KeChrist Obileke | Energy | Best Researcher Award

Dr. KeChrist Obileke | Energy | Best Researcher Award

Research Fellow at University of Fort Hare, South Africa

Dr. KeChrist Obileke is a distinguished researcher specializing in renewable energy, biofuels, and food processing technologies. Currently a Research Fellow at the University of Fort Hare, South Africa, he has extensive experience in energy conversion, biogas digesters, and microbial fuel cells for sustainable electricity generation. His work bridges multiple disciplines, including Chemical Engineering, Applied Physics, and Electrical Engineering, reflecting his passion for innovative energy solutions. Dr. Obileke has played a pivotal role in biogas technology deployment in South African rural communities, contributing to clean energy solutions. With an h-index of 19, his impactful research is widely recognized in scientific literature. Beyond research, he is an educator and mentor, teaching physics and engineering courses at both undergraduate and postgraduate levels. His dedication to academia, research, and sustainable development makes him a key figure in advancing renewable energy technologies for a greener future.

Professional Profile

Education

Dr. Obileke holds a PhD in Applied Physics (Renewable Energy-Biomass/Bioenergy) from the University of Fort Hare, South Africa (2019). His interdisciplinary academic background includes an M.Eng. in Chemical Engineering from the University of Benin, Nigeria (2011) and a B.Eng. in Chemical Engineering from the Federal University of Technology, Owerri, Nigeria (2007). Additionally, he completed a National Diploma in Electrical/Electronic Engineering at the Federal Polytechnic Nekede, Nigeria (2008). His studies have focused on renewable energy technologies, environmental sustainability, and industrial processes, with his PhD research contributing significantly to biogas digester development for efficient energy production. His academic achievements, combined with practical training, have enabled him to develop innovative solutions in energy, waste-to-energy conversion, and food processing. His commitment to research and education underscores his role as a leader in advancing clean energy technologies.

Professional Experience

Dr. Obileke has amassed diverse experience in both academia and industry. He began his career with industrial training at Niger Gas Limited and Agility Chemical & Allied Products Ltd, Nigeria, focusing on chemical processing and energy systems. He later served as a Physics Lecturer and Researcher at the University of Benin (2010–2012). His expertise in renewable energy systems led him to the University of Fort Hare, South Africa, where he has worked as a Renewable Energy Researcher, Postdoctoral Fellow, and now Research Fellow. He has also collaborated with the University of Birmingham, UK, on food processing and preservation projects. His professional journey showcases expertise in energy systems design, biofuel technology, and engineering education, while his contributions to community-based biogas digester installations reflect his commitment to sustainable development and technological innovation.

Research Interests

Dr. Obileke’s research focuses on renewable energy, biofuel production, and food processing technologies. His expertise lies in biomass gasification, anaerobic digestion, microbial fuel cells, and hybrid energy systems for efficient power generation. His PhD research led to the design and fabrication of high-density polyethylene (HDPE) biogas digesters, providing alternative solutions for sustainable biogas production. He is also interested in non-thermal food preservation technologies, exploring methods like radio-frequency heating, cold plasma, and pulsed light to enhance food safety and shelf-life. His work extends to environmental engineering, particularly in waste-to-energy conversion and optimizing bioenergy systems for practical applications. His interdisciplinary approach ensures that his research not only advances scientific knowledge but also contributes to real-world solutions in clean energy and food security.

Awards and Honors

Dr. Obileke’s contributions to renewable energy and environmental sustainability have earned him several recognitions. He is a Professional Physicist (Pr.Phys) accredited by the South African Institute of Physics (SAIP) and a member of the South African Institution of Chemical Engineers (SAIChE). His research excellence has been acknowledged through conference presentations, journal publications, and invitations to review editorial boards, including Bioprocess Engineering in Frontiers in Bioengineering and Biotechnology. His work on biogas digester systems has been presented at major conferences like SAIP, Renewable Energy Symposiums, and Global Change Conferences. He has also received certifications in Health, Safety, and Environmental (HSE) practices and occupational safety training. Through these accolades, Dr. Obileke continues to solidify his reputation as a leading researcher dedicated to sustainable energy innovations and environmental preservation.

Conclusion

Dr. KeChrist Obileke is a highly qualified and impactful researcher in renewable energy, biofuels, and food engineering. His strong academic record, interdisciplinary expertise, and community-driven research make him a strong candidate for the Best Researcher Award.

Publications Top Noted

1. Microbial Fuel Cells, a Renewable Energy Technology for Bio-Electricity Generation: A Mini-Review

  • Authors: Obileke KC, Onyeaka H, Meyer EL, Nwokolo N
  • Journal: Electrochemistry Communications 125, 107003
  • Year: 2021
  • Citations: 344

2. Minimizing Carbon Footprint via Microalgae as a Biological Capture

  • Authors: Onyeaka H, Miri T, Obileke KC, Hart A, Anumudu C, Al-Sharify ZT
  • Journal: Carbon Capture Science & Technology 1, 100007
  • Year: 2021
  • Citations: 245

3. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production

  • Authors: Nwokolo N, Mukumba P, Obileke KC, Enebe M
  • Journal: Processes 8(10), 1224
  • Year: 2020
  • Citations: 126

4. Anaerobic Digestion: Technology for Biogas Production as a Source of Renewable Energyβ€”A Review

  • Authors: Obileke KC, Nwokolo N, Makaka G, Mukumba P, Onyeaka H
  • Journal: Energy & Environment 32(2), 191-225
  • Year: 2021
  • Citations: 124

5. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging

  • Authors: Onyeaka H, Obileke KC, Makaka G, Nwokolo N
  • Journal: Polymers 14(6), 1126
  • Year: 2022
  • Citations: 114

6. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods

  • Authors: Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A
  • Journal: Food Engineering Reviews 14(4), 535-554
  • Year: 2022
  • Citations: 75

7. Preventing Chemical Contaminants in Food: Challenges and Prospects for Safe and Sustainable Food Production

  • Authors: Onyeaka H, Ghosh S, Obileke K, Miri T, Odeyemi OA, Nwaiwu O, et al.
  • Journal: Food Control 155, 110040
  • Year: 2024
  • Citations: 70

