Muhammad Sarfraz | Materials Science | Best Researcher Award

Dr. Muhammad Sarfraz | Materials Science | Best Researcher Award

Associate Professor | University of Engeineering and Technology | Pakistan

Dr. Muhammad Sarfraz is an accomplished researcher and Associate Professor in Polymer and Process Engineering, with extensive experience in membrane technologies and polymeric materials. He has led the design and fabrication of advanced laboratory setups, contributed to curriculum development, and actively mentored undergraduate and postgraduate students. His research focuses on innovative solutions for carbon dioxide separation, polymer composites, and advanced membrane processes, addressing both industrial and environmental challenges. He has participated in numerous international conferences, workshops, and training programs, demonstrating his commitment to continuous learning and knowledge dissemination. Dr. Sarfraz’s work reflects a strong integration of experimental expertise and applied research, producing practical outcomes while advancing fundamental understanding in his field. His scholarly contributions are significant, as reflected in Scopus, showcasing measurable research impact: 2,525 citations, 167 documents, and an h-index of 29.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. M. Sarfraz, “Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post …,” Journal of Membrane Science, vol. 514, pp. 35–43, 2016.

2. M. Sarfraz, “Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post …,” Journal of Industrial and Engineering Chemistry, vol. 36, pp. 154–162, 2016.

3. M. Sarfraz, “A novel zeolitic imidazolate framework based mixed-matrix membrane for efficient CO2 separation under wet conditions,” Journal of the Taiwan Institute of Chemical Engineers, vol. 65, pp. 427–436, 2016.

4. M. Sarfraz, “Combined Effect of CNTs with ZIF-302 into Polysulfone to Fabricate MMMs for Enhanced CO2 Separation from Flue Gases,” Arabian Journal of Science and Engineering, vol. 41, pp. 2573–2582, 2016.

5. A. Sohail, M. Sarfraz, S. Nawaz, Z. Tahir, “Enhancing carbon capture efficiency of zeolite-embedded polyether sulfone mixed-matrix membranes via annealing process,” Journal of Cleaner Production, vol. 399, 136617, 2023.

Zhiping Xu | Materials Science | Best Researcher Award

Dr. Zhiping Xu | Materials Science | Best Researcher Award

CEO at Beijing Heisen Lab Intelligence Technology Co., Ltd, China

Dr. Zhiping Xu is an accomplished researcher in materials science and engineering with a strong record of academic, industrial, and entrepreneurial achievements. He earned his Ph.D. in Materials Science from Tsinghua University and has contributed significantly to the study of polymer degradation, nanocomposites, and high-performance materials. His research excellence is demonstrated through numerous first-author publications in high-impact international journals, participation in prestigious international conferences, and multiple awarded patents that highlight his ability to translate research into practical innovations. Beyond academia, Dr. Xu has shown leadership as a founder of technology companies, bridging the gap between scientific discovery and industry application. His work reflects both theoretical depth and applied relevance, contributing to the advancement of sustainable and durable materials. With his combination of scholarly contributions, innovation, and entrepreneurial vision, Dr. Xu exemplifies the qualities of a modern researcher poised to make lasting contributions to materials science and technology.

Professional Profile 

Google Scholar | Scopus Profile

Education

Dr. Zhiping Xu has pursued a solid academic journey in materials science and engineering, beginning with his undergraduate studies at Southwest Jiaotong University, where he specialized in materials science. He then advanced to Jilin University for his master’s degree, focusing on textile engineering, which gave him a strong foundation in applied materials research. His academic path culminated in a doctoral degree at Tsinghua University, where he specialized in materials science and engineering within the Department of Chemical Engineering. Throughout his education, he combined rigorous coursework with hands-on research, developing both technical expertise and a broad scientific perspective. His leadership roles during his academic career, such as serving in student associations, provided him with valuable experience in collaboration and innovation. This diverse academic background not only deepened his knowledge of polymers and composites but also shaped his ability to approach scientific challenges with creativity, precision, and interdisciplinary insight.

