Jeremie Zaffran | Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Chemistry | Best Researcher Award

Researcher at CNRS, France

Dr. Jeremie Zaffran is a distinguished computational chemist specializing in heterogeneous catalysis and machine learning. He is a Tenured Research Fellow at the French National Center for Scientific Research (CNRS), based at the E2P2L (Eco Efficient Products and Processes Lab) in Shanghai, China. With a strong background in computational techniques, Zaffran’s work focuses on using ab initio calculations and microkinetics simulations to address challenges in renewable energy, including CO2 storage, biomass transformation, and solar water splitting. His interdisciplinary approach combines advanced computational methods with close collaboration with experimentalists. Zaffran’s career includes high-profile roles at institutions like ShanghaiTech University, the Technion–Israel Institute of Technology, and Ecole Normale Superieure de Lyon. Known for his leadership and project management skills, he has supervised multiple PhD students and worked on several large-scale research projects. He is also deeply involved in mentoring, contributing to the development of future scientific leaders.

Professional Profile

Education

Dr. Jeremie Zaffran completed his PhD in Chemistry at Ecole Normale Superieure de Lyon, France, in 2014, where he graduated with the highest distinction. His dissertation focused on computational methods for biomass transformation, specifically in designing solid catalysts using Density Functional Theory (DFT). He also holds a Master’s degree in Materials Science from Université Paris Diderot-Paris 7, where he graduated summa cum laude in 2010, ranking first in his class. Zaffran’s academic foundation was further enriched with a Bachelor’s degree in Chemistry from the same institution, where he was ranked fifth in his cohort. During his doctoral research, he worked under the guidance of Prof. Philippe Sautet and collaborated with experimental teams from IRCELYON and NOVANCE, bridging theory and application in catalysis. His academic journey laid the groundwork for his successful career in computational chemistry and materials science, with a focus on catalysis and energy-related research.

Professional Experience

Dr. Zaffran’s professional experience spans over a decade of groundbreaking work in computational catalysis. From 2011 to 2017, he worked at leading institutions such as the Technion-Israel Institute of Technology and ShanghaiTech University, where he held roles as a Postdoctoral Fellow and Research Assistant Professor. At ShanghaiTech, Zaffran led efforts to design efficient electrocatalysts using DFT and machine learning. Since 2020, he has served as a Research Fellow at CNRS, where he leads research in the E2P2L lab in Shanghai, China. His work focuses on developing sustainable technologies in catalysis for renewable energy applications, including CO2 valorization and biomass conversion. He has also contributed significantly to large interdisciplinary projects, leading computational teams for projects like “Smart Digital Catalysis.” Throughout his career, Zaffran has demonstrated expertise in collaborating across disciplines and industries, coordinating research efforts that bridge computational chemistry and experimental science.

Research Interests

Dr. Zaffran’s primary research interests lie in computational heterogeneous catalysis, with a particular focus on applying machine learning and advanced computational techniques such as ab initio calculations, microkinetics simulations, and Density Functional Theory (DFT) to solve real-world problems. His research aims to design and optimize catalysts for renewable energy applications, including biomass transformation, CO2 storage and valorization, and solar water splitting. Zaffran is also actively involved in integrating machine learning models into catalysis design, enhancing the efficiency and speed of identifying viable catalysts. His work on microkinetic simulations, especially using tools like CatMAP, has provided valuable insights into catalytic reaction mechanisms. Zaffran’s interdisciplinary approach combines computational chemistry with experimental collaborations, making his research highly relevant to sustainable energy and environmental challenges. He is particularly interested in advancing green chemistry solutions by developing catalysts that can facilitate cleaner industrial processes and renewable energy production.

Awards and Honors

Dr. Zaffran has received numerous prestigious awards and honors throughout his career. He was awarded the Lady Davis Fellowship from the Technion–Israel Institute of Technology in 2016 and the Grand Technion Energy Program (GTEP) Fellowship for Outstanding Post-Doctoral Fellows the same year. His research excellence was also recognized by the Israel Ministry of Aliyah and Immigrant Absorption Fellowship in 2015. During his academic journey, Zaffran earned the highest distinction for his PhD, summa cum laude for his Master’s degree, and cum laude for his Bachelor’s degree. His research contributions have been supported by significant grants, including those from CNRS and the National Natural Science Foundation of China (NSFC), allowing him to lead high-impact projects in the field of computational catalysis. Zaffran’s continued success in securing funding for innovative research reflects his standing as a leader in his field and his ability to attract international recognition.