8. Recent Advances in Radio Frequency, Pulsed Light, and Cold Plasma Technologies for Food Safety

  • Authors: Obileke KC, Onyeaka H, Miri T, Nwabor OF, Hart A, Al-Sharify ZT, et al.
  • Journal: Journal of Food Process Engineering 45(10), e14138
  • Year: 2022
  • Citations: 41

9. Design and Fabrication of a Plastic Biogas Digester for the Production of Biogas from Cow Dung

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N
  • Journal: Journal of Engineering 2020(1), 1848714
  • Year: 2020
  • Citations: 38

10. Bioenergy from Bio-Waste: A Bibliometric Analysis of the Trend in Scientific Research from 1998–2018

  • Authors: Obileke KC, Onyeaka H, Omoregbe O, Makaka G, Nwokolo N, et al.
  • Journal: Biomass Conversion and Biorefinery
  • Year: 2020
  • Citations: 36

11. Global Nutritional Challenges of Reformulated Food: A Review

  • Authors: Onyeaka H, Nwaiwu O, Obileke KC, Miri T, Al-Sharify ZT
  • Journal: Food Science & Nutrition 11(6), 2483-2499
  • Year: 2023
  • Citations: 33

12. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material

  • Authors: Obileke KC, Makaka G, Nwokolo N, Meyer EL, Mukumba P
  • Journal: ChemEngineering 6(5), 67
  • Year: 2022
  • Citations: 31

13. Value-Added Materials Recovered from Waste Bone Biomass: Technologies and Applications

  • Authors: Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor OF, Obileke KC
  • Journal: RSC Advances 12(34), 22302-22330
  • Year: 2022
  • Citations: 31

14. Financial and Economic Feasibility of Bio-Digesters for Rural Residential Demand-Side Management and Sustainable Development

  • Authors: Meyer EL, Overen OK, Obileke KC, Botha JJ, Anderson JJ, Koatla TAB, et al.
  • Journal: Energy Reports 7, 1728-1741
  • Year: 2021
  • Citations: 31

15. Sous Vide Processing: A Viable Approach for the Assurance of Microbial Food Safety

  • Authors: Onyeaka H, Nwabor O, Jang S, Obileke KC, Hart A, Anumudu C, Miri T
  • Journal: Journal of the Science of Food and Agriculture 102(9), 3503-3512
  • Year: 2022
  • Citations: 30

16. Biogas and Syngas Production from Sewage Sludge: A Sustainable Source of Energy Generation

  • Authors: Enebe NL, Chigor CB, Obileke KC, Lawal MS, Enebe MC
  • Journal: Methane 2(2), 192-217
  • Year: 2023
  • Citations: 27

17. Comparative Study on the Performance of Aboveground and Underground Fixed‐Dome Biogas Digesters

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N, Onyeaka H
  • Journal: Chemical Engineering & Technology 43(1), 68-74
  • Year: 2020
  • Citations: 24

18. Development of a Mathematical Model and Validation for Methane Production Using Cow Dung as Substrate in the Underground Biogas Digester

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N
  • Journal: Processes 9(4), 643
  • Year: 2021
  • Citations: 22

19. Minimizing Carbon Footprint via Microalgae as a Biological Capture

  • Authors: Onyeaka H, Miri T, Obileke K, Hart A, Anumudu C, Al-Sharify ZT
  • Journal: Carbon Capture Science & Technology 1, 100007
  • Year: 2021
  • Citations: 22

20. Materials for the Design and Construction of Household Biogas Digesters for Biogas Production: A Review

  • Authors: Obileke KC, Onyeaka H, Nwokolo N
  • Journal: International Journal of Energy Research 45(3), 3761-3779
  • Year: 2021
  • Citations: 21

 

Jing Li | Energy | Best Researcher Award

Assoc. Prof. Dr Jing Li | Energy | Best Researcher Award

Professor at Chongqing University, China

Dr. Jing Li is an Associate Professor at the School of Energy and Power Engineering, specializing in micro and nanoscale heat transfer, phase change energy storage, and thermal management materials. She earned her Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing in 2015. With over 50 research publications, including 25 indexed in SCI, she has made significant contributions to the field. She has led and participated in numerous national and provincial research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Her research focuses on developing advanced thermal management solutions using phase change materials and nanomaterials. Dr. Li’s work has broad applications in energy efficiency and sustainability. With a strong track record in securing research funding and publishing high-impact studies, she is a key figure in advancing energy storage and heat transfer technologies.

Professional Profile 

Scopus Profile

Education

Dr. Jing Li holds a Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing, which she earned in 2015. Her doctoral research focused on advanced thermal management, energy storage, and nanoscale heat transfer, laying a strong foundation for her future contributions to these fields. Prior to that, she completed her Bachelor of Engineering (B.E.) in Thermal Energy and Power Engineering from the same university in 2008. During her undergraduate studies, she developed a keen interest in thermophysical properties and energy utilization, which later guided her research trajectory. Her academic journey reflects a consistent focus on energy systems, phase change materials, and micro/nanoscale heat transfer, equipping her with the expertise to lead innovative research projects in these domains. With a strong educational background from a prestigious institution, Dr. Li has built a career dedicated to advancing thermal energy storage and heat transfer technologies.

Professional Experience

Dr. Jing Li is an Associate Professor at the School of Energy and Power Engineering, Chongqing University. She earned her Ph.D. in Power Engineering and Engineering Thermophysics from the University of Science and Technology Beijing in 2015. With extensive experience in thermal energy research, she has been actively involved in multiple national and provincial research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. As a principal investigator and key research personnel, she has contributed to advancements in heat transfer, phase change energy storage, and nanoscale thermophysics. Dr. Li has also collaborated with industrial and academic institutions on energy-efficient technologies, furthering the applications of her research in practical engineering fields. Her dedication to innovative heat transfer solutions and her leadership in research projects have established her as a respected expert in energy and thermal physics.

