Khaja Hussain Shaik | Materials Science | Research Excellence Award

Dr. Khaja Hussain Shaik | Materials Science | Research Excellence Award

Gyeongsang National University | South Korea

Dr. Khaja Hussain Shaik is a postdoctoral researcher in materials science and engineering with recognized expertise in nanomaterials, electrochemical energy storage, and optoelectronic materials. He holds doctoral training in electronic engineering with specialization in materials science, complemented by advanced education in chemistry, providing a strong interdisciplinary foundation. His professional experience spans postdoctoral and research scholar roles, contributing to high-impact projects in energy storage materials, nanosensors, and advanced functional materials, along with mentoring and laboratory leadership in academic environments. His research focuses on the design and synthesis of nanostructured oxides, carbon-based composites, and rare-earth-doped materials for supercapacitors, batteries, and photonic devices, resulting in a substantial portfolio of peer-reviewed publications with significant global citation impact. His contributions have advanced charge storage performance, device stability, and functional material design. He has received multiple prestigious research fellowships, dissertation and scholarship honors, and institutional recognitions for research excellence, reflecting sustained academic leadership, innovation, and strong potential for continued high-impact contributions to materials research.

Citation Metrics (Google Scholar)

2400
1800
1200
600
0

2402

64

32

Citations

Documents

h-index


Featured Publications

 

Samiha Chaguetmi | Materials Science | Research Excellence Award

Prof. Samiha Chaguetmi | Materials Science | Research Excellence Award

Professor | University of Skikda | Algeria

Prof. Samiha Chaguetmi, a Professor in the Physics Department at Skikda University in Algeria, is an expert in materials science with a specialization in semiconductor and metallic materials, thin films, and photoactive nanostructures. She holds advanced degrees in materials sciences and semiconductor physics, culminating in a doctoral qualification and subsequent habilitation focused on innovative material systems. Throughout her academic career, she has served as an assistant, lecturer, and senior academic, contributing extensively to teaching in areas such as structural analysis of materials, atomic physics, photovoltaic systems, and characterization methods. Her professional experience spans leadership in laboratory training programs, participation in international research collaborations, and active engagement in multidisciplinary projects involving hydrothermal synthesis, sol-gel processes, chemical bath deposition, magnetron sputtering, electrochemical methods, and advanced thin-film technologies. Prof. Chaguetmi’s research centers on photocatalysis, photo-electrochemical water splitting, and the development of nanostructured materials for energy and environmental applications, supported by expertise in SEM, TEM, XRD, FTIR, Raman spectroscopy, XPS, UV-VIS-DR spectrophotometry, and electrochemical impedance spectroscopy. She has contributed numerous publications to peer-reviewed journals and participated in scientific dissemination through conferences and collaborative programs across prominent international laboratories. Her achievements include recognition through a Research Excellence Award, alongside roles in academic service, mentoring, and scientific review activities. Prof. Chaguetmi is also engaged in professional development through repeated training missions in leading global research institutions, reinforcing her standing as a committed scholar whose work advances the understanding and application of functional materials for sustainable technologies.

Profiles: Scopus | ORCID

Featured Publications

1. Chaperman, L., Chaguetmi, S., Deng, B., Gam-Derrouich, S., Nowak, S., Mammeri, F., & Ammar, S. (2024). Novel synthesis route of plasmonic CuS quantum dots as efficient co-catalysts to TiO₂/Ti for light-assisted water splitting. Nanomaterials, 14(19), 1581.

2. Sobti, N., Chaguetmi, S., Amiour, L., Aouabdia, Y., & Saci, L. (2024). Photocatalytic properties of Mn₂O₃ nanoparticles synthesized via green chemistry method. Journal of Renewable Energies, 28(1).

3. Sobti, N., Chaguetmi, S., Achour, S., Gam-Derouich, S., Decorse, P., Nowak, S., & Ammar, S. (2024). Photoelectrochemical properties of TiO₂ nanofibers coated by copper oxide nanoparticles using sputtering and chemical bath deposition. Journal of Materials Science.