Conclusion

Jeremie Zaffran is highly qualified for the Best Researcher Award. His technical expertise in computational chemistry, successful collaborations in sustainable energy research, and strong track record in leadership and mentorship make him a deserving candidate. While there are areas like expanding research diversity and increasing visibility through publications, his accomplishments to date place him among the leaders in his field.

Publications Top Noted

  • Stoichiometric Selective Carbonylation of Methane to Acetic Acid by Chemical Looping
    Authors: Y. Wang, C. Dong, M.V. Shamzhy, A.Y. Khodakov, V.V. Ordomsky
    Journal: ACS Catalysis
    Year: 2025
    Citations: 0

  • Unveiling the Phenol Direct Carboxylation Reaction Mechanism at ZrO2 Surface
    Authors: K. Zhang, C. Ma, S. Paul, J. Zaffran
    Journal: Molecular Catalysis
    Year: 2024
    Citations: 2

 

Artem Bezrukov | Chemistry | Best Researcher Award

Dr. Artem Bezrukov | Chemistry | Best Researcher Award

Associate Professor at Kazan National Research Technological Universirty, Russia

Dr. Artem N. Bezrukov is a distinguished researcher in microfluidics and lab-on-chip technologies, specializing in the synthesis and modification of smart soft materials. As an Associate Professor at Kazan National Research Technological University (KNRTU), he has made significant contributions to the development of novel materials based on liquid crystals, quantum dots, polymers, and colloids. His expertise spans both fundamental and applied research, focusing on micro-scale material behavior and its applications in advanced technological solutions. With a strong international presence, Dr. Bezrukov has collaborated with global institutions, contributing to academic and industrial advancements in material science. His dedication to education, research, and international cooperation has established him as a key figure in the field, actively shaping the future of smart materials and nanotechnology.

Professional Profile

Education

Dr. Bezrukov holds a Ph.D. in Chemistry from Kazan State Technological University (2010), where he conducted pioneering research in the field of physical and colloid chemistry. His academic journey began with a Specialist degree in Chemical Engineering (2006) from the same institution, equipping him with a solid foundation in materials science and process engineering. In addition to his scientific studies, he earned a qualification as a Translator & Interpreter for Professional Communication (2005), demonstrating his interdisciplinary skill set. His continuous pursuit of knowledge led him to international academic programs, including a Fulbright scholarship and a short-term postdoctoral fellowship in microfluidics at Carnegie Mellon University in 2019. These experiences have contributed to his expertise in interdisciplinary research, enabling him to bridge the gap between chemistry, engineering, and applied nanotechnology.

Professional Experience

Since 2011, Dr. Bezrukov has served as an Associate Professor at the Department of Physical and Colloid Chemistry at KNRTU, where he has played a pivotal role in research and academic development. From 2012 to 2018, he also held the position of Head of the Protocol Office in the International Affairs department, strengthening global academic collaborations for his university. Prior to that, he worked as a Teaching Assistant, gaining experience in mentoring students and advancing research in material sciences. His career has been marked by his ability to integrate research with practical applications, as seen in his contributions to various funded projects, curriculum development, and international research initiatives. His professional trajectory reflects his dedication to both academic excellence and the advancement of innovative scientific research on an international scale.

Research Interests

Dr. Bezrukov’s research is centered on microfluidics and lab-on-chip technologies, with a particular focus on the synthesis and manipulation of smart soft materials. His work explores the unique properties of liquid crystals, quantum dots, polymers, and colloids, seeking to develop advanced materials for use in biomedical, optical, and nanotechnological applications. By integrating microfluidic techniques with material science, he investigates novel approaches to controlling material properties at the microscale. His research is inherently interdisciplinary, combining chemistry, physics, and engineering to create innovative solutions with broad technological applications. Through his work, he aims to bridge the gap between fundamental scientific research and real-world applications, contributing to the development of next-generation functional materials.