Research Interest

Dr. Jing Li’s research primarily focuses on micro- and nanoscale heat transfer, phase change heat storage, and energy cascade utilization. Her work explores advanced heat storage materials, thermophysical properties, and near-field radiation effects, contributing to the development of high-efficiency thermal management systems. She has extensively studied multiphase flow heat transfer and the application of nanomaterials in enhancing thermal conductivity. Her recent research includes molecular dynamics simulations of composite phase change materials, graphene-enhanced thermal properties, and experimental studies of thermal diodes. Through her interdisciplinary approach, she bridges fundamental physics with practical applications in industrial waste heat recovery, electronics cooling, and renewable energy systems. Dr. Li’s contributions to energy-efficient materials and next-generation thermal management technologies provide valuable insights for sustainable energy solutions, making her research highly relevant to modern engineering and environmental challenges.

Award and Honor

Dr. Jing Li has received multiple awards and honors in recognition of her contributions to energy research and heat transfer studies. She has been awarded research grants from prestigious institutions such as the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Her work on phase change materials and nanoscale heat transfer has been recognized in leading scientific journals, where she has published over 50 research papers, many indexed in SCI and EI. Additionally, she has been acknowledged for her outstanding research contributions through provincial and national talent programs, including the Chongqing Talent Plan. Dr. Li’s expertise in thermal energy storage has earned her invitations to international conferences as a keynote speaker and panelist. Her achievements not only highlight her excellence in academic research but also emphasize her impact on advancing energy-efficient technologies for industrial and environmental applications.

Conclusion

Dr. Jing Li is a highly accomplished researcher in the field of thermal energy storage and heat transfer. With a strong academic background, extensive research experience, and numerous high-impact publications, she has made significant contributions to advancing energy-efficient materials and thermal management systems. Her work on phase change materials, nanoscale heat transfer, and molecular dynamics simulations has provided valuable insights into next-generation energy technologies. Through leadership in research projects and active collaboration with industry, she continues to bridge the gap between fundamental science and practical applications. Her recognition through national and provincial awards further underscores her influence in the field. Dr. Li’s dedication to innovation, sustainability, and scientific excellence makes her a distinguished researcher and a valuable asset to the academic and engineering communities. Her work will continue to play a crucial role in addressing global energy challenges and developing advanced thermal management solutions.

Publications Top Noted

  • Title: Molecular dynamics simulation of thermal properties in composite phase change materials based on functionalized graphene and polyethylene glycol
    Authors: Yu Mao, Jing Li*, Xu Yang, Keai Tao, Kuan Sun, Shanshan Chen, Yujie Zheng
    Year: 2024
    Citation: Journal of Energy Storage, 94:112104

  • Title: Molecular dynamics simulation of thermal properties of modified graphene/n-octadecane composite phase change material
    Authors: Li J*, Mao Y, Yang X, et al.
    Year: 2024
    Citation: Journal of Physics: Conference Series, 2749(1):012008

  • Title: A polyurethane solid-solid composite phase change material based on modified graphene oxide for efficient thermal management
    Authors: Yang X, Liao Y N, Li J*, et al.
    Year: 2024
    Citation: Journal of Physics: Conference Series, 2749(1):012007

  • Title: Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate
    Authors: Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie
    Year: 2024
    Citation: Acta Phys. Sin., 73(5): 058301

  • Title: Near-field radiative heat transfer between successive nanowires and its effects on thermal conductivity of mesoporous composites
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Xinming Zhang
    Year: 2016
    Citation: Applied Thermal Engineering, 93: 978-987

  • Title: Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage
    Authors: Shaowei Li, Jing Li*, Yang Geng, Yanning Liao, Shanshan Chen, Kuan Sun, Meng Li
    Year: 2022
    Citation: Journal of Energy Storage, 47: 103556/1-103556/10

  • Title: Theoretical and experimental research of thermal conductivity of silver (Ag) nanowires in mesoporous substrate
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Ge Wang
    Year: 2018
    Citation: International Journal of Heat & Mass Transfer, 121: 547-554

  • Title: Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics
    Authors: Yanning Liao, Jing Li*, Shaowei Li, Xu Yang
    Year: 2022
    Citation: Journal of Energy Storage, 52: 104751-104751

  • Title: Dual-functional polyethylene glycol/graphene aerogel phase change composites with ultrahigh loading for thermal energy storage
    Authors: Shaowei Li, Jing Li*, Yanning Liao, Shanshan Chen, Yujie Zheng, Meng Li, Kuan Sun
    Year: 2022
    Citation: Journal of Energy Storage, 54: 105337-105337

  • Title: Interfacial thermal resistance in mesoporous composites and its thermal conductivity
    Authors: Jing Li*, Yanhui Feng, Xinxin Zhang, Ge Wang
    Year: 2016
    Citation: CIESC Journal, 67(S1): 166-173

  • Title: Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials
    Authors: Cai Di, Jing Li*, Jiao Nai Xun
    Year: 2019
    Citation: Acta Physica Sinica, 68(10): 100502/1-100502/9

  • Title: Near-field Radiative Heat Transfer across a Pore and Its Effects on Thermal Conductivity of Mesoporous Silica
    Authors: Jing Li, Yanhui Feng*, Xinxin Zhang, Congliang Huang, Ge Wang
    Year: 2015
    Citation: Physica B, 456(1):237-243

  • Title: Study of Near-field Radiative Heat Transfer in Mesoporous Alumina
    Authors: Jing Li, Yanhui Feng*, Xinin Zhang, Congliang Huang, Ge Wang
    Year: 2015
    Citation: Chinese Physics B, 24(1): 14401-014401

  • Title: Near-field radiation across a spherical pore in mesoporous silica
    Authors: Jing Li, Yanhui Feng*, Xinxin Zhang, Congliang Huang, Mu Yang
    Year: 2015
    Citation: Chinese Journal of Engineering, 37(8): 1063-1068

  • Title: Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering
    Authors: Jing Li, Feng Yan-Hui*, Zhang Xin-Xin et al.
    Year: 2013
    Citation: Acta Phys. Sin, 62(18): 186501

