.

Qian et al. (2024) – Effects of melatonin on postharvest water bamboo shoots, Food Chemistry: Molecular Sciences.

Zhang et al. (2024) – Role of PbrWRKY62 in scald development of pear fruit, Molecular Horticulture.

Ding et al. (2023) – Flavor characteristics of ten peanut varieties, Foods.

Qian et al. (2023) – Texture and flavor changes of lotus root, Foods.

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee | Engineering | Best Researcher Award

Prof. Min Sik Lee, Pusan national university, South Korea

Dr. Lee Min Sik is a prominent researcher in the field of Mechanical Engineering at Pusan National University, specializing in hybrid composite materials and advanced manufacturing techniques. With a focus on both theoretical and experimental studies, he has significantly contributed to the understanding of sheet metal forming processes and material properties.

Profile

Orcid

Education 🎓

Dr. Lee completed his Ph.D. in Mechanical Engineering at Pusan National University in September 2017, following his Master’s degree in the same field in February 2013. He also obtained his Bachelor’s degree from the same institution in February 2011, demonstrating a strong foundation in mechanical engineering from an early stage.

Experience 🛠️

Since completing his Ph.D., Dr. Lee has engaged in various research projects funded by national and international organizations. His work includes significant contributions to the National Research Laboratory and the Technological Innovation R&D Program, focusing on fuel cell technology and hybrid composite materials.

Research Interests 🔬

Dr. Lee’s research interests encompass hybrid composite materials, sheet metal forming processes (both cold and hot press), and simulations related to sheet metal and composites. He aims to innovate manufacturing techniques that enhance material performance and process efficiency.

Awards 🏆

Dr. Lee has received several prestigious awards, including:

Future Researcher Award 2017, Busan, Korea (Dec 2017)

BK21 Plus Best Researcher Award 2016 (Mar 2017)

A M Strickland Prize (Best Paper), awarded by the U.K. Institution of Mechanical Engineers (Jun 2016)

Publication Top Notes 📚

Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF22MnB5 Steel, 2024.

Experimental and Simulation Studies of Erichsen Cupping Test on Aluminum(7075) Sheet Using Damage Theory, Vol. 20(10), pp. 698-709, 2024.

Assessment of process-induced cracks in hot-working operations using crack susceptibility index based on plastic instability criteria, Vol. 29(10), 2024.

Štefan Ondočko | Engineering | Best Researcher Award

Assist. Prof. Dr. Štefan Ondočko | Engineering | Best Researcher Award

Assistant professors, Technical University of Košice, Slovakia

Profile

Scopus

Ing. Štefan Ondočko, PhD, is an Assistant Professor at the Technical University of Košice, specializing in mechanical engineering with a focus on production systems and robotics. His extensive experience spans both academia and industry, contributing to the advancement of robotic technologies.

Education 🎓

Štefan earned his degree in Mechanical Engineering from the Technical University of Košice (1996–2004), specializing in Instrumentation, Control, and Automation Technology. He later completed his PhD in Mechanical Engineering, focusing on Production Technology, in 2023.

Experience 💼

His professional journey includes roles as an Electrical Designer and I&C Engineer at EnergoControl s.r.o and SMZ Jelšava a.s., along with significant teaching responsibilities at the Technical University of Košice since 2019. Štefan currently focuses on applied research and development in robotic and production technologies.

Research Interests 🔬

Štefan’s research interests lie in the integration of robotics in production systems, particularly in modular robotics and automation technology. He actively engages in grant projects that advance educational tools and methodologies in these fields.

Awards 🏆

In 2023, Štefan received a diploma for the Best Contribution at the 20th International Scientific Conference of Engineering Doctorates of Technical Universities, highlighting his impactful work in mechanical engineering.

Publications Top Notes 📚

  1. Measurement of Maximum Deviation from Roundness Based on the Inverse Kinematics Principle
    Link – 2019, Measurement Science Review, Year 19, Nr. 6.
  2. Inverse Kinematics Data Adaptation to Non-Standard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, Applied Sciences, Year 11, Nr. 3.
  3. Comparison of Selected Numerical Methods for the Calculation of Inverse Kinematics of Nonstandard Modular Robotic Arm Consisting of Unique Rotational Modules
    Link – 2021, MM Science Journal, June.
  4. Mapping Robot Singularities Through the Monte Carlo Method
    Link – 2022, Applied Sciences, Year 12, Nr. 16.
  5. Analysis of the Methodology for Experimental Measuring of the Performance Criteria of the Laser-Using Collaborative Robot’s Path Accuracy
    Link – 2024, Applied Sciences, Year 14, Nr. 4.

