Yuliang Yuan | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yuliang Yuan | Chemistry | Best Researcher Award

Assoc. Prof. at Hainan University, China

Dr. Yuliang Yuan is an Associate Professor at the School of Marine Science and Engineering at Hainan University in Haikou, China. He holds a Ph.D. in Materials Science and Engineering from Zhejiang University, where he specialized in materials chemistry and nanomaterials. His research career spans several high-impact institutions, having conducted postdoctoral research at Hunan University and been a visiting scholar at the University of Wisconsin-Madison. Dr. Yuan’s work is centered on the development of novel materials for energy applications, including electrocatalysts and nanomaterials. His research contributes significantly to fields such as water electrolysis, hydrogen production, and CO2 reduction. He has published extensively in renowned journals and collaborated with prominent researchers globally, making him a leading figure in the scientific community, especially in sustainable energy and materials chemistry.

Professional Profile

Education:

Dr. Yuliang Yuan earned his Ph.D. from the prestigious Zhejiang University, China, from 2012 to 2018, specializing in materials chemistry and nanomaterials. Under the guidance of Professor Jianguo Lu, his doctoral research focused on the synthesis and applications of advanced nanomaterials for energy-related processes. Prior to his Ph.D., he completed his Bachelor of Engineering in Materials Science and Chemistry at the China University of Geosciences, Wuhan, China, from 2008 to 2012. This strong educational foundation in materials science and engineering laid the groundwork for his extensive research into nanomaterials, catalysis, and electrochemical energy conversion technologies. His academic training equipped him with a deep understanding of both fundamental and applied research, positioning him as a leader in the field of materials chemistry and energy research.

Professional Experience:

Dr. Yuan’s professional journey began as a postdoctoral researcher at the College of Materials Science and Engineering, Hunan University, where he worked from 2019 to 2022. During this period, he focused on developing advanced materials for electrocatalytic applications in energy conversion, particularly for hydrogen production and CO2 reduction. His work on developing new electrocatalysts earned him recognition in the field of energy research. In addition to his postdoctoral work, Dr. Yuan served as a visiting scholar at the University of Wisconsin-Madison, collaborating with leading chemists on state-of-the-art nanomaterial synthesis and electrocatalysis research. Since 2022, he has held the position of Associate Professor at Hainan University’s School of Marine Science and Engineering, where he continues his research into nanomaterials, water electrolysis, and sustainable energy systems. His diverse professional experiences reflect his commitment to advancing the fields of materials science and energy.

Research Interests:

Dr. Yuan’s primary research interests lie in the controlled synthesis of nanocrystals and the development of advanced materials for energy conversion technologies. His work on electrocatalysis, particularly in the context of water electrolysis for hydrogen production, positions him at the forefront of renewable energy research. He is also dedicated to advancing the understanding of CO2 electroreduction and the design of efficient nanomaterial-based electrocatalysts. His work explores the rational design and synthesis of nanomaterials with tailored properties to improve the performance of electrocatalysts for energy storage and conversion applications. Dr. Yuan’s innovative approach aims to bridge the gap between fundamental materials research and practical energy solutions, contributing to the global transition toward clean energy. His research also extends to nanomaterial design for sustainable environmental applications, making a significant impact on green technologies and energy efficiency.

Awards and Honors:

Dr. Yuan has received several notable awards and honors for his research contributions. His work on nanomaterials and energy applications has earned him recognition from leading scientific communities, and his publications have garnered significant attention in high-impact journals. Although specific awards are not detailed, his academic excellence is reflected in his rapid academic progression from postdoctoral researcher to Associate Professor. He has been invited to collaborate with top researchers worldwide, further cementing his reputation as a leader in his field. His success in publishing groundbreaking research on electrocatalysis and nanomaterials has also led to his recognition in both academic and industrial circles. Dr. Yuan continues to build on this momentum, and his future contributions are expected to lead to even greater recognition in the scientific and academic communities.

Conclusion

Dr. Yuliang Yuan’s impressive body of work, with a focus on sustainable energy solutions, his continuous academic growth, and his ability to publish in high-impact journals, makes him a strong candidate for the Best Researcher Award. However, to further solidify his standing, expanding the broader application of his research and increasing his engagement with teaching and mentoring could help elevate his contributions to both the academic and practical domains of science.