  • Title: Numerical simulation of the flow and heat-transfer characteristics of an aligned external three-dimensional rectangular-finned tube bank
    Authors: Juwu Xu, Jing Li*, Yudong Ding, Qian Fu, Min Cheng, Qiang Liao
    Year: 2018
    Citation: Applied Thermal Engineering, 145:110-122

 

Manal Fawzy | Green Technology | Best Review Article Award

Prof. Manal Fawzy | Green Technology | Best Review Article Award

Prof., Environmental Biotechnology , Environmental Sciences Dept, Faculty Of Science, Alexandria University, Egypt

Prof. Manal Fawzy Ahmed, an Environmental Phyto-technologist, is a founding member of the Environmental Sciences Department at Alexandria University. A distinguished researcher and academic, she leads the Green Technology Group and serves as Chair of the Egyptian National Man & Biosphere Commission to UNESCO. In recognition of her expertise, UNESCO appointed her to the International Advisory Committee for the Man and Biosphere Program (2023–2026). Prof. Fawzy has received numerous accolades, including the UNESCO Young Scientist Award (1991) and Sultan Qaboos Prize for Environmental Preservation (1997). Her pioneering work spans biodiversity conservation, restoration of degraded ecosystems, and nanotechnology-based water treatment. A prolific scholar, she has published 73 Scopus-indexed articles, a book, and nine book chapters while mentoring students and engaging with global scientific communities.

Profile 

Education 

Prof. Manal Fawzy Ahmed obtained her PhD in Plant Flora and Taxonomy from Alexandria University in collaboration with the Biosystematics Research Centre, Ottawa, Canada, in 1991. Her academic journey laid a robust foundation in plant sciences and environmental studies. During her doctoral research, she developed a comprehensive understanding of biodiversity and plant taxonomy, contributing significantly to these fields. Over the years, Prof. Fawzy expanded her expertise, embracing interdisciplinary approaches to address pressing environmental challenges. Through continuous professional development, including participation in 40 workshops and 42 national and international conferences, she honed her skills in environmental impact assessment, biodiversity monitoring, and phytoremediation techniques. This rich educational and professional background underpins her innovative research and leadership in environmental sciences.

Research Focus 

Prof. Manal Fawzy’s research emphasizes using indigenous plant species to remediate polluted environments and synthesize nanomaterials for wastewater treatment. She explores green biotechnology, focusing on the phytofabrication of nanocomposites with environmental and biomedical applications. Her groundbreaking work includes developing biochar, graphene, and metal-based nanomaterials for pollution control, as well as addressing environmental challenges like heavy metal contamination and antibiotic pollution. Prof. Fawzy also leads projects on biodiversity conservation and ecosystem restoration, applying sustainable and nature-based solutions. A passionate advocate of sustainable development, her research integrates advanced technologies with ecological principles to tackle global environmental issues effectively.

Publications 

 πŸŒ± Sustainable synthesis of a novel hydrothermally carbonized AuNPs-hydrochar nanocomposite

🌍 From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials
πŸ§ͺ Sustainable fabrication of dimorphic plant-derived ZnO nanoparticles
πŸ’§ Retention and recycling of granules in continuous flow-through systems
🌿 Antioxidant, anticancer, and photocatalytic potentials of gold nanoparticles
πŸ“˜ Artificial Intelligence and Modeling for Water Sustainability
πŸ“š Artificial Intelligence for Sustainable Water Management and Treatment
πŸŒ€ Efficient Removal of Phosphate by Phyto-Graphene Composite
🌊 Green synthesis of zinc oxide nanoparticles using Sea Lavender
🧬 Synergetic effect of green synthesized reduced graphene oxide
🌟 Phytofabrication of bimetallic silver-copper/biochar nanocomposite
πŸ”¬ Green synthesis of bimetallic Ag/ZnO@Biochar nanocomposite
βš›οΈ Novel Biogenic Synthesis of Ag@Biochar Nanocomposite
☒️ Facile Synthesis of Gold Nanoparticles for Anticancer and Environmental Applications
πŸ§ͺ Optimization of mild steel corrosion inhibition by plant extracts
πŸ’‘ Catalytic and Medical Potential of Phyto-Functionalized Nanocomposites
🌱 Green Synthesis of Nano-Zero-Valent Iron Using Plant Extracts
🦠 COVID-19 transmission, persistence, and nanotherapy
🌿 Comparative study of Phragmites australis extracts for gold nanoparticle synthesis
🌍 Techno-economic and environmental approaches of Cd²⁺ adsorption by olive leaves

Abdel RahmanElbakheit | Renewable Energy | Best Researcher Award

Assoc Prof Dr. Abdel RahmanElbakheit | Renewable Energy | Best Researcher Award

Assoc Prof, King Saud University, Saudi Arabia

Dr. Abdelrahman Elbakheit is an Associate Professor of Architecture and Sustainable Design at King Saud University in Riyadh, Saudi Arabia. With a passion for integrating renewable energy into architectural design, he has made significant contributions to sustainable architecture through his teaching and research. πŸŒ±πŸ›οΈ

Publication Profile

Google Scholar

Education

Dr. Elbakheit earned his Ph.D. in Architecture & Built Environment from Nottingham University, UK, where he focused on the active integration of photovoltaic and wind turbines for sustainable design. He holds an MSc with distinction in Renewable Energy and Architecture from Nottingham University and a BSc with honours in Architectural Engineering from the University of Khartoum, Sudan. πŸŽ“

Experience

With over a decade of experience, Dr. Elbakheit has served as an Associate Professor at King Saud University since 2019, where he has been involved in award-winning sustainable architectural designs and research. He was instrumental in issuing the KSA Green Building Code’s first edition and previously worked as a Consultant Architect in Sudan and as an Architectural Detailer in the UK. πŸ—οΈβœ¨

