Ananya Kuri | Engineering | Best Researcher Award

Ms. Ananya Kuri | Engineering | Best Researcher Award

Scientist | R&D Project Manager at Siemens AG, Germany

Ananya Kuri is an accomplished R&D Project Manager at Siemens AG, specializing in electrical power engineering and grid stability. With over 10 years of experience in the power systems sector, she has played a pivotal role in dynamic performance analysis, inverter-based resource modeling, and power grid optimization. Ananya holds a Ph.D. from FAU Erlangen (dissertation under review) and an M.Sc. in Electrical Power Engineering from RWTH Aachen University. She is known for her leadership in managing complex projects, mentoring teams, and collaborating with global customers. Her expertise lies in enhancing power system stability, modeling and analyzing power plants, and supporting grid compliance efforts. Ananya’s work spans across consulting, R&D, and training, with significant contributions to Siemens’ technology in power systems and microgrids. Her professional journey reflects a blend of innovation, technical excellence, and strong industry engagement, making her a respected figure in the energy sector.

Professional Profile

Education

Ananya Kuri’s academic credentials lay a solid foundation for her extensive career in power systems engineering. She holds a Ph.D. in Electrical Engineering from FAU Erlangen, where her dissertation is currently under review. Prior to this, she completed her M.Sc. in Electrical Power Engineering from RWTH Aachen University, one of Germany’s premier technical institutions. During her time at RWTH Aachen, Ananya developed a deep understanding of electrical power technologies and systems, which has been pivotal in her professional journey. Her B.Eng. in Electrical and Electronics Engineering from M.S. Ramaiah Institute of Technology in Bangalore, India, provided her with early insights into power systems, further shaping her technical expertise. Throughout her academic tenure, Ananya demonstrated a strong commitment to research, resulting in multiple published works and contributions to cutting-edge developments in the power systems domain, paving the way for her successful professional career.

Professional Experience

Ananya Kuri’s professional experience spans a decade of working with Siemens AG, where she has made significant contributions in both consulting and research roles. She began her career as a Senior Power Systems Consultant and Portfolio Element Owner in Siemens’ Digital Grid, focusing on transmission systems, inverter-based resources, and power grid stability. Her technical expertise was key in the modeling and analysis of various Siemens power systems products, including the Power Plant Controller and Microgrid Controller. Ananya has also held leadership roles as an R&D Project Manager, where she led projects like ENSURE Phase 3 for inverter-based resources and kurSyv for corrective system management in distribution networks. She has mentored teams, managed global consulting projects, and played an integral role in Siemens’ advancements in grid compliance, ensuring Siemens’ power systems meet the evolving needs of modern electrical grids. Her extensive work with international clients and R&D initiatives highlights her strong professional impact.

Research Interests

Ananya Kuri’s research interests lie primarily in the areas of power system stability, grid integration, and inverter-based technologies. Her work revolves around enhancing the dynamic performance of power grids, with a focus on transient stability, small-signal analysis, and frequency regulation. Ananya is particularly interested in the modeling and control of inverter-based resources, as these technologies are crucial in supporting the transition to renewable energy sources and the modernization of grid infrastructures. Her research also extends to the development of advanced control strategies for microgrids and power plants, aiming to improve grid stability and resilience. She is actively involved in R&D projects that address the operational challenges of integrating renewable energy into power systems, such as enhanced inverter control techniques. Ananya’s contributions to power system modeling, grid compliance studies, and dynamic simulations aim to drive innovations in power system operations and support the reliable and efficient operation of future grids.

Awards and Honors

Ananya Kuri’s outstanding contributions to the field of power systems engineering have earned her recognition within both the academic and professional communities. She has been actively involved in global research and development initiatives and has contributed to numerous successful consulting projects. Although specific awards are not mentioned, her leadership roles in industry-standard working groups like CIGRE and IEC, along with her involvement in over 35 working groups and 17+ published works, underscore her high standing in the industry. Ananya’s influence extends beyond her immediate work at Siemens, as she is recognized as a key member of international committees shaping the future of power system operations and standards. Her expertise in developing Siemens’ key products, such as the SICAM Power Plant Controller and Microgrid Controller, also highlights her significant contributions to the global energy sector. These honors and recognitions reflect her impact as a thought leader in electrical power engineering.