Experience

Dr. Zhiping Xu’s research primarily centers on polymer degradation, nanocomposites, and advanced high-performance materials. His work has explored the mechanisms of photodegradation and photooxidation in polymers, particularly polypropylene and PMMA composites, with a focus on the role of nanosilica and surface-modified fillers. Through experimental and analytical approaches, he has contributed to understanding the interfacial behaviors that influence polymer stability and performance under various environmental conditions. His studies extend to the fabrication and mechanical characterization of continuous fiber-reinforced composites, where he has developed innovative methods for improving strength and durability. In addition, his research addresses the practical applications of advanced polymers in industrial and engineering contexts, reflecting both scientific depth and technological relevance. With numerous peer-reviewed publications, patents, and conference presentations, his research focus demonstrates a balance between fundamental material science and applied engineering, positioning him as a forward-looking researcher with a strong impact on polymer innovation.

Research Focus

Dr. Zhiping Xu has received recognition for his scholarly achievements and innovative contributions in the field of materials science. His active participation in international conferences, such as the International Symposium on Analytical and Applied Pyrolysis, earned him honors like the Excellent Poster Award, which highlights the quality and significance of his research. Beyond this, his numerous patents demonstrate his ability to transform laboratory research into practical technologies, bringing academic recognition and industrial value. Several of these patents have already been authorized and applied, showcasing his success in bridging scientific innovation with real-world applications. His leadership roles and entrepreneurial ventures further highlight the honors of trust and responsibility placed upon him in academic and professional circles. Collectively, these awards and distinctions underline not only his technical expertise but also his reputation as a capable and impactful researcher. They reflect his dedication, innovation, and growing influence in the field.

Award and Honor

Dr. Zhiping Xu is an emerging leader in materials science whose academic and research journey exemplifies excellence, innovation, and impact. With educational training across prestigious institutions, he has built a strong foundation in polymers, nanocomposites, and high-performance materials. His research has significantly advanced the understanding of polymer degradation and the design of durable, sustainable composites, with outcomes reflected in high-quality publications and multiple patents. Recognition at international conferences and success in translating research into industrial applications further underscore his capability and global relevance. Beyond his technical expertise, his leadership in student associations and entrepreneurial ventures demonstrates his vision to connect academia and industry. His blend of scholarly achievement, practical innovation, and leadership qualities make him a well-rounded researcher with the potential to influence materials science at both theoretical and applied levels. Overall, Dr. Xu’s contributions position him as a strong candidate for recognition through distinguished research awards.

Publication Top Notes

  • Title: Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk
    Authors: S. Keten, Z. Xu, B. Ihle, M.J. Buehler
    Year: 2010
    Citations: 1555

  • Title: Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors
    Authors: C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, Y. Zhang
    Year: 2016
    Citations: 945

  • Title: Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes
    Authors: H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng
    Year: 2013
    Citations: 892

  • Title: Selective ion penetration of graphene oxide membranes
    Authors: P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu
    Year: 2013
    Citations: 850

  • Title: Controlled nanocutting of graphene
    Authors: L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan
    Year: 2008
    Citations: 595

  • Title: Understanding water permeation in graphene oxide membranes
    Authors: N. Wei, X. Peng, Z. Xu
    Year: 2014
    Citations: 523

  • Title: Mechanical and thermal transport properties of graphene with defects
    Authors: F. Hao, D. Fang, Z. Xu
    Year: 2011
    Citations: 482

  • Title: Selective Trans-Membrane Transport of Alkali and Alkaline Earth Cations through Graphene Oxide Membranes Based on Cation−π Interactions
    Authors: P. Sun, F. Zheng, M. Zhu, Z. Song, K. Wang, M. Zhong, D. Wu, R.B. Little, Z. Xu, …
    Year: 2014
    Citations: 422

  • Title: Elastic straining of free-standing monolayer graphene
    Authors: K. Cao, S. Feng, Y. Han, L. Gao, T.H. Ly, Z. Xu, Y. Lu
    Year: 2020
    Citations: 419