4. Momoli, R., Gandin, A., Ruffo, R., Chaguetmi, S., Mammeri, F., Abbotto, A., Manfredi, N., & Brusatin, G. (2021). Low dye content efficient dye-sensitized solar cells using carbon doped-titania paste from convenient green synthetic process. Inorganica Chimica Acta.

5. Sobti, N., Chaguetmi, S., Achour, S., Chaperman, L., Mammeri, F., & Ammar-Merah, S. (2021). Manganese oxide nanoparticles prepared by olive leaf extract-mediated wet chemistry and their supercapacitor properties. Solid State Sciences.

Prof. Samiha Chaguetmi envisions advancing the field of materials science through innovative research that drives sustainable energy solutions and strengthens the scientific understanding of functional nanomaterials. Her vision focuses on developing high-performance photocatalytic and photoelectrochemical systems, promoting environmentally responsible synthesis routes, and expanding collaborative research networks that bridge local and international scientific communities. She aims to contribute impactful knowledge, mentor future scientists, and support the development of advanced technologies that address global energy and environmental challenges.

Qian Qiao | Materials Science | Best Researcher Award 

Dr. Qian Qiao | Materials Science | Best Researcher Award 

R&D Manager | IDQ Science and Technology (Hengqin Guangdong) Co | China

Dr. Qian Qiao is a dedicated researcher specializing in electromechanical and mechanical engineering, with extensive experience in materials science, surface technology, and smart manufacturing. She has authored numerous papers in reputable international journals and holds multiple patents that highlight her innovative approach to engineering challenges. Her academic achievements, including several prestigious scholarships and awards, reflect consistent excellence and commitment to research advancement. Dr. Qian has actively participated in global academic conferences, contributing to the dissemination and exchange of cutting-edge knowledge. Her current research focuses on the structural and performance analysis of advanced manufacturing components, integrating intelligent systems and automation to enhance efficiency and reliability. With a strong foundation in both theoretical and applied research, she demonstrates outstanding potential for leading future developments in material innovation, corrosion science, and intelligent engineering solutions, contributing meaningfully to technological progress and industrial transformation.

Profiles: Google Scholar | ScopusORCID 

Featured Publications

1. Qiao, Q., Qian, H., Li, Z., Guo, D., Kwok, C. T., Jiang, S., Zhang, D., & Tam, L. M. (2025). Microstructure evolution and mechanical performance of AA6061-7075 heterogeneous composite fabricated via additive friction stir deposition. Alloys, 4(4), 21.

2. Lam, W. I., Leong, K. K., Tam, C. W., Qiao, Q., Lin, Y., Yang, G., Guo, D., & Kwok, C. T. (2025). A high performance mechanically alloyed stainless steel composite coating via friction surfacing. Surface and Coatings Technology, 132685.

3. Qiao, Q., Gong, X., Guo, D., Qian, H., Li, Z., Zhang, D., Kwok, C., & Tam, L. M. (2025). Influence of tool head geometry on in situ monitoring of temperature, force, and torque during additive friction deposition of aluminum alloy 2219. Materials Science in Additive Manufacturing, 4(4), 025280060.

4. Qiao, Q., Tam, C. W., Lam, W. I., Wang, K., Guo, D., Kwok, C. T., Lin, Y., Yang, G., & Zhang, D. (2025). Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition. Journal of Materials Science & Technology, 228, 107–124.

5. Wu, Z., Qian, H., Chang, W., Zhu, Z., Lin, Y., Qiao, Q., Guo, D., Zhang, D., & Kwok, C. T. (2025). Enhanced corrosion resistance by Pseudomonas aeruginosa on 2219 aluminum alloy manufactured through additive friction stir deposition. Acta Metallurgica Sinica (English Letters), 1–18.

