Ermias Debie | Environmental Science | Best Researcher Award

Dr. Ermias Debie | Environmental Science | Best Researcher Award

Associate Professor at Bahir Dar University, Ethiopia

Dr. Ermias Debie is a dedicated academic in the field of Environment and Natural Resources Management, currently serving as an Associate Professor at Bahir Dar University, Ethiopia. With a strong commitment to addressing pressing environmental issues, he integrates research with community engagement to enhance sustainable practices and improve livelihoods in the Northwest Highlands of Ethiopia.

Profile

Scopus Profile

Education 🎓

Dr. Debie holds a Ph.D. in Environment and Natural Resources Management from Addis Ababa University, Ethiopia. He has furthered his expertise with a specialized certificate in GIS and remote sensing applications for water resources management from a prestigious institution in the Netherlands, showcasing his commitment to leveraging technology in environmental studies.

Experience 💼

With a rich background in academia, Dr. Debie has held various positions, including Assistant Professor and Department Head at Bahir Dar University and Debre Markos University. His roles have spanned teaching, research supervision, and course leadership, reflecting his dedication to fostering academic excellence. He has supervised over 50 MA and MSc students and is currently mentoring a Ph.D. student, further contributing to the development of future scholars in his field.

Research Interests 🔍

Dr. Debie’s research interests encompass a wide array of topics, including livelihood resilience, climate change and variability, food insecurity, climate-smart innovations, agrobiodiversity, and sustainable land management. His work aims to understand and mitigate the impacts of climate change while promoting ecological restoration across different levels.

Publications 📚

Dr. Debie has a robust publication record, contributing significantly to the field of environmental management. Here are some of his key publications:

  1. A local perspective on the links between flora biodiversity and ecosystem services in the Northwest Highlands of Ethiopia (2024), Journal of Environmental Management.
  2. Analysis of the decision to convert croplands into E. Camaldulensis woodlot and its impact on income diversification in Mecha district, Northwest Ethiopia (2024), Trees, Forests and People.
  3. Endemic plant species and threats to their sustainability in Ethiopia: A systematic review (2024), Trees, Forests and People.
  4. Effectiveness of sustainable land management initiatives in the highlands of Ethiopia (2024), Regional Environmental Change.
  5. The impacts of land use/cover changes on values of ecosystem service in Tul watershed, northwest Ethiopia (2023), ERJSSH.
  6. Perceived determinants of smallholder households’ resilience to livelihood insecurity in Goncha District, Northwest Highlands of Ethiopia (2023), SAGE Open.

His extensive publication list reflects his active engagement in scholarly research and contributions to understanding environmental challenges in Ethiopia.

Conclusion

Dr. Ermias Debie’s commitment to education, research, and community service positions him as a key figure in environmental management in Ethiopia. His work not only contributes to academic knowledge but also fosters sustainable practices that positively impact local communities. As he continues to explore new avenues for research and community engagement, his influence in the field will undoubtedly grow, driving forward the agenda of environmental sustainability and resilience.

Josue Enriquez Zarate | Energy | Best Research Article Award

Dr. Josue Enriquez Zarate | Energy | Best Research Article Award

Investigador at AP ENGINEERING INNOVACIÓN TECNOLÓGICA EN ENERGÍAS S.A DE C.V , Mexico

Josué Enríquez-Zárate is an accomplished researcher and engineer with expertise in structural control applied to wind turbine systems. He holds a Ph.D. in Mechanical Design from the National Autonomous University of Mexico and completed postdoctoral research focused on diagnostic systems for structural damage in wind turbines. Currently serving as CEO at AP Engineering in Oaxaca, Mexico, Josué leads innovative projects in wind energy, including dynamic structure analysis and wind farm sizing. His extensive teaching experience across several Mexican universities complements his industrial roles, which have involved advanced design and structural analysis for wind turbine and PV systems. With numerous indexed publications, Josué’s research spans mechanical and electronic system design, vibration control, and real-time computational applications, earning him recognition within Mexico’s National System of Researchers.