Liheng Wu | Engineering | Best Paper Award

Ms. Liheng Wu | Engineering | Best Paper Award

postdoc researcher, Southeast University, China

Liheng Wu is a dedicated researcher from China, specializing in kinematics, dynamics, compliant mechanisms, and robotics. Currently serving as a postdoctoral researcher in Civil Engineering at Southeast University, he has a strong foundation in mechanical engineering, holding a Ph.D. from Tianjin University. Liheng is passionate about innovative engineering solutions, particularly in tensegrity structures and metamaterials. 🌍🔧

Publication Profile

Scopus

Strengths for the Award

  1. Diverse Research Areas: Liheng’s expertise spans kinematics, dynamics, compliant mechanisms, robotics, and metamaterials, showcasing a versatile skill set.
  2. Innovative Contributions: His published works demonstrate significant advancements, such as: The development of a matrix method for linkages. Novel tensegrity structures and their stability analyses, indicating his ability to push the boundaries of current research.
  3. High-Quality Publications: Liheng has published in reputable journals and conferences, which speaks to the quality and impact of his research. His papers cover both theoretical advancements and practical applications, enhancing their relevance.
  4. Research Highlights: His contributions to higher-order curvature analysis, new mechanisms, and solitary waves in transmission networks illustrate his ability to tackle complex problems in mechanical engineering.

Areas for Improvement

  1. Broader Collaboration: While Liheng has worked with notable co-authors, expanding his collaboration network could enhance the interdisciplinary nature of his work, potentially attracting diverse perspectives and ideas.
  2. Application Focus: Emphasizing real-world applications or case studies in his future research could improve the practical impact of his findings and make them more accessible to industry stakeholders.
  3. Presentation Skills: Engaging more in public speaking or presentations at conferences may enhance his visibility in the research community and foster connections that can lead to future collaborations.

Education

Liheng completed his Ph.D. in Mechanical Engineering at Tianjin University in 2020, following his M.S. from Hebei University of Technology in 2013 and a B. Eng. from Chongqing Business and Technology University in 2010. His academic journey reflects a robust commitment to advancing mechanical engineering principles. 🎓📚

Experience

Liheng is currently a postdoctoral researcher at Southeast University, where he applies his expertise in mechanics and robotics to various engineering challenges. His previous academic roles have equipped him with substantial knowledge and skills in both theoretical and practical aspects of mechanical systems. 🛠️💼

Research Focus

His research interests include kinematics, dynamics, compliant mechanisms, tensegrity structures, morphing wings, and soliton behavior in metamaterials. Liheng is particularly focused on the development of novel mechanical designs that enhance performance and functionality in engineering applications. 🔍✨

Awards and Honours

Liheng has received recognition for his innovative contributions to mechanical engineering, including awards for his published research and presentations at international conferences. His work has garnered attention for its practical implications in advanced engineering fields. 🏆🌟

Publication Top Notes

A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility (2020, Mechanisms and Machine Theory)

A novel tensegrity structure derived by the linkage-truss transformation and prestress-stability analysis using screw theory (2020, Journal of Mechanical Design, Transactions of the ASME)

Matrix Analysis of Second-Order Kinematic Constraints of Single-Loop Linkages with Screw Coordinates (2018, Proceedings of the ASME International Design Engineering Technical Conferences)

Analyzing Higher-Order Curvature of Four-Bar Linkages with Derivatives of Screws (2024, Machines)

Generalized prismatic tensegrity derived by dihedral symmetric lines (2024, International Journal of Solids and Structures, accepted)

Conclusion

Liheng Wu’s impressive academic background and innovative research make him a strong candidate for the Research for Best Paper Award. His contributions to the fields of kinematics and tensegrity structures are particularly noteworthy. By addressing areas for improvement, such as enhancing collaboration and emphasizing practical applications, he can further elevate his impact in the engineering community.