Nazim Guseinov | Materials Science | Research and Development Achievement Award

Mr. Nazim Guseinov | Materials Science | Research and Development Achievement Award

Researcher at Al-Farabi Kazakh National university, Kazakhstan

Mr. Nazim Guseinov is a dedicated researcher in nanotechnology with a strong academic background in solid-state physics and extensive professional experience at the National Nanotechnological Laboratory. His expertise lies in electron microscopy, electron spectroscopy, and electron/ion-beam lithography, which he applies to advanced material characterization and nanostructure fabrication. He has made significant contributions to research on carbon nanostructures, thin films, plasmonic nanocomposites, and graphene-based materials, combining both experimental and computational approaches. His work has been widely published in reputable international journals, reflecting consistent productivity and relevance to global scientific progress. Many of his studies address challenges in electronics, renewable energy, and advanced materials, showcasing the practical potential of his research. While his profile could be further strengthened by highlighting patents, leadership roles, and broader international collaborations, his achievements demonstrate a strong record of scientific excellence. Overall, Mr. Guseinov is a valuable contributor to nanoscience and a deserving candidate for recognition.

Professional Profile 

Scopus Profile | ORCID Profile 

Education

Mr. Nazim Guseinov has a strong educational foundation in physics, having completed both his bachelor’s and master’s degrees in solid-state physics at al-Farabi Kazakh National University. His studies provided him with a deep understanding of material properties, electronic structures, and physical phenomena at the atomic and nanoscale levels. This academic background laid the groundwork for his later specialization in nanotechnology, enabling him to combine theoretical knowledge with practical applications. His training emphasized advanced physics concepts, laboratory research, and modern characterization techniques, equipping him with the skills required to explore the behavior of materials at the nanoscale. The progression from undergraduate to postgraduate studies in the same field reflects a consistent dedication to mastering physics as a discipline. His educational journey has directly influenced his research focus, allowing him to bridge fundamental physics with applied nanoscience, and has positioned him well for a long-term career in advanced materials research.

Experience

Mr. Nazim Guseinov has extensive professional experience as a researcher at the National Nanotechnological Laboratory of Open Type in Kazakhstan, where he has been actively engaged since the beginning of his career. His primary responsibilities involve advanced experimental techniques such as electron microscopy and electron spectroscopy for material characterization, as well as electron-beam and ion-beam lithography for fabricating nanostructures. Over the years, he has contributed to the development and study of diverse nanomaterials, including carbon-based structures, thin films, and nanocomposites with potential applications in electronics and energy technologies. His professional role combines fundamental investigations with practical advancements, bridging academic research and applied innovation. By consistently engaging in multidisciplinary projects and co-authoring numerous scientific publications, he has established himself as a reliable and productive member of the scientific community. His long-term commitment to nanotechnology research demonstrates not only expertise in technical skills but also perseverance and dedication to advancing this field.

Research Focus

The core of Mr. Nazim Guseinov’s research lies in nanotechnology, with a particular emphasis on the study and fabrication of carbon nanostructures, thin films, and advanced nanocomposites. He specializes in applying high-resolution techniques such as electron microscopy and electron spectroscopy to investigate structural, electronic, and optical properties of materials at the nanoscale. His work extends to electron-beam and ion-beam lithography, enabling the creation of nanostructures with precision for scientific and industrial applications. He has also contributed to studies on plasmonic nanocomposites, graphene-based systems, and semiconductor materials, showcasing his versatility across multiple branches of nanoscience. His research outputs cover both experimental exploration and computational modeling, reflecting a comprehensive approach to material science. Many of his studies have potential applications in renewable energy, electronics, sensors, and data storage, demonstrating his focus on socially and technologically relevant areas. Overall, his research reflects a balance between advancing fundamental knowledge and exploring innovative practical solutions.