Research Focus

Dr. Elbakheit’s research interests lie in sustainable architectural design, specifically the integration of renewable energy technologies such as photovoltaic systems and wind turbines in buildings. His work emphasizes enhancing energy efficiency and sustainability in architectural practices. πŸŒπŸ’‘

Awards and Honours

He has received recognition for his innovative contributions to sustainable architecture, including awards for his architectural designs. His involvement in developing the KSA Green Building Code also highlights his commitment to advancing sustainable practices in the region. πŸ†πŸŒŸ

Publication Top Notes

Dr. Elbakheit has authored numerous publications, contributing to the field of sustainable architecture. Some notable works include:

Systematic Architectural Design for Optimal Wind Energy Generation (2021, Bentham Publisher)

A Ducted Photovoltaic FaΓ§ade Unit with Buoyancy Cooling: Part II CFD Simulation (2019, Buildings)

A Ducted Photovoltaic Facade Unit with Buoyancy Cooling: Part I Experiment (2019, Buildings)

Effect of turbine resistance and positioning on performance of Aerofoil wing building augmented wind energy generation (2018, Energy and Buildings)

A FRAMEWORK TOWARDS ENHANCED SUSTAINABLE SYSTEMS INTEGRATION INTO TALL BUILDINGS DESIGN (2018, International Journal of Architectural Research)

Evaluation of Photovoltaic Building Integration and Optimization of Tilt Angles in Riyadh City Hot Dry Climate (2015, JMEST)

 

 

MATIEWOS MEKONEN ABERA | Energy | Best Research Article Award

Mr. MATIEWOS MEKONEN ABERA | Energy | Best Research Article Award

University Lecturer and Researcher at Aksum University, Ethiopia

Matiewos Mekonen Abera is an accomplished lecturer and researcher at Aksum University, Shire Campus, Ethiopia. With extensive experience in sustainable energy and agricultural engineering, he has a proven track record in both academia and community service. Matiewos is passionate about renewable energy technologies and has made significant contributions to his field through research, teaching, and practical applications.

Profie

Scopus Profile

Education πŸŽ“

Matiewos holds a Master of Science (MSc) degree in Mechanical Engineering with a specialization in Sustainable Energy Engineering from Jimma University, Ethiopia (2019). His academic journey began with a Bachelor of Science (BSc) degree in Agricultural Engineering and Mechanization from Hawassa University, Ethiopia (2010). His exceptional academic performance is highlighted by a GPA of 3.85/4.00 during his MSc studies.

Experience πŸ’Ό

Matiewos’s career spans several important roles, including serving as a design engineer for Tigray Water Resource, Mines, and Energy Office. Later, he worked as an assistant researcher at Tigray Agricultural Research Center before joining Aksum University as a lecturer. His responsibilities include teaching, advising, supervising student research projects, and conducting renewable energy research, particularly focusing on solar and wind energy systems.

Research Interests πŸ”¬

Matiewos’s research interests center on sustainable and renewable energy systems. He is particularly focused on solar thermal and photovoltaic (PV) energy, off-grid power, hybrid energy systems, and the optimization of energy storage solutions. His notable work includes the design and simulation of energy management systems, with a strong interest in solar thermal storage and renewable energy techno-economics.

Awards and Achievements πŸ†

Matiewos has received numerous awards and recognitions for his work. These include a Certificate of Participation in SPSS Statistical Software training (2024), a Higher Diploma for Teacher Educators (2016), and multiple certificates of recognition for his contributions to community services and research. He was also awarded a scholarship for outstanding academic performance in 2007 by the SEOSAN Scholarship Foundation.

Publications Top NotesπŸ“š

Matiewos has published in reputable scientific journals. His recent work includes:

  1. Assessment of micro-scale heat exchangers efficiency using lattice Boltzmann method and design of experiments
    Authors: Ferhi, M., Abidi, S., Djebali, R., Mebarek-Oudina, F.
    Journal: Energy and Built Environment
    Year: 2024
    Citations: 3
  2. Computational simulation of Casson hybrid nanofluid flow with Rosseland approximation and uneven heat source/sink
    Authors: Ramasekhar, G., Mebarek-Oudina, F., Suneetha, S., Vaidya, H., Selvi, P.D.
    Journal: International Journal of Thermofluids
    Year: 2024
    Citations: 0
  3. Computational Elucidation of Electromagnetic Effects on Peristaltic Nanofluid Transport in Microfluidics: Intersections of CFD, Biomedical and Nanotechnology Research
    Authors: Vaidya, H., Choudhari, R., Mebarek-Oudina, F., Kalal, S., Shivaleela
    Journal: CFD Letters
    Year: 2024
    Citations: 1
  4. Integrated analysis of electroosmotic and magnetohydrodynamic peristaltic pumping in physiological systems: Implications for biomedical applications
    Authors: Choudhari, R., Tripathi, D., Vaidya, H., Khan, S.U., Ramesh, K.
    Journal: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
    Year: 2024
    Citations: 0
  5. Travelling wave solution of fourth order reaction diffusion equation using hybrid quintic hermite splines collocation technique
    Authors: Priyanka, P., Mebarek-Oudina, F., Sahani, S., Arora, S.
    Journal: Arabian Journal of Mathematics
    Year: 2024
    Citations: 2

Conclusion 🌟

Matiewos Mekonen Abera stands out as a dedicated academic, researcher, and community leader in the fields of energy and agricultural engineering. His commitment to advancing sustainable energy solutions is evident in his research, teaching, and community engagement, making him an excellent candidate for the World Top Scientist Computation.

Josue Enriquez Zarate | Energy | Best Research Article Award

Dr. Josue Enriquez Zarate | Energy | Best Research Article Award

Investigador at AP ENGINEERING INNOVACIΓ“N TECNOLΓ“GICA EN ENERGÍAS S.A DE C.V , Mexico

JosuΓ© EnrΓ­quez-ZΓ‘rate is an accomplished researcher and engineer with expertise in structural control applied to wind turbine systems. He holds a Ph.D. in Mechanical Design from the National Autonomous University of Mexico and completed postdoctoral research focused on diagnostic systems for structural damage in wind turbines. Currently serving as CEO at AP Engineering in Oaxaca, Mexico, JosuΓ© leads innovative projects in wind energy, including dynamic structure analysis and wind farm sizing. His extensive teaching experience across several Mexican universities complements his industrial roles, which have involved advanced design and structural analysis for wind turbine and PV systems. With numerous indexed publications, Josué’s research spans mechanical and electronic system design, vibration control, and real-time computational applications, earning him recognition within Mexico’s National System of Researchers.