Conclusion

Ananya Kuri is highly suitable for the Best Researcher Award based on her extensive experience, leadership in R&D, technical expertise, and contributions to global research projects. Her work in inverter control strategies, grid stability, and model development for Siemens’ products directly addresses the challenges facing modern power systems. The only area for improvement would be completing her Ph.D. and further enhancing her public engagement. Overall, she represents the qualities of a forward-thinking researcher with significant industry impact.

Publications Top Noted

Title: Power Dispatch Capacity of a Grid-Forming Control Based on Phase Restoring Principle
Authors: A. Kuri, Ananya; R. Zurowski, Rainer; G. Mehlmann, Gert; M. Luther, Matthias
Journal: IEEE Systems Journal
Year: 2023
Citations: 3

 

Anna Plichta | Engineering | Best Researcher Award

Mrs. Anna Plichta | Engineering | Best Researcher Award

Research and Teaching Assistant Professor, Cracow University of Technology, Poland

Dr. Anna Plichta is a Research and Teaching Assistant Professor at Cracow University of Technology, Poland, where she also works at the International Center of Education. With a multifaceted background in Comparative Literature and Computer Science, she combines insights from the humanities with advanced computational techniques. Dr. Plichta holds a PhD in Computer Science from Politechnika Wrocławska (2019) and has a strong academic foundation with degrees from Jagiellonian University and Politechnika Krakowska. Her interdisciplinary research focuses on machine learning, artificial intelligence, and applied computer science, with practical applications in energy systems, motor diagnostics, and microbiology. With a commitment to educational excellence and international collaboration, Dr. Plichta has been a key figure in research and teaching at the university for over a decade.

Profile

Strengths for the Award

  1. Diverse Research Interests and Impact: Dr. Plichta’s work spans multiple domains including comparative literature, computer science, machine learning, electrical engineering, and applied mathematics. This interdisciplinary approach showcases her ability to bridge distinct fields, offering innovative solutions to complex problems. Notably, her research on bacterial classification using machine learning methods and energy consumption forecasting using machine learning reflects her versatility and the relevance of her work to contemporary scientific and industrial challenges.
  2. High Citation Impact: Her publication titled “Deep learning approach to bacterial colony classification” has received 134 citations, which demonstrates significant influence and recognition in the scientific community. This kind of citation impact highlights the relevance and utility of her research findings.
  3. Technological Innovation: Her contributions to induction motor fault detection using machine learning techniques (e.g., simulated annealing and genetic algorithms) are highly practical, with clear industrial applications. This emphasizes her role in driving innovation in applied fields, particularly in electromechanical systems and energy sectors, making her work not only academic but also relevant to real-world problems.
  4. Academic Leadership and Teaching: As a Research and Teaching Assistant Professor at Cracow University of Technology, Dr. Plichta combines academic instruction with significant research involvement. Her active engagement in the International Center of Education is a testament to her dedication to fostering a new generation of researchers and students.
  5. Publication Quality: Dr. Plichta consistently publishes in peer-reviewed journals and presents at high-level conferences like those organized by the European Council for Modelling and Simulation. This speaks to her engagement with the broader academic community and her ability to produce high-quality research.

Areas for Improvement

  1. Collaboration and Interdisciplinary Work: While Dr. Plichta’s interdisciplinary work is commendable, further expanding collaborations with other research groups and international institutions could enhance the visibility and impact of her work. Expanding collaborative efforts, especially with industry partners, could help bring more practical applications to the forefront.
  2. Public Outreach and Dissemination: While her publications and citations are notable, there could be a more concerted effort to engage with the general public or non-academic stakeholders, particularly in areas like bacterial classification and energy forecasting, where her research could have significant societal impact. This could include public lectures, podcasts, or participation in science communication events.
  3. Further Publishing in High-Impact Journals: Publishing in higher-impact journals (e.g., Nature, IEEE Transactions) could further boost the international recognition of her work. While her current journal choices are respected, elevating the visibility of her research in top-tier outlets may further her career and contribute to the recognition of her as a leading expert in her field.