Profile

Scopus Profile

Education

Josué Enríquez-Zárate has a solid educational background in engineering, with an emphasis on mechanical design, control systems, and mechatronics. He holds a Ph.D. in Mechanical Design from the National Autonomous University of Mexico (UNAM), where he focused on developing a rangefinder for mobile robotics under Dr. Ernst Kussul Mihailovich’s supervision. Prior to his doctorate, he earned a Master’s degree in Electrical Engineering with a specialization in Mechatronics from the Research and Advanced Studies Center (CINVESTAV) at the National Polytechnic Institute in Mexico, where he worked on trajectory tracking and vibration control under Dr. Gerardo Silva-Navarro and Dr. Hebertt Sira-Ramírez. Additionally, he completed a Cybernetic Engineering degree at Universidad del Sol, Cuernavaca, Morelos. Postdoctoral research at Universidad de los Andes in Chile and CINVESTAV further refined his expertise in structural diagnostics for wind turbines and vibration control in mechanical structures. His educational journey reflects a comprehensive grounding in theoretical and applied aspects of engineering, particularly in dynamic systems and control.

Experience

Dr. Josué Enríquez-Zárate is a highly experienced researcher and engineer specializing in structural control, wind energy, and mechanical design. With a robust educational background, including a Ph.D. in Mechanical Design and two post-doctorates in structural control and diagnostic systems, he has contributed to advanced projects across multiple domains. His professional experience includes leadership as CEO of AP Engineering, where he focused on wind turbine technologies, as well as significant roles in academia, such as full research professor and researcher at institutions like the Instituto Tecnológico de Tuxtla Gutiérrez and the Panamericana University. Dr. Enríquez-Zárate has also collaborated with industry giants like Vestas and Ingeteam on wind turbine maintenance and structural design, applying expertise in ANSYS, MATLAB, and LabVIEW, and leveraging advanced skills in real-time control systems, machine learning, and computational modeling. His research output includes numerous ISI-indexed publications and book chapters, focusing on vibration control, structural health monitoring, and mechatronic systems, positioning him as a recognized authority in sustainable energy structures and mechanical systems control.

Research Interest

Josué Enríquez-Zárate’s research focuses on the structural dynamics and control of mechanical systems, specifically wind turbines and building-like structures. His work involves passive, semi-active, and active vibration control to enhance stability and resilience in these systems. Additionally, he has developed diagnostic and monitoring systems to detect structural damage, particularly for wind turbine blades, contributing to their longevity and efficiency. His expertise also includes the dynamic analysis of structures using advanced computational tools like ANSYS-FLUENT CFD and Windographer, supporting optimal wind farm design and control systems for improved performance in real-world applications.

Publications

  • Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback
    • Authors: Enríquez-Zárate, J., Gómez-Peñate, S., Hernández, C., Velázquez, R., Trujillo, L.
    • Year: 2024
    • Citations: 0
  • Vibration Control Using a Positive Position Feedback-based Predictive Controller Applied to a One-Bay Three-Story Scaled Shear Frame
    • Authors: Aguilar-Álvarez, P., Valencia-Palomo, G., Enríquez-Zárate, J., Morales-Valdez, J., Hernández-González, O.
    • Year: 2023
    • Citations: 4
  • Drive-train Third Stage-based Simplified Dynamic Modeling of a Wind Turbine Oriented to Vibration Analysis
    • Authors: Jiménez-Santín, D., Cerrada, M., Enríquez-Zárate, J., Cabrera, D., Sánchez, R.-V.
    • Year: 2023
    • Citations: 0
  • Efficient predictive vibration control of a building-like structure
    • Authors: Enríquez-Zárate, J., Valencia-Palomo, G., López-Estrada, F.-R., Silva-Navarro, G., Hoyo-Montaño, J.A.
    • Year: 2020
    • Citations: 6
  • Design of a state observer type Luenberger: Used in a cantilever beam | Diseño de un observador de estado tipo Luenberger: Aplicado a una viga en voladizo
    • Authors: Bermudez-Rodriguez, J.I., Hernandez De Leon, H.R., Velazquez-Trujillo, S., Escobar Gomez, E.N., Enriquez-Zarate, J.
    • Year: 2020
    • Citations: 0