Publications Top Noted

  • Title: “Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis”
    Authors: S. Feng, G. Li, Q. Wei, X. Tian, Z. Kang
    Journal: Nano Energy, 2025
    Citations: 0

  • Title: “Iridium-based electrocatalysts for acidic oxygen evolution reaction”
    Authors: Y. Yu, G. Li, Y. Xiao, X. Tian, Y. Yuan
    Journal: Journal of Energy Chemistry, 2025
    Citations: 1

 

Jeremie Zaffran | Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Chemistry | Best Researcher Award

Researcher at CNRS, France

Dr. Jeremie Zaffran is a distinguished computational chemist specializing in heterogeneous catalysis and machine learning. He is a Tenured Research Fellow at the French National Center for Scientific Research (CNRS), based at the E2P2L (Eco Efficient Products and Processes Lab) in Shanghai, China. With a strong background in computational techniques, Zaffran’s work focuses on using ab initio calculations and microkinetics simulations to address challenges in renewable energy, including CO2 storage, biomass transformation, and solar water splitting. His interdisciplinary approach combines advanced computational methods with close collaboration with experimentalists. Zaffran’s career includes high-profile roles at institutions like ShanghaiTech University, the Technion–Israel Institute of Technology, and Ecole Normale Superieure de Lyon. Known for his leadership and project management skills, he has supervised multiple PhD students and worked on several large-scale research projects. He is also deeply involved in mentoring, contributing to the development of future scientific leaders.

Professional Profile

Education

Dr. Jeremie Zaffran completed his PhD in Chemistry at Ecole Normale Superieure de Lyon, France, in 2014, where he graduated with the highest distinction. His dissertation focused on computational methods for biomass transformation, specifically in designing solid catalysts using Density Functional Theory (DFT). He also holds a Master’s degree in Materials Science from Université Paris Diderot-Paris 7, where he graduated summa cum laude in 2010, ranking first in his class. Zaffran’s academic foundation was further enriched with a Bachelor’s degree in Chemistry from the same institution, where he was ranked fifth in his cohort. During his doctoral research, he worked under the guidance of Prof. Philippe Sautet and collaborated with experimental teams from IRCELYON and NOVANCE, bridging theory and application in catalysis. His academic journey laid the groundwork for his successful career in computational chemistry and materials science, with a focus on catalysis and energy-related research.

Professional Experience

Dr. Zaffran’s professional experience spans over a decade of groundbreaking work in computational catalysis. From 2011 to 2017, he worked at leading institutions such as the Technion-Israel Institute of Technology and ShanghaiTech University, where he held roles as a Postdoctoral Fellow and Research Assistant Professor. At ShanghaiTech, Zaffran led efforts to design efficient electrocatalysts using DFT and machine learning. Since 2020, he has served as a Research Fellow at CNRS, where he leads research in the E2P2L lab in Shanghai, China. His work focuses on developing sustainable technologies in catalysis for renewable energy applications, including CO2 valorization and biomass conversion. He has also contributed significantly to large interdisciplinary projects, leading computational teams for projects like “Smart Digital Catalysis.” Throughout his career, Zaffran has demonstrated expertise in collaborating across disciplines and industries, coordinating research efforts that bridge computational chemistry and experimental science.

Research Interests

Dr. Zaffran’s primary research interests lie in computational heterogeneous catalysis, with a particular focus on applying machine learning and advanced computational techniques such as ab initio calculations, microkinetics simulations, and Density Functional Theory (DFT) to solve real-world problems. His research aims to design and optimize catalysts for renewable energy applications, including biomass transformation, CO2 storage and valorization, and solar water splitting. Zaffran is also actively involved in integrating machine learning models into catalysis design, enhancing the efficiency and speed of identifying viable catalysts. His work on microkinetic simulations, especially using tools like CatMAP, has provided valuable insights into catalytic reaction mechanisms. Zaffran’s interdisciplinary approach combines computational chemistry with experimental collaborations, making his research highly relevant to sustainable energy and environmental challenges. He is particularly interested in advancing green chemistry solutions by developing catalysts that can facilitate cleaner industrial processes and renewable energy production.

Awards and Honors

Dr. Zaffran has received numerous prestigious awards and honors throughout his career. He was awarded the Lady Davis Fellowship from the Technion–Israel Institute of Technology in 2016 and the Grand Technion Energy Program (GTEP) Fellowship for Outstanding Post-Doctoral Fellows the same year. His research excellence was also recognized by the Israel Ministry of Aliyah and Immigrant Absorption Fellowship in 2015. During his academic journey, Zaffran earned the highest distinction for his PhD, summa cum laude for his Master’s degree, and cum laude for his Bachelor’s degree. His research contributions have been supported by significant grants, including those from CNRS and the National Natural Science Foundation of China (NSFC), allowing him to lead high-impact projects in the field of computational catalysis. Zaffran’s continued success in securing funding for innovative research reflects his standing as a leader in his field and his ability to attract international recognition.