Awards and Honors

Dr. Bezrukov has received multiple accolades in recognition of his outstanding contributions to research and education. He was awarded the prestigious Fulbright Scholarship in 2012, which enabled him to engage in international research collaborations. His work has been further recognized through a short-term postdoctoral scholarship at Carnegie Mellon University in 2019, highlighting his expertise in microfluidics. In addition, he has been the recipient of Potanin Foundation grants (2018-2024) for his contributions to developing innovative educational modules. His participation in Erasmus+ Capacity Building and Jean Monnet projects (2019-2022) demonstrates his commitment to international academic cooperation. With over 30 peer-reviewed journal articles and more than 70 total publications, his contributions have earned him recognition as a leading researcher in the field. His accolades reflect his dedication to advancing science and education on a global scale.

Conclusion

Dr. Artem N. Bezrukov is a strong candidate for the Best Researcher Award due to his contributions to microfluidics, international collaborations, and publication record. However, further emphasis on research impact, citations, leadership in major grants, and industry applications could solidify his candidacy. If these aspects are well-documented, he stands as an excellent contender for the award.

Publications Top Noted

Title: Internationalizing engineering education: A language learning approach

Author(s): A. Bezrukov, J. Ziyatdinova

Year : 2014

Citations: 38

Title: Global challenges and problems of Russian engineering education modernization

Author(s) : J.N. Ziyatdinova, P.N. Osipov, A.N. Bezrukov

Year : 2015

Citations: 28

Title: Development of a networking model for internationalization of engineering universities and its implementation for the Russia-Vietnam partnership

Author(s) : J. Ziyatdinova, A. Bezrukov, A. Sukhristina, P.A. Sanger

Year : 2016

Citations: 26

Title: Inbound international faculty mobility programs in Russia: Best practices

Author(s) : A. Bezrukov, J. Ziyatdinova, P. Sanger, V.G. Ivanov, N. Zoltareva

Year : 2018

Citations: 25

Title:

Best practices of engineering education internationalization in a Russian Top-20 university

Author(s) : J. Ziyatdinova, A. Bezrukov, P.A. Sanger, P. Osipov

Year : 2016

Citations: 24

Title: Development of a “smart materials” master’s degree module for chemical engineering students

Author(s) : A. Bezrukov, D. Sultanova

Year : 2020

Citations: 23

Title: Going globally as a Russian engineering university

Author(s) : J. Ziyatdinova, A. Bezrukov, P. Osipov, P.A. Sanger, V.G. Ivanov

Year : 2015

Citations: 22

Title: Flexible learning model for computer-aided technical translation

Author: A. Bezrukov

Year : 2013

Citations: 22

Title: Application of microfluidic tools for training chemical engineers

Author(s) : A. Bezrukov, D. Sultanova

Year : 2020

Citations: 18

Title: International approaches to the development of cross-cultural education at high school

Author(s) : M. Panteleeva, P.A. Sanger, A. Bezrukov

Year : 2016

Citations: 17

Title: Academic writing in the historical and linguistic context: An example of German language

Author(s) : F.F. Nasibullina, A.N. Bezrukov

Year : 2015

Citations: 9

Title:  Effect of the length of surfactant hydrocarbon radicals on the association of cationic polyelectrolytes with alkyl sulfates in water-alcohol solutions

Author(s) : S.V. Shilova, A.N. Bezrukov, A.Y. Tret’yakova, M.A. Voronin, L.Y. Zakharova, …

Year : 2012

Citations: 9

Title:  Effect of molecular weight of poly-N-benzyl-N,N-dimethyl-N-methacryloyloxyethylammonium chloride on its complexation with sodium dodecyl sulfate

Author(s) : S.V. Shilova, A.Y. Tret’yakova, A.N. Bezrukov, V.A. Myagchenkov, …

Year : 2007

Citations: 9

Title:  Orientation behavior of nematic liquid crystals at flow-wall interfaces in microfluidic channels