  • Title: Interface structure and mechanics between graphene and metal substrates: a first-principles study
    Authors: Z. Xu, M.J. Buehler
    Year: 2010
    Citations: 393

  • Title: Fast water transport in graphene nanofluidic channels
    Authors: Q. Xie, M.A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H.G. Park, C. Duan
    Year: 2018
    Citations: 352

  • Title: Mechanical properties of graphene papers
    Authors: Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu
    Year: 2012
    Citations: 347

  • Title: Ultrafast Molecule Separation through Layered WS2 Nanosheet Membranes
    Authors: L. Sun, Y. Ying, H. Huang, Z. Song, Y. Mao, Z. Xu, X. Peng
    Year: 2014
    Citations: 311

  • Title: Measuring interlayer shear stress in bilayer graphene
    Authors: G. Wang, Z. Dai, Y. Wang, P.H. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, Z. Zhang
    Year: 2017
    Citations: 307

  • Title: Bending of Multilayer van der Waals Materials
    Authors: G. Wang, Z. Dai, J. Xiao, S.Z. Feng, C. Weng, L. Liu, Z. Xu, R. Huang, Z. Zhang
    Year: 2019
    Citations: 291

Conclusion

Dr. Zhiping Xu has established himself as a highly influential researcher in the fields of materials science and nanotechnology. His work spans critical areas including graphene, silk-based composites, and polymer aging, combining theoretical insights with practical applications. The significant citation counts of his publications reflect the global impact and recognition of his research contributions. In addition to scientific achievements, his role in entrepreneurship and leadership demonstrates a capacity to translate research into real-world innovations. While his research is highly advanced, opportunities exist to further broaden interdisciplinary collaborations and explore emerging applications of nanomaterials. Overall, Dr. Xu’s consistent record of high-impact publications, pioneering studies, and innovative problem-solving makes him exceptionally suitable for recognition with the Best Researcher Award. His work not only advances scientific knowledge but also inspires the next generation of researchers in materials science and engineering.

Alexander Lenshin | Materials Science | Best Researcher Award


Dr. Alexander Lenshin | Materials Science | Best Researcher Award

Leading researcher at Voronezh State University, Russia

Dr. Alexander Sergeevich Lenshin is a distinguished physicist and researcher, holding a Doctorate in Physical and Mathematical Sciences and serving as a leading researcher and associate professor at Voronezh State University. With over 14 years of academic and scientific experience, he has authored more than 100 publications, including numerous papers in high-impact Q1 journals. His research focuses on nanostructured materials, semiconductor heterostructures, and advanced 3D printing technologies. Dr. Lenshin has successfully led prestigious grants from the President of the Russian Federation, RFBR, and RSF, and serves as an expert for the Russian Science Foundation. He actively mentors graduate students and contributes to educational program development. His achievements have earned him regional awards and national recognition, including inclusion in the Strategic Talent Reserve of the Ministry of Science and Higher Education. Committed to both scientific excellence and education, Dr. Lenshin exemplifies the qualities of a leading researcher and academic innovator.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Alexander Sergeevich Lenshin received his foundational education at Voronezh State University, where he completed his Bachelor’s degree in 2004 and Master’s degree in 2006 in physics-related disciplines. He earned his Candidate of Physical and Mathematical Sciences (Ph.D. equivalent) in 2009 and his Doctor of Sciences degree in 2021 from the same institution, signifying a high level of academic excellence in the Russian academic hierarchy. His academic journey reflects a consistent commitment to deepening his expertise in physics and materials science. Beyond his formal education, Dr. Lenshin has completed numerous advanced training and professional development programs, including qualifications in semiconductor device project management, digital science and technology, labor safety, and strategic leadership. These programs have further enhanced his interdisciplinary competence and administrative capacity in the scientific and academic community. His academic foundation is both rigorous and diverse, equipping him for leadership roles in research and higher education.