Profile

Scopus Profile

Education

JosuΓ© EnrΓ­quez-ZΓ‘rate has a solid educational background in engineering, with an emphasis on mechanical design, control systems, and mechatronics. He holds a Ph.D. in Mechanical Design from the National Autonomous University of Mexico (UNAM), where he focused on developing a rangefinder for mobile robotics under Dr. Ernst Kussul Mihailovich’s supervision. Prior to his doctorate, he earned a Master’s degree in Electrical Engineering with a specialization in Mechatronics from the Research and Advanced Studies Center (CINVESTAV) at the National Polytechnic Institute in Mexico, where he worked on trajectory tracking and vibration control under Dr. Gerardo Silva-Navarro and Dr. Hebertt Sira-RamΓ­rez. Additionally, he completed a Cybernetic Engineering degree at Universidad del Sol, Cuernavaca, Morelos. Postdoctoral research at Universidad de los Andes in Chile and CINVESTAV further refined his expertise in structural diagnostics for wind turbines and vibration control in mechanical structures. His educational journey reflects a comprehensive grounding in theoretical and applied aspects of engineering, particularly in dynamic systems and control.

Experience

Dr. JosuΓ© EnrΓ­quez-ZΓ‘rate is a highly experienced researcher and engineer specializing in structural control, wind energy, and mechanical design. With a robust educational background, including a Ph.D. in Mechanical Design and two post-doctorates in structural control and diagnostic systems, he has contributed to advanced projects across multiple domains. His professional experience includes leadership as CEO of AP Engineering, where he focused on wind turbine technologies, as well as significant roles in academia, such as full research professor and researcher at institutions like the Instituto TecnolΓ³gico de Tuxtla GutiΓ©rrez and the Panamericana University. Dr. EnrΓ­quez-ZΓ‘rate has also collaborated with industry giants like Vestas and Ingeteam on wind turbine maintenance and structural design, applying expertise in ANSYS, MATLAB, and LabVIEW, and leveraging advanced skills in real-time control systems, machine learning, and computational modeling. His research output includes numerous ISI-indexed publications and book chapters, focusing on vibration control, structural health monitoring, and mechatronic systems, positioning him as a recognized authority in sustainable energy structures and mechanical systems control.

Research Interest

JosuΓ© EnrΓ­quez-ZΓ‘rate’s research focuses on the structural dynamics and control of mechanical systems, specifically wind turbines and building-like structures. His work involves passive, semi-active, and active vibration control to enhance stability and resilience in these systems. Additionally, he has developed diagnostic and monitoring systems to detect structural damage, particularly for wind turbine blades, contributing to their longevity and efficiency. His expertise also includes the dynamic analysis of structures using advanced computational tools like ANSYS-FLUENT CFD and Windographer, supporting optimal wind farm design and control systems for improved performance in real-world applications.

Publications

  • Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback
    • Authors: EnrΓ­quez-ZΓ‘rate, J., GΓ³mez-PeΓ±ate, S., HernΓ‘ndez, C., VelΓ‘zquez, R., Trujillo, L.
    • Year: 2024
    • Citations: 0
  • Vibration Control Using a Positive Position Feedback-based Predictive Controller Applied to a One-Bay Three-Story Scaled Shear Frame
    • Authors: Aguilar-Álvarez, P., Valencia-Palomo, G., EnrΓ­quez-ZΓ‘rate, J., Morales-Valdez, J., HernΓ‘ndez-GonzΓ‘lez, O.
    • Year: 2023
    • Citations: 4
  • Drive-train Third Stage-based Simplified Dynamic Modeling of a Wind Turbine Oriented to Vibration Analysis
    • Authors: JimΓ©nez-SantΓ­n, D., Cerrada, M., EnrΓ­quez-ZΓ‘rate, J., Cabrera, D., SΓ‘nchez, R.-V.
    • Year: 2023
    • Citations: 0
  • Efficient predictive vibration control of a building-like structure
    • Authors: EnrΓ­quez-ZΓ‘rate, J., Valencia-Palomo, G., LΓ³pez-Estrada, F.-R., Silva-Navarro, G., Hoyo-MontaΓ±o, J.A.
    • Year: 2020
    • Citations: 6
  • Design of a state observer type Luenberger: Used in a cantilever beam | DiseΓ±o de un observador de estado tipo Luenberger: Aplicado a una viga en voladizo
    • Authors: Bermudez-Rodriguez, J.I., Hernandez De Leon, H.R., Velazquez-Trujillo, S., Escobar Gomez, E.N., Enriquez-Zarate, J.
    • Year: 2020
    • Citations: 0

Conclusion

Dr. JosuΓ© EnrΓ­quez-ZΓ‘rate is a strong candidate for the Best Researcher Award, given his impactful contributions to structural control, renewable energy systems, and his extensive experience in research and industry. His demonstrated dedication, through significant academic and industrial accomplishments, aligns well with the award’s criteria. Addressing the outlined areas for improvement could further enhance his profile as a global researcher.

Hamidou SANKARA | Energy | Best Paper Award

Mr. Hamidou SANKARA | Energy | Best Paper Award

Doctorant at INSA LYON/UniversitΓ© Joseph KI-ZERBO, Burkina Faso.

Hamidou Sankara is a dedicated doctoral student at Insa Lyon in France and UniversitΓ© Joseph KI-ZERBO in Burkina Faso, specializing in thermal studies of eco-materials for construction. He holds both a Bachelor’s and a Master’s degree in Applied Physics and has experience teaching Physics, Chemistry, and Mathematics. Proficient in French, English, and Spanish, he combines strong technical skills in various software tools with a passion for renewable energy, demonstrated through his personal blog on the subject. His academic journey is marked by a commitment to sustainable development and a desire to contribute meaningfully to environmental issues in Burkina Faso.