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2023

Citations: 7

Title: On-chip control over polyelectrolyte–surfactant complexation in nonequilibrium microfluidic confinement

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2022

Citations:  7

Title: Control of the phase formation process in solutions of anionic polyelectrolyte—cationic surfactant complexes in a microfluidic channel

Author(s) : A.N. Bezrukov, Y.G. Galyametdinov

Year : 2020

Citations: 7

Title:  Internationalization of engineering education

Author(s) : J.N. Ziyatdinova, A.N. Bezrukov

Year : 2015

Citations: 7

Title: Association of sodium dodecyl sulfate with a cationic polyelectrolyte in aqueous-ethanol media

Author(s) : S.V. Shilova, A.N. Bezrukov, A.Y. Tret’yakova, V.P. Barabanov

Year : 2014

Citations: 6

Title: Dynamic flow control over optical properties of liquid crystal–quantum dot hybrids in microfluidic devices

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2023

Citations: 5

Title: Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels

Author(s) : A. Bezrukov, Y. Galyametdinov

Year : 2021

Citations: 5

 

Idrees Khan | Applied Chemistry | Best Researcher Award

Dr Idrees Khan | Applied Chemistry | Best Researcher Award

Postdoctoral fellow,School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China

Dr. Idrees Khan is a renowned scientist specializing in Applied Chemistry with expertise in nanomaterials and nanocomposites for environmental applications. With over 60 research publications and more than 8,000 citations, Dr. Khan’s work has garnered international recognition, including his inclusion in the top 2% scientists of 2024. His pioneering research focuses on enhancing the photocatalytic efficiency of metal oxide nanoparticles, contributing significantly to environmental sustainability. Dr. Khan is a Postdoctoral Fellow at Northwestern Polytechnical University, China, and an Honorary Postdoctoral Fellow at INTI International University, Malaysia. His efforts in computational simulations, alongside experimental techniques, position him as a leader in his field. Dr. Khan is dedicated to advancing innovative solutions for environmental pollution using cutting-edge nanotechnology, with his review article on nanoparticles being the most popular on Science Direct.

Profile

Strengths for the Award:

  1. Extensive Research Contributions:
    • Dr. Khan has an impressive track record with over 60 research articles published in reputable journals and more than 8,000 citations, a testament to the impact and quality of his work. His review article on nanoparticles, “Nanoparticles: Properties, applications, and toxicities,” has garnered significant attention, making it one of the most popular articles on ScienceDirect with the highest citations.
  2. High Research Impact:
    • His inclusion in the top 2% of scientists in 2024 highlights his global recognition and the influence of his research in his field. His work has contributed to enhancing the photocatalytic efficiency of metal oxide nanoparticles, which has vital implications for environmental sustainability.
  3. Interdisciplinary Expertise:
    • Dr. Khan’s expertise spans both experimental and computational research, covering the synthesis of advanced nanomaterials, their applications in environmental cleanup, and computational simulations. This broad skill set gives him an edge in tackling multifaceted problems in applied chemistry and materials science.
  4. International Collaboration and Recognition:
    • His experience as a postdoctoral fellow at prestigious institutions like Northwestern Polytechnical University in China and INTI International University in Malaysia underscores his global network and recognition in the scientific community. This international experience enriches his research and outreach efforts.
  5. Diverse Range of Research Topics:
    • His research interests range from photocatalysis, material science, and environmental monitoring to toxicology and nanocomposite development. Such diversity broadens his ability to solve complex environmental problems, contributing significantly to sustainable technologies.
  6. Academic Background and Teaching Experience:
    • Dr. Khan has demonstrated strong teaching capabilities, having worked as a visiting lecturer at the University of Malakand and currently serving as an honorary postdoctoral fellow. His ability to bridge teaching with research adds another layer to his profile as a well-rounded academic.
  7. Leadership in Research Publications:
    • His high citation count, coupled with his leadership in publishing high-impact articles, indicates his strong research direction and ability to lead projects that resonate with the scientific community. His involvement in cutting-edge studies like photocatalytic applications and microwave absorption for environmental remediation demonstrates his leadership in emerging fields.