Professional Experience

Dr. Lenshin has amassed over 14 years of experience in higher education and scientific research. He is currently a leading researcher and associate professor at Voronezh State University, where he teaches core physics courses and specialized subjects such as additive technologies in microelectronics. His professional activities span teaching, research supervision, curriculum development, and administrative contributions. He has mentored graduate and postgraduate students and actively promotes their participation in national and international scientific conferences. In addition to his academic duties, he plays a vital role in institutional development by contributing to the design of postgraduate training programs in physical sciences. His service also includes judging student science tournaments and mentoring innovation leagues, showcasing his dedication to student engagement and scientific outreach. Dr. Lenshin’s career is characterized by a balance of teaching, mentorship, and high-level scientific inquiry, making him a well-rounded academic professional and a key figure in advancing physics education and research.

Research Interest

Dr. Alexander Lenshin’s research focuses on the physics and engineering of low-dimensional nanostructures, advanced materials, and semiconductor heterostructures. His work includes the study of porous silicon, GaN/SiC-based hybrid structures, and polylactide-based polymers, with applications in microelectronics, photonics, and optoelectronics. He is particularly interested in the morphological, optical, and structural characterization of materials using methods such as Raman spectroscopy, molecular beam epitaxy, and various nano-fabrication techniques. A key theme in his research is understanding and controlling the physical properties of hybrid systems to optimize their functional performance in real-world applications. His interdisciplinary approach merges materials science with applied physics and nanoengineering. Dr. Lenshin’s scientific contributions are evidenced by more than 100 published works, many in top-tier journals, and his leadership in several funded research projects. His research stands at the forefront of modern materials science and has implications for next-generation electronic and photonic devices.

Award and Honor

Dr. Alexander Lenshin has received multiple prestigious awards in recognition of his scientific and educational contributions. He was a recipient of the Young Scientists and Specialists Award of the Voronezh Region in 2022 and previously won the Government of Voronezh Region Prize for Scientific Development in 2013. In 2018, he was awarded an honorary diploma by the city administration for his long-standing contributions to science and education. Dr. Lenshin has twice secured the highly competitive Presidential Grants of the Russian Federation, emphasizing his national standing as a researcher. He has also led projects supported by the Russian Foundation for Basic Research (RFBR) and the Russian Science Foundation (RSF). His role as an expert for the RSF and guest editor for the journal Coatings (MDPI, Scopus Q2) further highlights his influence within the scientific community. In 2024, he was included in the Ministry of Science and Higher Education’s Strategic Talent Reserve, a notable distinction for leadership in science and education.

Conclusion

Dr. Alexander Sergeevich Lenshin is an accomplished physicist, researcher, and educator whose career reflects a deep commitment to advancing science and higher education. With a strong academic foundation, extensive teaching experience, and a prolific research record in advanced materials and nanostructures, he exemplifies scientific leadership. His success in securing competitive research grants and mentoring the next generation of scientists underscores his influence in both national and institutional contexts. Recognized with multiple regional and governmental awards, Dr. Lenshin has demonstrated excellence in both individual and collaborative scientific endeavors. His inclusion in the Strategic Talent Reserve signals national confidence in his potential for higher leadership roles in science and technology policy. As a researcher, mentor, and academic innovator, he embodies the values and qualifications deserving of top honors such as the Best Researcher Award. Dr. Lenshin’s trajectory continues to make significant contributions to the field of physical sciences and the broader research community.

Publications Top Notes

  • Examining the morphology and surface composition of a nanostructured tin film on porous silicon
    Authors: Ksenia B. Kim, Alexander S. Lenshin, Sergei S. Chernenko, Sabukhi Ilich ogly Niftaliev, Andrey I. Chukavin
    Year: 2024
    Citation: DOI: 10.1364/JOT.91.000675

  • Microstructural and hydrophilic properties of polyethylene terephthalate glycol polymer samples with different 3D printing patterns
    Authors: Alexander S. Lenshin, Vera E. Frolova, Sergey A. Ivkov, Evelina P. Domashevskaya
    Year: 2024
    Citation: DOI: 10.17308/kcmf.2024.26/11810

  • Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy
    Authors: P. V. Seredin, N. A. Kurilo, Ali O. Radam, N. S. Builov, D. L. Goloshchapov, S. A. Ivkov, A. S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/10978

  • Comparative studies of nanoscale columnar AlxGa1-xN/AlN heterostructures grown by plasma-assisted molecular-beam epitaxy on cSi, porSi/cSi and SiC/porSi/cSi substrates
    Authors: P.V. Seredin, D.L. Goloshchapov, N.A. Kurilo, Ali Obaid Radam, V.M. Kashkarov, A.S. Lenshin, et al.
    Year: 2023
    Citation: DOI: 10.1016/j.optmat.2023.114451

  • Structure and composition of a composite of porous silicon with deposited copperAuthors: Alexander S. Lenshin, Kseniya B. Kim, Boris L. Agapov, Vladimir M. Kashkarov, Anatoly N. Lukin, Sabukhi I. Niftaliyev
    Year: 2023
    Citation: DOI: 10.17308/kcmf.2023.25/11259

  • Characteristics of the formation and composition of AlxGa1-xN/AlN/por-Si/Si(111) heterostructures grown using a porous silicon buffer layer
    Authors: Alexander S. Lenshin, Pavel V. Seredin, Dmitry S. Zolotukhin, Artemy N. Belyukov, Andrey M. Mizerov, Igor A. Kasatkin, et al.
    Year: 2022
    Citation: DOI: 10.17308/kcmf.2022.24/9055

  • Application of Sorption Analysis in the Study of Various Nanomaterials Used in Electronics Depending on their Composition and Production Conditions
    Authors: A. S. Lenshin, E. V. Maraeva
    Year: 2022
    Citation: DOI: 10.32603/1993-8985-2022-25-1-47-53

  • Features of the two-stage formation of macroporous and mesoporous silicon structures
    Authors: Alexander S. Lenshin, Anatoly N. Lukin, Yaroslav A. Peshkov, Sergey V. Kannykin, Boris L. Agapov, Pavel V. Seredin, Evelina P. Domashevskaya
    Year: 2021
    Citation: DOI: 10.17308/kcmf.2021.23/3300

  • Influence of electrochemical etching modes in single- and two-stage formation of porous silicon on oxidation of its surface layers under natural conditions
    Authors: Alexander S. Lenshin, Konstantin A. Barkov, Natalya G. Skopintseva, Boris L. Agapov, Evelina P. Domashevskaya
    Year: 2019
    Citation: DOI: 10.17308/kcmf.2019.21/2364

Zixuan Chen | Materials Science | Best Researcher Award

Prof. Zixuan Chen | Materials Science | Best Researcher Award

Lecture at University of Shanghai for Science and Technology, China

Dr. Zixuan Chen is a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology, with a Ph.D. in Materials Engineering. His research focuses on high-performance and multifunctional composite materials, durability of fiber-reinforced composites, and micro-/nano-material applications. With international academic experience in South Korea and China, Dr. Chen has contributed to several high-impact projects, including national R&D programs and joint military-industry initiatives. He has published extensively in top-tier journals such as Composites Science and Technology and Materials & Design, with multiple Q1 publications. As a reviewer for international journals and a member of the Chinese Society of Theoretical and Applied Mechanics, he actively engages with the academic community. Dr. Chen also mentors graduate students and contributes to research-driven education. His strong publication record, applied research contributions, and growing academic leadership mark him as a promising and impactful researcher in the field of advanced composite materials.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Zixuan Chen has a solid academic foundation in materials engineering. He began his graduate studies with a Master’s degree from the Department of Materials Engineering at Dalian Maritime University (2014–2016). Following this, he pursued a Ph.D. at Korea Maritime and Ocean University (2016–2019), where he engaged in intensive research on carbon fiber composites, contributing to international collaborative projects. His doctoral training emphasized advanced materials science and engineering, blending theoretical knowledge with applied research experience in high-performance composites. During his time in Korea, Dr. Chen worked closely with the Industry-Academia Cooperation Foundation and Korean Air, further reinforcing his practical expertise in cutting-edge material systems. His academic journey across leading institutions in China and Korea has equipped him with strong international perspectives and a deep understanding of the field, which continues to inform his research in composite materials and their applications in various industrial sectors.