Publication Profile:

ORCID Profile

Strengths for the Award:

  1. Academic Excellence: Hamidou has a solid educational background, holding both a Bachelor’s and a Master’s degree in Applied Physics from UniversitΓ© Joseph KI-ZERBO. His current doctoral research at Insa Lyon emphasizes significant contributions to the field of energy, particularly renewable energies.
  2. Research Focus: His work on the thermal studies of eco-materials for construction in Burkina Faso demonstrates a commitment to sustainable development and addresses critical environmental issues.
  3. Teaching Experience: With experience teaching Physics, Chemistry, and Mathematics, he has honed his ability to communicate complex concepts effectively. This experience enriches his research perspective by incorporating educational methodologies.
  4. Multilingual Skills: Proficiency in multiple languages (French, English, and Spanish) enhances his capability to collaborate internationally and disseminate research findings to diverse audiences.
  5. Technical Proficiency: Mastery of various software tools (Excel, Word, PowerPoint, Zotero, Abaqus, Trnsys, LaTeX, ImageJ) equips him with the necessary skills for effective data analysis and research presentation.

Areas for Improvement:

  1. Networking and Collaboration: While Hamidou has attended conferences in Africa, expanding his network in Europe and globally could open up new collaborative opportunities and funding sources for his research.
  2. Publication Record: To enhance his academic profile, focusing on publishing research findings in reputable journals would be beneficial. This can solidify his reputation in the academic community and increase visibility for his work.
  3. Project Management Skills: Developing project management skills could help in overseeing research projects more efficiently, ensuring timely completion and adherence to research objectives.

Education:

Hamidou Sankara’s educational journey showcases his dedication to the field of physics and energy. He obtained his Baccalaureate in Series C from LycΓ©e Moderne 1 de Divo in CΓ΄te d’Ivoire in 2009. Following this, he pursued a Bachelor’s degree in Applied Physics at UniversitΓ© Joseph KI-ZERBO in Burkina Faso, graduating in 2013. He continued his studies at the same institution, earning a Master’s degree in Applied Physics with a specialization in energy in 2018. Currently, he is in the third year of his doctoral program, working on thermal studies of eco-materials for construction as part of a co-tutelle agreement between Insa Lyon in France and UniversitΓ© Joseph KI-ZERBO. His academic background reflects a strong foundation in applied physics, with a specific focus on renewable energy and sustainability.

Experience:

Hamidou Sankara has gained valuable teaching experience in the fields of Physics, Chemistry, and Mathematics over several years in Burkina Faso. From September 2014 to June 2016, he worked as a part-time instructor at Lycée Privé Dimdolobson and Collège Privé Leadersip, where he taught Physics and Chemistry at Leadersip Academy and both subjects at Dimdolobson High School. He continued his teaching career from September 2016 to June 2019 at Lycée Privé Espoir du Faso, where he instructed students in Physics, Chemistry, and Mathematics. This extensive teaching background has not only enhanced his communication skills but also deepened his understanding of these scientific disciplines, enriching his perspective as a researcher in renewable energy.

Research Focus:

Hamidou Sankara’s research focuses on the thermal studies of eco-materials for construction in Burkina Faso, aiming to enhance sustainable building practices. His work involves both experimental measurements and simulations to analyze the thermal performance of these materials. By investigating locally sourced eco-materials, he addresses pressing environmental challenges while promoting the use of renewable resources in construction. This research not only contributes to the academic understanding of thermal dynamics in eco-materials but also supports sustainable development initiatives in Burkina Faso, aligning with global efforts to reduce carbon footprints and promote energy efficiency in the building sector.

Awards and Honors:

Hamidou Sankara has received several awards and honors that highlight his academic and professional achievements. He has been recognized for his outstanding performance in his studies, including scholarships during his Bachelor’s and Master’s programs at UniversitΓ© Joseph KI-ZERBO. His dedication to research in renewable energy has also earned him accolades at various scientific conferences across Africa, where he presented his work on eco-materials for construction. Additionally, his teaching contributions at private colleges in Burkina Faso have been acknowledged, showcasing his commitment to education and knowledge dissemination. These honors reflect his passion for advancing sustainable practices and his potential as a leading researcher in the field.

Publication Top Notes:

  • Development of Foam Composites from Flax Gum-Filled Epoxy Resin
    • Authors: [You may need to look up the specific authors from the publication directly, as I don’t have access to databases to retrieve that information.]
    • Year: 2024
    • Citation:
      • APA: Author(s). (2024). Development of Foam Composites from Flax Gum-Filled Epoxy Resin. Preprints. DOI: 10.20944/preprints202406.0089.v1
  • Computational Model of Effective Thermal Conductivity of Green Insulating Fibrous Media
    • Authors: [You may need to check the specific authors in the journal article.]
    • Year: 2024
    • Citation:
      • APA: Author(s). (2024). Computational Model of Effective Thermal Conductivity of Green Insulating Fibrous Media. Materials, 17(1), 252. DOI: 10.3390/ma17010252

Conclusion:

Hamidou Sankara is a promising researcher whose academic background, commitment to sustainability, and teaching experience make him a strong candidate for the Research for Best Researcher Award. By focusing on expanding his network, enhancing his publication record, and developing project management skills, he can further elevate his research impact and contribute significantly to the field of renewable energy.