Areas for Improvement:

  1. Public Outreach and Broader Engagement:
    • While Dr. Khan’s research is impactful, there is potential for expanding his public engagement efforts. He could focus on bridging the gap between scientific research and public awareness by making his findings more accessible to non-experts, particularly in the context of environmental sustainability.
  2. Diversity in Research Funding and Projects:
    • Seeking more diverse funding sources or collaborative projects could enhance his research scope. Additionally, focusing on applications of nanotechnology in renewable energy or climate change mitigation could be an area for further growth.
  3. Collaboration with Industry:
    • Increased collaboration with industry could allow for the practical application of his research, translating his findings from theoretical studies to real-world, commercialized technologies. Partnering with industry experts in nanomaterials development and environmental engineering could lead to impactful innovations.

Education

Dr. Idrees Khan holds a Ph.D. in Applied Chemistry from Bacha Khan University (2020) with a CGPA of 3.5. He completed his M.Phil. in Applied Chemistry from University of Malakand in 2016, achieving a CGPA of 3.44. Prior to his graduate studies, Dr. Khan obtained a BS in Applied Chemistry from the University of Malakand (2013), where he excelled with a CGPA of 3.56. He also earned a Bachelor of Education from Sarhad University (2015). His early education includes S.S.C and F.Sc from the BISE Saidu Sharif Swat. Dr. Khan’s strong academic foundation has empowered him to pursue a career in nanomaterials research, specializing in photocatalysis and nanocomposites. His dedication to learning and research has driven his success in both academia and scientific innovation.

Experience 

Dr. Idrees Khan has significant academic and research experience. He served as a Visiting Lecturer in the Department of Chemistry at the University of Malakand (2015-2018), where he taught undergraduate students and mentored them in various chemistry courses. He is currently a Postdoctoral Fellow at Northwestern Polytechnical University, China, since May 2023, where he focuses on advanced nanomaterials for environmental applications. Additionally, Dr. Khan holds the position of Honorary Postdoctoral Fellow at INTI International University, Malaysia, since June 2023. His role involves contributing to collaborative research efforts and fostering innovation in the field of nanotechnology. His experience spans various research methodologies, including computational simulations, nanomaterials synthesis, and environmental remediation. Dr. Khan has also participated in numerous international conferences and workshops, sharing his expertise and contributing to the global scientific community.

Research Focus 

Dr. Idrees Khan’s research primarily focuses on the development and application of nanomaterials and nanocomposites for environmental sustainability. He works on enhancing the photocatalytic efficiency of metal oxide nanoparticles to address environmental issues, such as pollution control and wastewater treatment. His research delves into the synthesis and characterization of nanostructured materials, particularly supported and unsupported metal oxide nanoparticles, and their photocatalytic applications for degrading organic pollutants. Dr. Khan also specializes in computational simulations, particularly in studying the behavior of nanomaterials in environmental settings. His work extends to exploring the toxicities and applications of nanoparticles in environmental decontamination. His research aims to develop sustainable, efficient solutions for environmental challenges, including water purification and air quality improvement. Dr. Khan is also working on biological applications of nanomaterials and their interactions with pollutants and microorganisms.

Publications

  1. Strategically coupled tungsten oxide-zinc oxide photosystems for solar-driven nerve agent simulant degradation and hydrogen evolution 🌞⚗️
  2. Preparation and performance of porous carbon microwave absorber with high porosity from carbonized natural plant fibers 🌱🧯
  3. Fabrication of polydopamine doped helical/chiral porous carbon fiber (HPCFs@PDA) and N-doped carbon layers (HPCFs@NCLs) for their application as wave absorber with ultrawide EAB 📡🔬
  4. Controllable and lightweight ZIF-67@PAN derived Co@C nanocomposites with tunable and broadband microwave absorption 🧲🌐
  5. Gold recovery through synergetic adsorption and reduction using acid–base additive-reinforced tubular carbon nanofibers 💰🧪
  6. Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: fundamentals, applications, and future directions 💧💡
  7. Highly selective sensing of toxic NOx gases for environmental monitoring using Ru-doped single-walled TiO2 nanotube: A density functional theory study 🏭⚙️
  8. Adsorption of thiophene over the transition metal-decorated C2N monolayer: A DFT approach 🌫️🧑‍🔬
  9. Improvement of the Photocatalytic and Biological Activities of Copper Oxide Nanoparticles by Coupling with Barium Oxide Nanoparticles 🧪🌿
  10. Understanding the toxicity of trinitrophenol and promising decontamination strategies for its neutralization: Challenges and future perspectives ☠️🌍