Conclusion

Jeremie Zaffran is highly qualified for the Best Researcher Award. His technical expertise in computational chemistry, successful collaborations in sustainable energy research, and strong track record in leadership and mentorship make him a deserving candidate. While there are areas like expanding research diversity and increasing visibility through publications, his accomplishments to date place him among the leaders in his field.

Publications Top Noted

  • Stoichiometric Selective Carbonylation of Methane to Acetic Acid by Chemical Looping
    Authors: Y. Wang, C. Dong, M.V. Shamzhy, A.Y. Khodakov, V.V. Ordomsky
    Journal: ACS Catalysis
    Year: 2025
    Citations: 0

  • Unveiling the Phenol Direct Carboxylation Reaction Mechanism at ZrO2 Surface
    Authors: K. Zhang, C. Ma, S. Paul, J. Zaffran
    Journal: Molecular Catalysis
    Year: 2024
    Citations: 2

 

Fuzhou Wang | Chemistry | Best Researcher

Prof. Dr. Fuzhou Wang | Chemistry | Best Researcher Award

Professor at Anhui University, China

Professor Fuzhou Wang is a distinguished researcher and professor at Anhui University, specializing in organometallic and polymer chemistry, with a focus on olefin polymerization and water treatment. He earned his Doctor of Engineering from Hiroshima University and has held key leadership roles, including deputy director of the Chuzhou Research Institute and head of the Polyolefin Industry R&D Team. His groundbreaking work has led to numerous prestigious awards, such as the silver award in the 6th Anhui Province “Internet+” Innovation Competition and recognition as one of the “Most Beautiful Science and Technology Workers” in Hefei. With over 40 high-impact publications and active collaborations with industry leaders like ExxonMobil, he has significantly advanced polymer research. As the founder of Boqiang New Materials, he bridges academia and industry, fostering innovation. His contributions to catalysis, polymerization mechanisms, and sustainable material development position him as a strong candidate for the Best Researcher Award.

Professional Profile 

ORCID Profile

Education

Professor Fuzhou Wang earned his Doctor of Engineering degree from Hiroshima University, Japan, where he specialized in organometallic and polymer chemistry. His academic journey was marked by excellence in catalysis and polymerization research, laying a strong foundation for his future work. During his doctoral studies, he focused on developing advanced catalysts for olefin polymerization, a crucial area in polymer science. His interdisciplinary training in inorganic chemistry, material science, and polymer engineering has allowed him to bridge the gap between fundamental chemistry and industrial applications. His education also involved extensive international collaboration, equipping him with a global perspective on polymer research. With a solid background in theoretical and applied chemistry, Professor Wang has built an outstanding academic profile that continues to impact the field. His expertise in catalyst design and polymer synthesis has propelled him to the forefront of research, fostering innovative advancements in polymeric materials.

Professional Experience

Professor Fuzhou Wang has had a distinguished professional career, contributing extensively to both academia and industry. He currently serves as a professor at Anhui University and holds leadership roles as the deputy director of the Chuzhou Research Institute and the head of the Polyolefin Industry R&D Team. His work focuses on bridging academic research with industrial applications, particularly in polymer chemistry. He has actively collaborated with major industry players such as ExxonMobil, enhancing the commercial viability of his research. In addition to his university roles, he founded Boqiang New Materials, a company dedicated to the development of sustainable polymer technologies. His career has been defined by a commitment to innovation, leading multiple national and provincial research projects. Through his extensive professional engagements, he has significantly contributed to the advancement of polymer science, catalysis, and material engineering, making him a recognized leader in both research and industrial innovation.

Research Interest

Professor Fuzhou Wang’s research interests span organometallic chemistry, catalysis, and polymer engineering, with a particular focus on olefin polymerization and water treatment technologies. His work revolves around the design and synthesis of novel catalysts for efficient and sustainable polymer production. He has made significant contributions to understanding polymerization mechanisms, particularly in the development of metallocene and post-metallocene catalysts for polyolefins. His research also explores functionalized polymer materials for environmental applications, such as advanced water purification systems. By integrating fundamental chemistry with applied engineering, he aims to develop eco-friendly and high-performance materials. His collaborations with industrial partners ensure that his research has real-world applications, impacting sectors such as packaging, automotive, and environmental sustainability. With a strong emphasis on green chemistry and polymer innovation, Professor Wang’s work continues to push the boundaries of material science and catalysis, positioning him as a leading figure in polymer research.