 

SATYAVARTA KUMAR PRINCE | Engineering | Best Researcher Award

Dr. SATYAVARTA KUMAR PRINCE | Engineering | Best Researcher Award

Ph.D, National Institute of Technology, Meghalaya, India

🎓 Dr. Satyavarta Kumar Prince is a distinguished Electrical Engineer with a Ph.D. from NIT Meghalaya. He has gained expertise in the protection schemes for DC microgrids, particularly in grid-connected and islanded modes. As a Research Associate at NIT Meghalaya, he has contributed significantly to the field of Electrical Engineering, focusing on power quality and microgrid protection.

Publication Profile

Google Scholar

Strengths for the Award:

  1. Academic Background: Dr. Satyavarta Kumar Prince has a solid academic foundation with a Ph.D. in Electrical Engineering from NIT Meghalaya. His research is focused on protection schemes for DC microgrids, a cutting-edge topic in electrical engineering.
  2. Research Experience: As a Research Associate at NIT Meghalaya, he gained practical experience in his field, contributing to his depth of knowledge and expertise.
  3. Publications: He has published multiple papers in high-impact journals, such as IEEE Transactions on Industry Applications and International Journal of Green Energy, showcasing his contributions to the field of electrical engineering, particularly in the area of microgrid protection.
  4. Recognition: His work has been recognized by the scientific community, as evidenced by his publications in well-regarded journals with substantial impact factors.
  5. GATE Qualification: He qualified for GATE twice, demonstrating his strong grasp of electrical and electronics engineering principles.

Areas for Improvement:

  1. Broader Impact: While his research is impressive, the focus is primarily on DC microgrids. Expanding his research to include other areas of electrical engineering could enhance his profile.
  2. Professional Development: Engaging in additional research projects, collaborations, or gaining international exposure could further bolster his candidacy.
  3. Teaching and Mentorship: There is no mention of teaching or mentorship roles, which are often valued in research awards. Contributing to the academic growth of others could be an area for development.
  4. Leadership Roles: Involvement in leading research projects, conferences, or professional organizations could strengthen his profile.

 

Education

🎓 Dr. Prince completed his Ph.D. in Electrical Engineering from NIT Meghalaya in 2023, achieving a CGPA of 8.60. His doctoral research focused on protection schemes for DC microgrids. He also holds an M.Tech. in Power and Energy Systems from NIT Meghalaya, completed in 2018, and a B.Tech. in Electrical and Electronics Engineering from Magadh University, where he graduated with 72.89% in 2011.

Experience

💼 Dr. Prince served as a Research Associate in the Electrical Engineering Department at NIT Meghalaya from March 2023 to November 2023. His work involved advanced research on microgrid protection schemes, contributing to the academic and research environment at the institute.

Research Focus

🔬 Dr. Prince’s research primarily focuses on the protection of DC microgrids in various operational scenarios, including grid-connected and islanded modes. His work aims to enhance power quality and develop resilient protection mechanisms for modern electrical systems.

Awards and Honours

🏆 Dr. Prince has successfully qualified GATE in Electrical and Electronics Engineering in both 2016 and 2017, demonstrating his strong foundational knowledge in the field.

Publication Top Notes

📚 Dominant/Lower Order Harmonic Injection-based Electric Fault Detection for DC Microgrids in Grid Coupled/Decoupled Scenarios
Published in IEEE Transactions on Industry Applications (2023), DOI: 10.1109/TIA.2023.3332314
Cited by: 4 articles

📚 Protection of DC Microgrids based on Complex Power during Faults in On/Off-Grid Scenarios
Published in IEEE Transactions on Industry Applications (2023), Volume 59, Issue 1, pp. 244-254
Cited by: 12 articles

📚 Resilient Bus-Bar Protection Scheme for DC Microgrids Connected to AC Electric Grids
In-Press in International Journal of Green Energy (Taylor & Francis)
Cited by: 2 articles

📚 Challenges and Advancements in Protection of DC Microgrid System-A Comprehensive Review
Published in Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (2022), Volume 44, Issue 4, pp. 10481-10505
Cited by: 15 articles

Conclusion:

Dr. Satyavarta Kumar Prince is a strong candidate for the Research for Best Researcher Award. His academic achievements, research publications, and contributions to the field of electrical engineering, particularly in microgrid protection, make him a noteworthy contender. However, broadening his research scope, engaging in more diverse professional activities, and taking on leadership roles could further enhance his candidacy