Conclusion

Dr. Josué Enríquez-Zárate is a strong candidate for the Best Researcher Award, given his impactful contributions to structural control, renewable energy systems, and his extensive experience in research and industry. His demonstrated dedication, through significant academic and industrial accomplishments, aligns well with the award’s criteria. Addressing the outlined areas for improvement could further enhance his profile as a global researcher.

Seohee Yang | Environmental Science | Best Researcher Award

Ms. Seohee Yang | Environmental Science | Best Researcher Award

Postdoctoral Researcher, Myongji university, South Korea

Seohee H. Yang is a dedicated Postdoctoral Researcher at the East Asia Future Environment Institute, specializing in atmospheric chemistry and climate modeling. Her research focuses on improving aerosol optical properties and climate impact assessments, with significant contributions to understanding the effects of organic aerosols on regional climate patterns. 🏆

Publication Profile

ORCID

Strengths for the Award

  1. Innovative Research Focus: Seohee H. Yang’s work on developing a brown carbon scheme for the Atmospheric Chemistry-Climate Integrated Model (ACCM) is highly innovative and relevant. This work addresses critical gaps in understanding aerosol optical properties and their impact on climate, which is vital for improving climate models.
  2. Strong Academic Background: With a Ph.D. in Environmental Engineering and Energy, Yang has a solid educational foundation. Her dissertation on the climate effect of light absorption by organic aerosols demonstrates deep expertise in atmospheric chemistry and climate modeling.
  3. Notable Achievements: Yang has received multiple awards, including the Outstanding Paper Presentation Award and recognition at the European Geosciences Union (EGU). These accolades reflect the high quality and impact of her research.
  4. Relevant Publications: Yang has published impactful research in reputable journals like Atmosphere and Atmospheric Environment. Her work is both current and significant in the field of atmospheric science.
  5. Diverse Research Experience: Her involvement in various projects, including climate and air quality modeling, shows a breadth of experience and application of her research in different contexts.
  6. Advanced Technical Skills: Proficiency in programming languages such as IDL, Fortran, and Python enhances her research capabilities, particularly in data processing and modeling.

Areas for Improvement

  1. Publication Diversity: While Yang has published in reputable journals, increasing the number of publications in high-impact journals and expanding into interdisciplinary journals could further enhance her research visibility.
  2. Collaborative Efforts: Although her individual contributions are significant, increasing collaboration with other researchers or institutions could provide new perspectives and strengthen her research outcomes.
  3. Broader Impact: To further strengthen her candidacy, Yang could emphasize the practical applications of her research in policy-making or real-world environmental strategies.
  4. Outreach and Communication: Increasing efforts in communicating research findings to broader audiences through popular science articles or public talks could enhance the impact of her work beyond the academic community.

 

Education

Seohee earned her Ph.D. in Environmental Engineering and Energy from Myongji University, South Korea, in February 2024, under the supervision of Minjoong J. Kim. Her dissertation investigated the climate effects of light absorption by organic aerosols over East Asia. She completed her B.S. in Environmental Engineering and Energy from the same institution in 2017, with additional language studies at East China Normal University. 🎓

Experience

Since March 2024, Seohee has been working as a Postdoctoral Researcher at the East Asia Future Environment Institute, focusing on aerosol-climate interactions and advanced modeling techniques. Her previous experience includes various research projects on air quality and climate modeling, where she developed detailed air quality models and studied the impacts of brown carbon. 🌍