Professional Experience

Dr. Zixuan Chen’s professional trajectory reflects steady growth in academia and research. From 2019 to 2022, he served as a Postdoctoral Fellow at Tongji University’s Mechanics Postdoctoral Station, where he participated in key national programs focusing on green composite materials and sustainable engineering solutions. Since November 2022, he has been a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology. In this role, he has continued to expand his research on advanced composite materials while mentoring graduate students. His work spans both fundamental and applied research, including involvement in strategic military-industry projects such as vibration and shock control systems. Dr. Chen’s hands-on experience in project development, collaboration with industrial partners, and contributions to national initiatives demonstrate his capacity for impactful research. His current position also emphasizes teaching excellence, academic service, and shaping the next generation of engineers in the field of materials science and mechanical engineering.

Research Interest

Dr. Zixuan Chen’s research interests lie at the intersection of advanced materials science and mechanical engineering, with a focus on high-performance fiber-reinforced composites. His work emphasizes the development, functionalization, and structural design of micro- and nano-materials for composite applications. He is particularly interested in enhancing the durability, strength, and multifunctionality of these materials, making them suitable for use in aerospace, defense, and environmental sustainability sectors. Dr. Chen also explores green composite solutions, contributing to national efforts in biomass fiber development and rural technology advancement. His interdisciplinary approach incorporates structural optimization, intelligent material applications, and experimental design techniques to address real-world engineering challenges. His research has consistently been published in high-impact Q1 journals, highlighting both innovation and practical relevance. Through collaboration with academia and industry, Dr. Chen aims to bridge the gap between laboratory research and scalable engineering solutions that contribute to sustainable development and high-tech material design.

Award and Honor

While specific named awards are not listed in the available profile, Dr. Zixuan Chen’s academic achievements and recognitions are evident through his scholarly output and roles. He has published multiple high-impact papers in prestigious Q1 journals such as Composites Science and Technology, Materials & Design, and ACS Applied Nano Materials, a notable indicator of peer recognition. As a reviewer for several international scientific journals, he is actively engaged in academic quality assurance and thought leadership within his field. Furthermore, his membership in the Chinese Society of Theoretical and Applied Mechanics reflects professional recognition at the national level. His involvement in prominent national R&D programs and military-industry collaborations also signifies trust and recognition by government and institutional stakeholders. These cumulative accomplishments serve as indirect honors, demonstrating that Dr. Chen is a respected and valuable contributor to his field. As his career progresses, formal accolades are likely to follow his continued research excellence and leadership.

Conclusion

In summary, Dr. Zixuan Chen is an emerging academic and researcher whose expertise in composite materials and engineering mechanics is marked by both depth and breadth. With a strong educational background and international experience, he has developed a research profile that spans high-performance materials, green technology, and military-industrial applications. His prolific publication record in top-tier journals and active engagement in national research programs reflect both competence and impact. As a Lecturer and Master’s supervisor, he also plays an important role in mentoring students and advancing engineering education. Though still in the early stages of his independent academic career, Dr. Chen exhibits the qualities of a top researcher—intellectual curiosity, interdisciplinary capability, and a drive to contribute meaningful innovations to society. Given his consistent output and growing leadership, he is well-positioned to make significant future contributions to the field and is a strong candidate for recognition through awards like the Best Researcher Award.