Education

Dr. Anna Plichta’s academic journey blends the study of literature and technology. She earned a BA in Comparative Literature (2005) and MA in Comparative Literature (2007) from Jagiellonian University. Her fascination with technology led her to pursue an MA in Computer Science (2010) from Politechnika Krakowska, followed by a PhD in Computer Science from Politechnika Wrocławska (2019). Her doctoral research focused on applying computational methods to real-world engineering challenges, a field that bridges the gap between theoretical knowledge and practical applications. With this strong foundation, she applies machine learning and AI techniques to diverse areas such as energy forecasting, motor fault detection, and bacterial classification. Dr. Plichta’s educational background not only demonstrates her expertise in both the arts and sciences but also her commitment to lifelong learning and interdisciplinary research.

Experience 

Dr. Anna Plichta has had a distinguished career as a Research and Teaching Assistant Professor at Cracow University of Technology since 2010. She has been an integral part of the university’s International Center of Education since 2015, fostering international research collaboration. Dr. Plichta’s professional experience spans both teaching and research, with a particular emphasis on computational techniques applied to energy systems, mechanical engineering, and biology. She has developed and taught courses related to machine learning, AI, and applied computer science. Her academic leadership extends to guiding postgraduate students and conducting collaborative research projects. Dr. Plichta’s expertise in energy consumption modeling, motor diagnostics, and microbial classification has positioned her as a thought leader in these domains, contributing to over 17 published works. She is also involved in the advancement of international education, contributing to the university’s global research network.

Research Focus 

Dr. Anna Plichta’s research focuses on applying machine learning and artificial intelligence to solve complex problems in fields ranging from energy systems to biological data analysis. Her work in forecasting energy consumption uses advanced computational techniques to predict energy demands in clusters, supporting sustainable energy solutions. In the area of electromechanical engineering, she has applied genetic algorithms and wavelet analysis to detect faults in induction motors, such as inter-turn short circuits. Additionally, her research in microbiology explores the use of image analysis and neural networks to identify bacterial species, contributing to more accurate and efficient diagnostic methods. Dr. Plichta is deeply invested in interdisciplinary research, bringing together computational methods with practical applications in industries such as energy, engineering, and healthcare. She is particularly interested in improving the accuracy and efficiency of diagnostic techniques and optimizing energy consumption through AI-driven models.

Publication 

  1. Forecasting Energy Consumption in Energy Clusters using Machine Learning Methods 📊💡
  2. Matrix Similarity Analysis of Texts Written in Romanian and Spanish 📚🔍
  3. Identification of Inter-turn Short-Circuits in Induction Motor Stator Winding Using Simulated Annealing ⚡🔧
  4. Application of Genetic Algorithm for Inter-turn Short Circuit Detection in Stator Winding of Induction Motor ⚙️🧠
  5. Recognition of Species and Genera of Bacteria by Means of the Product of Weights of the Classifiers 🦠🔬
  6. Application of Image Analysis to the Identification of Mass Inertia Momentum in Electromechanical Systems with Changeable Backlash Zone ⚙️🔍
  7. Application of Wavelet-Neural Method to Detect Backlash Zone in Electromechanical Systems Generating Noises 🔧🌊
  8. Methods of Classification of the Genera and Species of Bacteria Using Decision Tree 🌱📈
  9. Deep Learning Approach to Bacterial Colony Classification 🧬🤖
  10. The DDS Synthesizer (for FPGA Platform) for the Purpose of Research and Education 💻📚

Conclusion

Dr. Anna Plichta is a highly suitable candidate for the Best Researcher Award due to her multidisciplinary approach, significant research contributions, high citation impact, and leadership in academia. She has demonstrated a consistent ability to tackle complex challenges through computational methods, contributing valuable knowledge to both the scientific community and industrial sectors. Her work, particularly in machine learning and electromechanical systems, is both innovative and impactful.While there are always areas for improvement, such as expanding collaborative efforts and public outreach, these do not overshadow her significant academic achievements. Dr. Plichta’s track record of high-quality research and teaching, along with her contribution to solving real-world problems, make her an excellent contender for the Best Researcher Award.