Research Focus

Seohee’s research revolves around developing a brown carbon scheme for atmospheric models, investigating nonlinear climate changes due to aerosol properties, and enhancing predictive capabilities for air quality changes using machine learning. Her work includes studying aerosol direct radiative forcing and exploring the interactions between aerosols and the climate system. 🔬

Awards and Honors

Seohee has been recognized for her outstanding contributions to atmospheric science, receiving the Outstanding Paper Presentation Award at the Korean Meteorological Society fall conference in 2021. She was also among the top 20% at the Oral Outstanding Student and PhD Candidate Presentation (OSPP) Award contest at the European Geosciences Union (EGU) 2022 and won the Outstanding Research Award at Myongji University Graduate School in February 2024. 🏅

Publication Top Notes

Yang, S.H.; Jeong, J.I.; Park, R.J.; Kim, M.J. Impact of Meteorological Changes on Particulate Matter and Aerosol Optical Depth in Seoul during the Months of June over Recent Decades. Atmosphere 2020, 11, 1282. DOI: 10.3390/atmos11121282

Yang, S.H.; Park, R.J.; Lee, S.; Jo, D.S.; Kim, M.J. Impact of changes in refractive indices of secondary organic aerosols on precipitation over China during 1980–2019. Atmospheric Environment 2023, 299, 119644. DOI: 10.1016/j.atmosenv.2023.119644

Yang, S.H.; Park, R.J.; Lee, S.; Jo, D.S.; Kim, M.J. Evaluation of Optical properties of Integrated Climate–Atmospheric Chemistry Model through Brown Carbon simulation in East Asia. (In preparation for Geoscientific Model Development (GMD) journal)

Yang, S.H.; Park, R.J.; Lee, S.; Jo, D.S.; Kim, M.J. Long-term Impacts of Direct Radiative Effects of Brown Carbon on Climate Change in East Asia. (In preparation)

Conclusion

Seohee H. Yang is a strong candidate for the “Best Research Award” due to her innovative research, solid academic background, notable achievements, and relevant technical skills. Her work on brown carbon and its effects on climate change is both timely and impactful. Addressing areas such as publication diversity and broader impact could further bolster her profile. Overall, her contributions to atmospheric chemistry and climate modeling make her a deserving candidate for the award.

 

Xinghua Liu | Environmental Science | Best Researcher Award

Assoc Prof Dr.  Xinghua Liu | Environmental Science | Best Researcher Award

Ass Prof, Shandong Academy of Agricultural Sciences Institute of Animal Science and Veterinary Medicine, China

🌿 Xinghua Liu is an accomplished Associate Professor at the Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences. With a strong foundation in environmental sciences and soil sciences, Dr. Liu has made significant contributions to understanding the interactions between organic matter and antibiotics in soil and sediment systems. She has published numerous research papers and holds multiple patents related to environmental sustainability and agricultural practices. Recognized for her innovative research, Dr. Liu has received several prestigious awards, highlighting her expertise in the field of environmental sciences.

Publication Profile

Scopus

Strengths for the Award:

  1. Strong Academic Background and Continuous Research Involvement: Xinghua Liu has a robust academic background in Environmental Sciences, with a Ph.D. in the field and continuous involvement in scientific research since 2018 as an Assistant Professor at the Shandong Academy of Agricultural Sciences.
  2. Extensive Research Publications: Liu has published numerous research articles as the first or corresponding author in high-impact journals such as Science of The Total Environment and Journal of Environmental Management. The topics cover important areas in environmental science, including soil and sediment contamination, antibiotic sorption mechanisms, and organic matter distribution, reflecting both depth and diversity in research focus.
  3. Patents and Practical Contributions: Liu holds multiple patents, including innovative methods for measuring soil particulate organic matter and integrated systems for managing livestock and poultry manure. These patents demonstrate a significant contribution to both theoretical and practical aspects of environmental management and technology.
  4. Recognition and Awards: Liu has received several prestigious awards, including the “Youth Science and Technology Award” from the Shandong Academy of Agricultural Sciences, the “Innovative Talents Outstanding Contribution Award,” and multiple “Major Scientific Research Progress Awards.” These awards highlight Liu’s impact and recognition within the scientific community.
  5. Successful Project Leadership: Liu has led multiple high-impact research projects funded by the National Natural Science Foundation of China and other institutions, reflecting strong project management skills and the ability to secure competitive funding.