Publications Top Notes

  • Title: Comprehensive effects of isomeric doping on electrospun PVDF films: Towards smart wiper systems enabled by piezoelectric nanogenerators and machine learning
    Authors: Zixuan Chen, Huancheng Yang, Huijie Yu, Yao Lu, Wenchao Gao
    Year: 2025

  • Title: Fire-insulation properties of recycled aggregate concrete, its application in composite concrete structures, and concrete-concrete interface effects: a review
    Authors: Zixuan Chen, Jianzhuang Xiao
    Year: Not specified

  • Title: Electrophoretic deposition of non-conductive halloysite nanotubes onto glass fabrics with improved interlaminar properties of glass/epoxy composites (Book Chapter)
    Authors: Tianyu Yu, Zixuan Chen, Soojeong Park, Yunhae Kim
    Year: Not specified

Yuriy Chumlyakov | Materials Science | Best Researcher Award

Prof. Yuriy Chumlyakov | Materials Science | Best Researcher Award

head of laboratory at Tomsk State University, Russia

Yuriy Ivanovich Chumlyakov is a prominent Russian scientist renowned for his groundbreaking contributions to materials science and solid-state physics. Currently, he is the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, Tomsk State University, and also a professor at Tomsk State University. Over his distinguished career, Chumlyakov has gained international recognition for his pioneering research on high-strength single crystals, including studies on mechanical twinning, thermoelastic martensitic transformations, and shape memory alloys. His work has not only enriched theoretical physics but also influenced practical applications in material engineering, particularly in areas like superelasticity and plastic deformation. Throughout his career, he has collaborated with leading research institutions globally and played a key role in advancing the scientific understanding of materials’ behavior under stress and transformation. His academic and professional pursuits have made him a leading figure in his field, contributing extensively to both research and teaching.

Professional Profile

Education

Yuriy Chumlyakov’s academic journey is marked by an unwavering commitment to advancing knowledge in solid-state physics. He completed his undergraduate degree at Tomsk State University, where he earned a diploma in physics in 1970. Building upon this foundation, he pursued graduate studies at the same institution, earning his Ph.D. in solid-state physics in 1980. His expertise in the field was further solidified when he obtained the prestigious Doctor of Science degree in 1989 from the Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Tomsk. Chumlyakov’s education provided him with the deep theoretical understanding and practical research skills necessary for his long-term contributions to the study of material properties, including those related to crystal structures, plasticity, and shape memory alloys. His academic background has played an essential role in shaping his successful career as a researcher and educator, allowing him to mentor future generations of scientists.

Professional Experience

Yuriy Ivanovich Chumlyakov’s professional career spans several decades, with significant contributions to both academic research and the advancement of materials science. Since 1989, he has served as the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, where he has overseen numerous research projects focused on the behavior of high-strength single crystals under various stress conditions. Additionally, since 1993, Chumlyakov has been a professor at Tomsk State University, educating students in solid-state physics and materials science. His career also includes a long tenure as a senior research worker at the same institute, where he initially gained prominence. Throughout his career, Chumlyakov has been involved in numerous international collaborations, contributing to the global scientific community. His leadership and extensive experience in experimental and theoretical physics have positioned him as a key figure in the study of materials’ mechanical properties and transformations.

Research Interests

Yuriy Chumlyakov’s research interests lie at the intersection of solid-state physics, materials science, and applied physics. His primary focus is on the behavior of single crystals, particularly in the context of mechanical twinning, plastic deformation, and fracture mechanisms. He has extensively studied thermoelastic martensitic transformations in homogeneous and non-homogeneous crystals, including materials like NiTi, FeNiCoAl, and TiNiFe. Chumlyakov’s work on shape memory alloys and superelasticity has contributed to advancing the understanding of materials that undergo reversible transformations when subjected to external stimuli, such as temperature or stress. His expertise also extends to the dislocation structures in crystals and the plastic deformation of single crystals, which are vital for applications in aerospace, automotive, and medical fields. The practical implications of his work are vast, especially in the development of advanced materials for engineering solutions, including applications in structural health monitoring and high-performance materials.