Avishek Choudhury | Engineering | Best Researcher Award

Assist Prof Dr. Avishek Choudhury | Engineering | Best Researcher Award 

Assistant Professor at West Virginia University, United States

Dr. Avishek Choudhury is a tenure-track Assistant Professor in the Department of Industrial and Management Systems Engineering at West Virginia University, where he focuses on human factors, human-systems interaction, occupational safety, and medical informatics. He earned his Ph.D. from Stevens Institute of Technology, with a dissertation on an AI-based blood utilization calculator. His research aims to improve healthcare outcomes through innovative technology, notably in maternal health and mental health interventions. Dr. Choudhury has received numerous awards, including the Human Factors and Ergonomics Society’s Best Article Award for his work on AI in healthcare. With an impressive publication record, including over 40 peer-reviewed articles and several active research grants, he also contributes to the academic community as an editorial board member and reviewer for various journals.

Publication Profile

Strengths for the Award:

  1. Diverse Research Areas: Avishek Choudhury’s research spans crucial domains such as human factors, occupational safety, medical informatics, and healthcare AI applications. His ability to integrate these areas, particularly focusing on AI’s role in healthcare decision-making, human-system interaction, and mental health, demonstrates a high level of expertise.
  2. Innovative Projects: His involvement in impactful projects like Mobile for Mothers, which aims to reduce maternal mortality in underprivileged societies using AI, highlights his commitment to solving global healthcare challenges. Additionally, his work on mobile health interventions for mental health issues among students showcases his alignment with contemporary healthcare needs.
  3. Strong Publication Record: With 49 peer-reviewed journal articles and a high h-index of 20, Dr. Choudhury demonstrates a robust academic presence. His work is frequently published in leading journals, such as JMIR, PLOS One, and Scientific Reports. Several of his papers focus on cutting-edge issues, including the integration of AI into clinical settings and the mental health impact of cancer care, solidifying his reputation in research communities.
  4. Recognition and Awards: His numerous awards, including the Human Factors and Ergonomics Society Best Article Award and the Paul Kaplan Award for excellence in research, underscore the quality and impact of his work. These accolades highlight his ability to generate meaningful research with real-world applications.
  5. Leadership in Editorial Roles: His involvement as an editorial board member and associate editor for prominent journals, such as JMIR Human Factors and Frontiers in Digital Health, reflects his standing as a thought leader. These positions indicate his influence on the future direction of research in his field.
  6. Grants and Funding: Choudhury has successfully secured significant funding from prestigious organizations, including the EPA and internal grants from WVU. His ability to lead projects that attract funding suggests strong leadership skills and the potential for further groundbreaking research.

Areas for Improvement:

  1. Expanded International Collaborations: Although Dr. Choudhury’s research focuses on global health challenges, particularly in LMICs, more international collaborations with institutions beyond the U.S. could further enhance his research’s global impact. Partnering with diverse academic and healthcare organizations in these regions could bolster the implementation of his findings.
  2. Public Engagement and Outreach: While he has presented at prestigious conferences and workshops, increasing his public-facing engagement (e.g., outreach through public lectures, media appearances, or policy advising) could extend the societal impact of his research, particularly in policy formulation for AI in healthcare.
  3. Interdisciplinary Integration: Although his research is interdisciplinary, expanding collaboration with professionals in fields such as behavioral science or sociology might enhance the human-centered focus of his work, especially in areas like mental health interventions and AI ethics.

Education: 

Dr. Avishek Choudhury’s educational background is impressive and diverse. He obtained his Ph.D. in Systems Engineering with a focus on Human Factors from Stevens Institute of Technology in May 2022, where his dissertation explored the development of an Artificial Intelligence-Based Blood Utilization Calculator through a mixed-method approach. Prior to that, he earned an M.Sc. in Industrial Engineering from Texas Tech University in 2017, building a solid foundation in engineering principles. His academic journey began with a B.Tech. in Automobile Engineering from West Bengal State University, where he graduated in 2014. This educational trajectory demonstrates his commitment to advancing knowledge in industrial and management systems engineering, particularly in the areas of human factors and healthcare.