Areas for Improvement:

  1. Focus on Broader Research Impact: While Liu has contributed extensively to the field of Environmental Sciences, focusing on soil and organic matter studies, there could be more emphasis on the broader application of this research, such as addressing global environmental challenges (e.g., climate change mitigation, pollution control). Diversifying research topics and aligning them with pressing global issues could enhance Liu’s impact.
  2. International Collaboration and Visibility: Increasing international collaborations and publications in globally recognized journals could further elevate Liu’s profile. Attending international conferences, contributing to global policy discussions, or engaging in multinational research projects would strengthen global visibility and impact.
  3. Enhanced Use of Modern Research Tools: Leveraging advanced analytical techniques and computational modeling could add value to Liu’s research, especially in quantifying environmental phenomena or predicting future environmental changes.

 

Education

🎓 Xinghua Liu completed her Bachelor’s degree in Environmental Sciences from China Agricultural University (2006-2010). She pursued a Master’s degree in Soil Sciences at Shandong Agricultural University (2010-2013) and earned her Doctorate in Environmental Sciences from the Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (2014-2018).

Experience

🔬 Xinghua Liu has been serving as an Associate Professor at the Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences since 2018. Her work focuses on the environmental impact of agricultural practices, particularly the behavior of antibiotics in soil and sediment environments. She has also authored numerous peer-reviewed articles and developed innovative methods for environmental assessment and sustainable agricultural management.

Research Focus

🌱 Xinghua Liu specializes in studying the sorption and desorption mechanisms of antibiotics in soil and sediments, the spatial heterogeneity of particulate organic matter, and the ecological impacts of agricultural waste management. Her research aims to enhance sustainable agricultural practices through innovative environmental assessment techniques and the development of environmentally friendly agricultural technologies.

Awards and Honours

🏆 Dr. Liu has been recognized with numerous awards, including the Youth Science and Technology Award from the Shandong Academy of Agricultural Sciences (2022), the Qilu Agricultural Science and Technology Award, the Innovative Talents Outstanding Contribution Award (Shandong Academy of Agricultural Sciences), and the Major Scientific Research Progress Award (2022, 2024). She is also acknowledged as a High-E-level talent in Jinan and a Jinan Licheng District high-end talent.

Publication Top Notes

📚 Xinghua Liu has authored several impactful publications, including:

Liu, X., Luo, Y., Zhang, H., et al. “Spatial heterogeneity of particulate organic matter for the sorption of ciprofloxacin at the microstructure scale.” Science of The Total Environment, 2022.

Liu, X., Zhang, H., Luo, Y., et al. “Sorption of oxytetracycline on particulate organic matter in soils and sediments: Roles of pH, ionic strength and temperature.” Science of the Total Environment, 2020.

XH. Liu, YY. Xie. “Sorption and desorption behavior and mechanism of oxytetracycline on soil aggregates organic matter separated from soils and sediments in the Yellow River Delta.” Journal of Environmental Management, 2024.

Conclusion:

Xinghua Liu is a highly suitable candidate for the Research for Best Research Award due to a strong academic foundation, extensive research output, practical contributions through patents, and recognition through numerous awards. Liu’s dedication to environmental research, evidenced by leading multiple funded projects, further supports this suitability. However, to maximize potential, a stronger emphasis on global collaboration, diversified research focus, and enhanced use of modern tools could improve the candidacy for the award. Overall, Liu’s profile demonstrates significant strengths and promising potential for further impact in the field of environmental sciences.