Awards and Honors

Yuriy Ivanovich Chumlyakov’s exemplary contributions to materials science have earned him numerous prestigious awards and honors over the years. He has been a recipient of multiple grants from the Russian Foundation for Basic Research and the Russian Ministry of Education, underscoring the significance of his research in advancing the field. Chumlyakov’s work has been widely recognized internationally, with honors including a fellowship from the Japan Society for the Promotion of Science (JSPS) and the prestigious George Miller Professorship at the University of Illinois. He has served on the editorial boards of leading journals such as the Journal of Physics of Metals and Metallography and as a guest editor for special issues on shape memory alloys in the ASME Journal of Engineering and Technology. Furthermore, his contributions to the scientific community have been acknowledged through his appointment as a permanent jury member of PhD and Doctor of Science councils at Tomsk State University. These honors reflect his standing as a leading researcher in his field.

Conclusion

Yuriy Ivanovich Chumlyakov is a highly deserving candidate for the Best Researcher Award. His long history of groundbreaking research, leadership in academia, global recognition, and extensive contributions to the fields of solid-state physics and materials science make him a standout figure in his discipline. His work on shape memory alloys and thermomechanical transformations is crucial in advancing both theoretical and practical aspects of materials science, particularly for engineering applications. Expanding his outreach and engaging with newer interdisciplinary fields would only further enhance the impact of his already impressive career.

Publications Top Noted

  • High-temperature thermoelastic martensitic transformations in Ni44Fe19Ga27Co10 single crystals
    • Authors: Timofeeva, E.E., Panchenko, E.Y., Zherdeva, M.V., Volochaev, M.N., Chumlyakov, Y.I.
    • Year: 2025
    • Journal: Materials Letters
    • Citations: 0
  • Effect of carbon on the shape memory effect of [1¯44]−Oriented Cr20Fe20Mn20Co35Ni4.9C0.1 high-entropy alloy single crystals under tension
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Vyrodova, A.V.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Cyclic stability of the elastocaloric effect in heterophase [001]-oriented TiNi single crystals
    • Authors: Surikov, N.Y., Panchenko, E., Chumlyakov, Y.I., Marchenko, E.
    • Year: 2024
    • Journal: Applied Physics Letters
    • Citations: 0
  • Influence of the number of particle variants on the cyclic stability of superelasticity in Ti-51.5at.%Ni single crystals
    • Authors: Timofeeva, E.E., Zherdeva, M.V., Tagiltsev, A.I., Panchenko, E.Y., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 1
  • Thermal and Cyclic Stability of Two-Way Shape Memory Effect in Ni44Fe19Ga27Co10 Single Crystals
    • Authors: Timofeeva, E.E., Dmitrienko, M.S., Panchenko, E.Y., Fatkullin, I.D., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Microstructure and Thermoelastic Martensitic Transformation in Ni-Low and -Rich Ni–Ti–Hf–Nb High-temperature Shape Memory Alloys
    • Authors: Eftifeeva, A.S., Timofeeva, E.E., Panchenko, E.Y., Yanushonyte, E.I., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Orientation Dependence of Cyclic Stability of Superelasticity of Ti50.2Ni49.8 Alloy Single Crystals under Compression
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Vyrodova, A.V., Pobedennaya, Z.V., Marchenko, E.S.
    • Year: 2024
    • Journal: Physics of Metals and Metallography
    • Citations: 0
  • Influence of Heat Treatments on Martensitic Transformations and Elastocaloric Effect in Two-Phase (β + γ) NiFeGa Alloys
    • Authors: Kurlevskaya, I.D., Panchenko, E.Y., Tokhmetova, A.B., Timofeeva, E.E., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Physical Mesomechanics
    • Citations: 1
  • Superelasticity of [0 0 1]-oriented Fe–Mn–Al–Cr–Ni crystals with a negative temperature dependence of transformation stresses
    • Authors: Chumlyakov, Y.I., Kireeva, I.V., Pobedennaya, Z.V., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Formation of texture and twinning at 296 K of “Artificial” polycrystals of an equiatomic Co20Cr20Fe20Ni20Mn20 High-entropy alloy
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0