Award and Honor

While specific awards and honors are not listed in detail, Mr. Nazim Guseinov’s academic and research contributions are reflected through his extensive publication record in respected international journals. His involvement in collaborative projects with fellow scientists and contributions to multidisciplinary studies highlight his recognition within the scientific community. The consistent appearance of his work in high-impact publications such as Micromachines, Nanomaterials, and the Journal of Non-Crystalline Solids serves as an acknowledgment of the quality and significance of his research. Furthermore, his long-term role at a national nanotechnology research laboratory indicates institutional trust and recognition of his expertise in advanced materials research. Although additional details on individual awards, conference honors, or patents could further strengthen this section, his sustained academic productivity and contributions already reflect a form of professional distinction. Collectively, his achievements position him as a promising and deserving candidate for research recognition and professional honors.

Publication Top Notes

  • Electrostatic energy analyzer for nanotechnology applications
    Authors: Guseinov, N.R.; Ilyin, A.M.
    Year: 2021
    Citations: 10

  • Experimental investigation of the distribution of energy deposited by FIB in ion-beam lithography
    Authors: Muratov, M.; Myrzabekova, M.; Guseinov, N.; Nemkayeva, R.; Ismailov, D.; Shabelnikova, Y.; Zaitsev, S.
    Year: 2020

  • Organic Resist Contrast Determination in Ion Beam Lithography
    Authors: Shabelnikova, Y.L.; Zaitsev, S.I.; Guseinov, N.; Gabdullin, M.; Muratov, M.M.
    Year: 2020

  • Percolation conductivity in amorphous carbon films modified with palladium nanoparticles
    Authors: Ryaguzov, A.P.; Nemkayeva, R.R.; Guseinov, N.R.; Assembayeva, A.R.; Zaitsev, S.I.
    Year: 2020

  • Photoluminescence quenching of WS₂ nanoflakes upon Ga ion irradiation
    Authors: Bozheyev, F.; Nemkayeva, R.; Guseinov, N.; Kaikanov, M.; Tikhonov, A.
    Year: 2020

  • Computer simulation and first principles study of Ga-doped graphene nanostructures
    Authors: Ilyin, A.M.; Guseinov, N.R.; Kuanyshbekov, T.K.; Beall, G.W.; Tulegenova, M.A.
    Year: 2019

  • Computer simulation of the effect of structural defects on the effectiveness of graphene’s protective properties
    Authors: Tulegenova, M.; Ilyin, A.; Guseinov, N.; Beall, G.; Kuanyshbekov, T.
    Year: 2019

  • Influence of substrate temperature on the formation of titanium carbide film
    Authors: Kaipoldayev, O.E.; Baigarinova, G.A.; Nemkayeva, R.R.; Guseinov, N.R.; Mukhametkarimov, Y.S.; Tauasarov, K.; Prikhodko, O.Y.
    Year: 2019

  • Nanodefects on microcrystals of YAG-based phosphors
    Authors: Tulegenova, A.T.; Lisitsyn, V.M.; Abdullin, K.A.; Guseinov, N.R.
    Year: 2019

  • Study of the structure of amorphous carbon films modified with silicon oxide
    Authors: Ryaguzov, A.P.; Kudabayeva, M.A.; Nemkayeva, R.R.; Guseinov, N.R.; Myrzabekova, M.M.
    Year: 2019

Conclusion

Mr. Nazim Guseinov has built a strong research portfolio focused on nanotechnology, material science, and advanced electronic applications. His publications span high-impact areas such as electron-beam lithography, graphene-based nanostructures, amorphous carbon films, and photonic/electronic material properties. Collaborating with international teams, he has contributed to both experimental and computational studies that advance the understanding of nanostructured materials and their applications in electronics, sensing, and energy. While many of his works are relatively recent and still accumulating citations, the breadth of topics and consistent productivity highlight his role as an active and promising scientist. His research impact is evident through innovative approaches, interdisciplinary collaborations, and practical applications in nanotechnology, positioning him as a valuable contributor to modern materials science.