Experience:

Dr. Avishek Choudhury is a Tenure Track Assistant Professor in Industrial and Management Systems Engineering at West Virginia University, specializing in Human Factors, Human-Systems Interaction, Occupational Safety, and Medical Informatics. With a Ph.D. from Stevens Institute of Technology, he has a strong research background as a former Research Assistant and Teaching Assistant. His diverse experiences include a Process Improvement Internship at UnityPoint Health and significant research contributions through multiple active grants and projects, particularly focusing on maternal healthcare and the application of AI in healthcare settings. Dr. Choudhury’s commitment to advancing healthcare technology is evidenced by his numerous peer-reviewed publications, editorial roles, and academic awards, which reflect his dedication to addressing critical issues in healthcare through innovative research and interdisciplinary collaboration.

Research Focus:

Dr. Avishek Choudhury’s research focuses on the intersection of human factors, human-systems interaction, and occupational safety within the healthcare sector. His work emphasizes improving the usability and efficacy of healthcare technologies, particularly through the integration of artificial intelligence (AI). He has led innovative projects, including the development of intelligent maternal healthcare systems aimed at reducing preventable maternal mortality in low- and middle-income countries and investigating AI applications in clinical decision-making to enhance clinicians’ performance and cognitive workload. Dr. Choudhury’s studies also address mental health issues, exploring the feasibility of mobile health technologies in suicide prevention and the early identification of depression and anxiety among students. Through a combination of qualitative and quantitative methods, he seeks to identify critical determinants of health outcomes and foster patient-centered care by enhancing the interaction between healthcare professionals and technology. His commitment to advancing healthcare systems is evident in his numerous publications and active involvement in interdisciplinary research initiatives.

Awards and Honors:

Avishek Choudhury, Ph.D., has received several prestigious awards and honors throughout his academic and professional career. Notably, he was recognized in 2024 with the Human Factors and Ergonomics Society’s Best Article Award for his outstanding article titled “Impact of Accountability, Training, and Human Factors on the Use of Artificial Intelligence in Healthcare.” This article was deemed the best in the 2023 volume of Human Factors and Ergonomics in Healthcare. In 2022, he was the recipient of the Paul Kaplan Award at Stevens Institute of Technology, which honors exemplary academic performance and exceptional promise, awarded annually to one Ph.D. candidate in the university. Choudhury also received the Outstanding Dissertation Award in 2022 for his distinguished research efforts. Additionally, he was awarded the Stevens Excellence Doctoral Fellowship and the Exceptional Achievement Award in 2021. His accomplishments also include the Best Student Paper Award in 2021 and the Fabrycky Blanchard Award for excellence in Systems Engineering research. Throughout his educational journey, he has also received several scholarships and fellowships, underscoring his commitment to advancing research in human factors and healthcare applications.

Publication Top Notes:

  • Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals
    • Authors: Choudhury, A., Chaudhry, Z.
    • Year: 2024
    • Citation: Journal of Medical Internet Research, 26(1), e56764.
  • Erratum: Acceptance, initial trust formation, and human biases in artificial intelligence: focus on clinicians
    • Authors: Choudhury, A., Elkefi, S.
    • Year: 2024
    • Citation: Frontiers in Digital Health, 6, 1334266.
  • Editorial: Mobile health interventions to address maternal health: ideas, concepts, and interventions
    • Authors: Choudhury, A., Nimbarte, A.
    • Year: 2024
    • Citation: Frontiers in Digital Health, 6, 1378416.
  • Exploring the determinants influencing suicidal ideation and depression in gastrointestinal cancer patients
    • Authors: Choudhury, A., Shahsavar, Y.
    • Year: 2023
    • Citation: Scientific Reports, 13(1), 18236.
  • Exploring Perceptions and Needs of Mobile Health Interventions for Nutrition, Anemia, and Preeclampsia among Pregnant Women in Underprivileged Indian Communities: A Cross-Sectional Survey
    • Authors: Choudhury, A., Shahsavar, Y., Sarkar, K., Choudhury, M.M., Nimbarte, A.D.
    • Year: 2023
    • Citation: Nutrients, 15(17), 3699

Conclusion:

Dr. Avishek Choudhury is a strong candidate for the Best Researcher Award, given his innovative and impactful contributions to human factors, healthcare AI, and medical informatics. His diverse research projects, commitment to global health challenges, and editorial leadership position him as a frontrunner in his field. Addressing minor areas for improvement—such as expanding international collaborations and public outreach—would further amplify his influence and reach. Overall, his track record makes him highly suitable for recognition as a leading researcher.