Award and Honor

Professor Fuzhou Wang has received numerous prestigious awards in recognition of his contributions to polymer chemistry and material science. He won the silver award in the 6th Anhui Province “Internet+” Innovation and Entrepreneurship Competition, highlighting his ability to translate research into practical applications. He was also named one of the “Most Beautiful Science and Technology Workers” in Hefei, reflecting his dedication to scientific progress. His achievements have been acknowledged through multiple provincial and national research grants, further solidifying his reputation as a leading researcher. Additionally, his contributions to the field of catalysis and polymerization have been recognized by various academic and industry organizations. His leadership in polymer research has also earned him invitations to speak at international conferences and contribute to high-impact scientific journals. Through his groundbreaking work, Professor Wang has established himself as a highly respected scientist, continuously driving advancements in polymer materials and sustainable chemistry.

Conclusion

Professor Fuzhou Wang is a highly accomplished researcher and professor whose work in polymer chemistry and catalysis has made a significant impact in both academia and industry. His extensive education, professional experience, and research contributions have positioned him as a leader in the field. Through his pioneering studies in olefin polymerization and sustainable materials, he has driven innovation that benefits both scientific communities and industrial applications. His leadership roles and entrepreneurial ventures further showcase his commitment to advancing polymer science and environmental sustainability. Recognized with numerous awards and honors, his influence continues to grow, making him a strong contender for prestigious research accolades. His ability to integrate theoretical research with practical solutions underscores his dedication to scientific excellence. As he continues his work in polymer innovation, Professor Wang remains a key figure in advancing material science, catalysis, and sustainable polymer technology for future generations.

Publications Top Noted

  • Nickel Catalyst With Excellent Thermal Stability for Ethylene Polymerization and Copolymerization
    Authors: Wanlu Tian, Hengchao Guan, Wenbing Wang, Xin Kong, Wenmin Pang, Quan Wang, Fuzhou Wang, Chen Zou
    Year: 2025
    Source: Applied Organometallic Chemistry

  • Preparation of polyethylene elastomers via controlled chain-walking ethylene polymerization for enhanced impact modification of polypropylene
    Authors: Yu Chen, Ning Wang, Di Zhang, Zhiyang Tian, Xin Lu, Pei Li, Muhammad Qasim, Fuzhou Wang
    Year: 2025
    Source: Polymer

  • Steric and temperature effects in unsymmetrical α‐diimine nickel‐catalyzed ethylene and 1‐octene polymerization
    Authors: Jinke Shou, Pei Li, Wanlu Tian, Yue Liu, Shaojie Zhang, Fuzhou Wang, Chen Tan
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Positional heterogenization effect in salicylaldimine nickel catalyzed ethylene polymerization
    Authors: Fan Yu, Yanfeng Gong, Ning Liu, Guoyong Xu, Pei Li, Binyuan Liu, Chao Li, Fuzhou Wang
    Year: 2024
    Source: Journal of Applied Polymer Science

  • Electronic effect regulated ethylene polymerization and copolymerization of phosphorus phenol nickel catalysts
    Authors: Yaping Xie, Feiran Yang, Qing Miao, Ziqiang Zhang, Wenbing Wang, Fuzhou Wang, Chen Zou
    Year: 2024
    Source: Applied Organometallic Chemistry

  • Regulation of α-diimine nickel catalyzed olefin polymerization by remote site modifications
    Authors: Yufei Li, Yu Chen, Pei Li, Pingping Hu, Guoyong Xu, Chao Li, Shaojie Zhang, Fuzhou Wang
    Year: 2024
    Source: Polymer

  • Chain‐walking polymerization of ethylene and 1‐octene with ortho‐phenyl‐based α‐diimine Ni (II) catalysts
    Authors: Jie Wu, Pei Li, Juan Zhang, Zhengquan Dong, Wu Li, Muhammad Sohail Bashir, Yougui Li, Fuzhou Wang
    Year: 2023
    Source: Applied Organometallic Chemistry

  • Facile one-pot strategy to fabricate polyurea-based palladium for flow-through catalytic reduction of harmful hexavalent chromium from water
    Authors: Muhammad Sohail Bashir, Aqsa Safdar, Adnan Ibrahim, Inas A. Ahmed, Syed Shoaib Ahmad Shah, Ahsanullah Unar, Hanadi A. Almukhlifi, Ahmad M. Saeedi, Wang Fuzhou
    Year: 2023
    Source: Inorganic Chemistry Communications

  • Steric and electronic effects in cationic pyridine carboxamidate nickel mediated ethylene polymerization and copolymerization with methyl 10-undecenoate
    Authors: Pei Li, Hongju Liu, Wanlu Tian, Zhanshan Ma, Xiaoyue Wang, Guoyong Xu, Chao Li, Muhammad Qasim, Fuzhou Wang
    Year: 2023
    Source: Polymer