Conclusion

Dr. Idrees Khan is highly deserving of the Best Researcher Award due to his outstanding contributions to appliedchemistry and nanomaterials science, his interdisciplinary expertise, and his significant impact on environmental sustainability. His prolific research output, leadership in groundbreaking studies, and international collaborations solidify his reputation as a leader in his field. Despite some opportunities for broader outreach and industry collaboration, his overall profile is incredibly strong, making him a top contender for such an award.Dr. Khan’s extensive body of work, particularly in photocatalysis and nanocomposites, as well as his growing international recognition, aligns perfectly with the criteria typically sought in award recipients.

MUHAMMAD USMAN | Chemistry | Best Researcher Award

Dr. MUHAMMAD USMAN | Chemistry | Best Researcher Award

ASSOCIATE PROFESSOR, Government College University Faisalabad, Pakistan

Muhammad Usman is a distinguished researcher affiliated with the School of Economics and Management and the Center for Industrial Economics at Wuhan University, China. 🌍 With expertise spanning Panel Data Econometrics, Financial Economics, Resource Economics, Agricultural Economics, Energy Economics, and Environmental Economics, he has garnered over 6,000 citations, achieving an h-index of 45 and an i10-index of 67 in a relatively short span. 📈 His extensive publication record includes numerous papers in renowned international journals, reflecting his significant contributions to the fields of renewable energy, environmental management, and sustainable development. 📝

Publication Profile

Scopus

Education

Muhammad Usman is currently pursuing his advanced studies at Wuhan University, specializing in Economics since September 2021. 🎓 His academic journey has equipped him with a robust foundation in economic theories and practical applications, enhancing his research capabilities in various economics domains.

Experience

Muhammad Usman has been a vital part of the China Institute of Development Strategy and Planning and the Center for Industrial Economics at Wuhan University since September 2021. 🏫 His role involves engaging in cutting-edge research and contributing to various projects focused on economic development and sustainability. His vast experience includes reviewing for top publishers like Elsevier, Taylor & Francis, and Springer. 🌟

Research Interests

His research interests encompass a wide range of topics, including renewable energy, energy policy, environmental economics, technological innovations, and sustainable development. 🌱 Usman is particularly focused on how financial development and green growth can influence energy security and tackle energy poverty. His work aims to bridge the gap between economic theories and real-world applications to foster sustainable practices. 🔍

Awards

Muhammad Usman has been recognized among the World’s Top 2% Scientists List published by Elsevier and Stanford University in 2023, highlighting his exceptional contributions to science and research. 🏆 His commitment to advancing knowledge in economics and sustainability has established him as a leading figure in his field.

Publications

Does fiscal expenditure matter for agricultural development? Examining the impact of technological progress on food production
Review of Development Economics (2024)
DOI: 10.1111/rode.13118
Cited by: Not provided

Environmental apprehension under COP26 agreement: Examining the influence of environmental-related technologies and energy consumption on ecological footprint
International Journal of Environmental Science and Technology (2024)
DOI: 10.1007/s13762-024-05526-7
Cited by: Not provided

Modelling the contribution of green technologies, renewable energy, economic complexity, and human capital in environmental sustainability: Evidence from BRICS countries
Gondwana Research (2024)
DOI: 10.1016/j.gr.2024.04.010
Cited by: Not provided

Breaking barriers, cultivating sustainability: Discovering the trifecta influence of digitalization, natural resources, and globalization on eco-innovations across 27 European nations
Journal of Cleaner Production (Year not specified)
[Link not provided]