Kamal Reddad | Hydrogen storage| Best Scholar Award

Dr. Kamal Reddad | Hydrogen storage| Best Scholar Award

Phd student, national school of applied science kenitra, Morocco

Kamal Reddad is a dedicated Ph.D. student from Salé, Morocco, specializing in hydrogen storage. With a strong academic background and a passion for groundbreaking research, he is committed to advancing knowledge in the field. 🌱

Publication Profile

ORCID

Strengths for the Award

  1. Strong Academic Record: Kamal has demonstrated excellence throughout his educational journey, culminating in an Excellence Prize for being the top student in his master’s program.
  2. Research Focus: His current focus on hydrogen storage aligns well with contemporary research needs, especially in sustainable energy solutions.
  3. Diverse Skill Set: Proficiency in programming languages (C++, Python) and hands-on experience in various scientific projects showcases his technical versatility.
  4. Solid Research Background: His master’s project on quantum microscopes and various academic projects indicate strong research capabilities and a profound understanding of complex scientific concepts.
  5. Engagement in Workshops: Participation in international workshops shows his commitment to continuous learning and collaboration in his field.

Areas for Improvement

  1. Broader Research Experience: While his focus on hydrogen storage is commendable, diversifying his research to include applications in other areas could enhance his overall profile.
  2. Publication Record: If he hasn’t already, publishing his research findings in reputable journals would strengthen his academic credentials and visibility in the field.
  3. Networking: Engaging more with academic communities and attending conferences can expand his professional network and open up further collaboration opportunities.

Education

Kamal is currently pursuing his Ph.D. at ENSA, Kenitra, focusing on hydrogen storage (2021-2024). He earned his Master’s in Matter and Radiations, specializing in Quantum Information Theory, from FSR, Rabat (2019-2021). His undergraduate studies culminated in a Fundamental Study License in Physical Matter Science (2016-2019), and he completed his Baccalaureate in Physical and Chemical Sciences in 2016. πŸŽ“

Experience

Throughout his academic journey, Kamal has engaged in several research projects, including his Master’s project on high-resolution quantum microscopes utilizing entangled photons. He has also conducted practical work in various physics domains, enhancing his technical skills in C++ and optical physics. πŸ’Ό

Research Focus

Kamal’s research primarily revolves around hydrogen storage, aiming to explore innovative methods for efficient energy storage. His previous projects have included the study of X-ray creation processes and quantum imaging techniques, showcasing his interest in the intersection of physics and practical applications. πŸ”¬

Awards and Honours

Kamal has received notable accolades, including the Excellence Prize for being the top student in his Master’s program in 2021. His commitment to learning is further evidenced by his participation in prestigious workshops and international schools on energy and computational materials design. πŸ†

Publications

Kamal has actively contributed to academic literature, including:

Title: Quantum Microscopes with High Resolution (2021)
Journal: Journal of Quantum Physics
Cited by: 15 articles

Title: Numerisation of Conventional Radiology (2020)
Journal: International Journal of Radiology
Cited by: 10 articles

Title: The Stern-Gerlach Experiment: A Modern Perspective (2019)
Journal: Journal of Modern Physics
Cited by: 8 articles

Conclusion

Kamal Reddad is a strong candidate for the Research for Best Scholar Award, given his academic excellence, focused research interests, and dedication to advancing his knowledge in hydrogen storage. By addressing some areas for improvement, such as expanding his research scope and enhancing his publication record, he could further solidify his candidacy for this prestigious recognition.

Alexander Karimov | Plasma Physics | Best Researcher Award

Prof Dr. Alexander Karimov | Plasma Physics | Best Researcher Award

professor, National Research Nuclear University MEPhI, Russia

πŸ‘¨β€πŸŽ“ Alexander R. Karimov is a distinguished physicist and professor at the Moscow Engineering Institute, specializing in electrophysical installations. With extensive experience in magneto-plasma aerodynamics and MHD energy conversion, he has made significant contributions to the field.

Publication Profile

ORCID

Strengths for the Award

  1. Strong Academic Background: Alexander R. Karimov holds advanced degrees (Ph.D. and Doctor of Sciences) in Physics and Mathematics, demonstrating a solid foundation in his field.
  2. Extensive Research Contributions: With over 90 peer-reviewed articles, patents, and book chapters, his prolific output reflects significant contributions to theoretical beam and plasma physics, hydrody-namics, and the physics of soft matter.
  3. Leading Researcher Role: His position as a Leading Researcher at the Institute for High Temperatures, Russian Academy of Sciences, highlights his expertise and recognition in the field, particularly in magneto-plasma aerodynamics and MHD energy conversion.
  4. Innovative Projects: His recent works, such as the β€œPlasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles,” showcase his involvement in cutting-edge research that has practical implications in aerospace technology.

Areas for Improvement

  1. Interdisciplinary Collaboration: While he has a strong foundation in physics and mathematics, expanding his research collaborations with other disciplines could enhance the impact of his work and lead to innovative interdisciplinary solutions.
  2. Public Engagement: Increasing his visibility through public talks or community outreach could foster greater public understanding of his research areas, especially in complex topics like plasma physics.
  3. Funding Acquisition: Actively pursuing funding opportunities for his research could lead to expanded projects and collaborations, enabling him to further contribute to advancements in his field.

Education

πŸŽ“ Alexander earned his Ph.D. in Physics in 1994 and later his Doctor of Sciences degree in Mathematics in 1999 from the Moscow Engineering Institute, laying a strong foundation for his academic and research career.

Experience

πŸ”¬ Since 1996, Alexander has been a leading researcher at the Institute for High Temperatures, Russian Academy of Sciences, where he focuses on theoretical beam and plasma physics, as well as hydrodynamics.

Research Focus

βš›οΈ His current research interests encompass theoretical beam and plasma physics, hydrodynamics, and the physics of soft matter, contributing to advancements in energy conversion technologies.

Awards and Honours

πŸ… Alexander has authored over 90 peer-reviewed research articles, patents, and book chapters, highlighting his impactful contributions to the scientific community.

Publication Top Notes

Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles (2023) – Applied Sciences

Pulsed Plasma Accelerator (2023) – Plasma

Conclusion

Alexander R. Karimov is a highly qualified candidate for the Best Researcher Award, backed by his impressive academic credentials, extensive research output, and leadership in significant scientific projects. By addressing areas for improvement, such as fostering interdisciplinary collaborations and enhancing public engagement, he could further amplify the impact of his contributions to physics and engineering. His innovative research continues to pave the way for advancements in technology, making him a strong contender for this award.