  • Polyethylene Foam
    Authors: Muhammad Sohail Bashir, Muhammad Qasim, Humaira Bashir, Fuzhou Wang
    Year: 2023
    Source: ACS Symposium Series

  • A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites
    Authors: Wen Cai, Yongshuang Huang, Jie Li, Gang Yang, Fuzhou Wang, Guifu Si, Chen Tan
    Year: 2023
    Source: European Polymer Journal

  • Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment
    Authors: Fuzhou Wang, Muhammad Sohail Bashir, Chengyun Zhou, Chaohai Wang, Mika Sillanpää, Fuzhou Wang
    Year: 2023
    Source: Separation and Purification Technology

  • Systematic study on interfacial polymerization mechanism of toluene diisocyanate and water for the preparation of polyurea microspheres
    Authors: Fuzhou Wang
    Year: 2022
    Source: Inorganic Chemistry Communications

Abdullah Al-Bashir | Analytical chemistry | Best Researcher Award

Prof. Dr. Abdullah Al-Bashir | Analytical chemistry | Best Researcher Award

Professor, King Faisal University, Saudi Arabia

Dr. Abdalla Ahmed Elbashir is a renowned professor of Analytical Chemistry currently serving at King Faisal University in Saudi Arabia. Known for his groundbreaking work in capillary electrophoresis (CE) and chiral separations, Dr. Elbashir has made significant contributions to analytical chemistry, particularly in pharmaceutical and environmental applications. His esteemed career spans multiple prestigious academic institutions, making him a well-regarded figure in his field. 🌍🔬

Profile

Scopus

Education

Dr. Elbashir earned his Ph.D. in Analytical Chemistry from University Science Malaysia (USM), receiving the Best Ph.D. Thesis Award for Pure Science. Prior to this, he completed an M.Sc. and B.Sc. in Chemistry from the University of Khartoum, where he graduated with first-class honors and earned the University Prize. His academic journey also includes a Humboldt Research Fellowship, which enabled him to pursue postdoctoral research at Duisburg-Essen University in Germany, further solidifying his expertise in analytical techniques and methodologies. 🎓📜

Experience

With over two decades of academic and professional experience, Dr. Elbashir has held esteemed positions including Professor of Chemistry at King Faisal University and the University of Khartoum. He has served as a visiting professor at the Max Planck Institute of Biochemistry and as a consultant for Sultan Qaboos University. Earlier in his career, Dr. Elbashir gained practical experience as Chief Analytical Chemist at El-Shifa Pharmaceuticals Industries in Sudan, where he specialized in quality control using advanced analytical techniques. 💼🏛️

Research Interests

Dr. Elbashir’s research focuses on developing and validating analytical methods to detect food contaminants, exploring chiral analysis of pharmaceuticals, and innovating in nanoparticle synthesis for environmental applications. His interdisciplinary approach extends to applications in environmental science, including pollutant removal and characterization of archaeological artifacts from Sudanese sites. This comprehensive research portfolio demonstrates his commitment to advancing analytical chemistry while addressing pressing global challenges. 🌱💊

Awards

Throughout his career, Dr. Elbashir has been recognized with numerous awards, including the Distinguished Scholar Award from the Arab Fund Fellowship Program in Kuwait and multiple honors from University Science Malaysia, such as the Best Ph.D. Thesis Award and the prize for publishing in high-impact journals. These accolades reflect his exceptional contributions to science, particularly within analytical chemistry and environmental research. 🏆✨

Publications Top Notes

Dr. Elbashir has authored over 100 papers in high-impact journals and a notable book titled Capillary Electrophoresis Methods in Pharmaceutical Analysis. His work spans various fields of analytical chemistry, including capillary electrophoresis and chiral separations. Some of his key publications include:

Elawad, M., Elbashir, A. A., Sajid, M., et al. Metal complex as p-type dopant-based organic spiro-OMeTAD hole-transporting material for free-Li-TFSI perovskite solar cells. Journal of Chemical Physics, 2024; 160(4): 044707. [Cited by 15]

Ziyada, A.K., Osman, A., Elbashir, A. A., et al. Exploring the Effect of Different Anions and Cations on the Solubility of CO2 in Nitrile Imidazolium-Based Ionic Liquids. Korean Journal of Chemical Engineering, 2024; 41, 1791–1803. [Cited by 10]

Alsadun, N. S., Alfadil, A. A., Elbashir, A. A., et al. Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules, 2024; 29(11): 2535. [Cited by 7]