Zixuan Chen | Materials Science | Best Researcher Award

Prof. Zixuan Chen | Materials Science | Best Researcher Award

Lecture at University of Shanghai for Science and Technology, China

Dr. Zixuan Chen is a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology, with a Ph.D. in Materials Engineering. His research focuses on high-performance and multifunctional composite materials, durability of fiber-reinforced composites, and micro-/nano-material applications. With international academic experience in South Korea and China, Dr. Chen has contributed to several high-impact projects, including national R&D programs and joint military-industry initiatives. He has published extensively in top-tier journals such as Composites Science and Technology and Materials & Design, with multiple Q1 publications. As a reviewer for international journals and a member of the Chinese Society of Theoretical and Applied Mechanics, he actively engages with the academic community. Dr. Chen also mentors graduate students and contributes to research-driven education. His strong publication record, applied research contributions, and growing academic leadership mark him as a promising and impactful researcher in the field of advanced composite materials.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Zixuan Chen has a solid academic foundation in materials engineering. He began his graduate studies with a Master’s degree from the Department of Materials Engineering at Dalian Maritime University (2014–2016). Following this, he pursued a Ph.D. at Korea Maritime and Ocean University (2016–2019), where he engaged in intensive research on carbon fiber composites, contributing to international collaborative projects. His doctoral training emphasized advanced materials science and engineering, blending theoretical knowledge with applied research experience in high-performance composites. During his time in Korea, Dr. Chen worked closely with the Industry-Academia Cooperation Foundation and Korean Air, further reinforcing his practical expertise in cutting-edge material systems. His academic journey across leading institutions in China and Korea has equipped him with strong international perspectives and a deep understanding of the field, which continues to inform his research in composite materials and their applications in various industrial sectors.

Professional Experience

Dr. Zixuan Chen’s professional trajectory reflects steady growth in academia and research. From 2019 to 2022, he served as a Postdoctoral Fellow at Tongji University’s Mechanics Postdoctoral Station, where he participated in key national programs focusing on green composite materials and sustainable engineering solutions. Since November 2022, he has been a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology. In this role, he has continued to expand his research on advanced composite materials while mentoring graduate students. His work spans both fundamental and applied research, including involvement in strategic military-industry projects such as vibration and shock control systems. Dr. Chen’s hands-on experience in project development, collaboration with industrial partners, and contributions to national initiatives demonstrate his capacity for impactful research. His current position also emphasizes teaching excellence, academic service, and shaping the next generation of engineers in the field of materials science and mechanical engineering.

Research Interest

Dr. Zixuan Chen’s research interests lie at the intersection of advanced materials science and mechanical engineering, with a focus on high-performance fiber-reinforced composites. His work emphasizes the development, functionalization, and structural design of micro- and nano-materials for composite applications. He is particularly interested in enhancing the durability, strength, and multifunctionality of these materials, making them suitable for use in aerospace, defense, and environmental sustainability sectors. Dr. Chen also explores green composite solutions, contributing to national efforts in biomass fiber development and rural technology advancement. His interdisciplinary approach incorporates structural optimization, intelligent material applications, and experimental design techniques to address real-world engineering challenges. His research has consistently been published in high-impact Q1 journals, highlighting both innovation and practical relevance. Through collaboration with academia and industry, Dr. Chen aims to bridge the gap between laboratory research and scalable engineering solutions that contribute to sustainable development and high-tech material design.

Award and Honor

While specific named awards are not listed in the available profile, Dr. Zixuan Chen’s academic achievements and recognitions are evident through his scholarly output and roles. He has published multiple high-impact papers in prestigious Q1 journals such as Composites Science and Technology, Materials & Design, and ACS Applied Nano Materials, a notable indicator of peer recognition. As a reviewer for several international scientific journals, he is actively engaged in academic quality assurance and thought leadership within his field. Furthermore, his membership in the Chinese Society of Theoretical and Applied Mechanics reflects professional recognition at the national level. His involvement in prominent national R&D programs and military-industry collaborations also signifies trust and recognition by government and institutional stakeholders. These cumulative accomplishments serve as indirect honors, demonstrating that Dr. Chen is a respected and valuable contributor to his field. As his career progresses, formal accolades are likely to follow his continued research excellence and leadership.

Conclusion

In summary, Dr. Zixuan Chen is an emerging academic and researcher whose expertise in composite materials and engineering mechanics is marked by both depth and breadth. With a strong educational background and international experience, he has developed a research profile that spans high-performance materials, green technology, and military-industrial applications. His prolific publication record in top-tier journals and active engagement in national research programs reflect both competence and impact. As a Lecturer and Master’s supervisor, he also plays an important role in mentoring students and advancing engineering education. Though still in the early stages of his independent academic career, Dr. Chen exhibits the qualities of a top researcher—intellectual curiosity, interdisciplinary capability, and a drive to contribute meaningful innovations to society. Given his consistent output and growing leadership, he is well-positioned to make significant future contributions to the field and is a strong candidate for recognition through awards like the Best Researcher Award.

Publications Top Notes

  • Title: Comprehensive effects of isomeric doping on electrospun PVDF films: Towards smart wiper systems enabled by piezoelectric nanogenerators and machine learning
    Authors: Zixuan Chen, Huancheng Yang, Huijie Yu, Yao Lu, Wenchao Gao
    Year: 2025

  • Title: Fire-insulation properties of recycled aggregate concrete, its application in composite concrete structures, and concrete-concrete interface effects: a review
    Authors: Zixuan Chen, Jianzhuang Xiao
    Year: Not specified

  • Title: Electrophoretic deposition of non-conductive halloysite nanotubes onto glass fabrics with improved interlaminar properties of glass/epoxy composites (Book Chapter)
    Authors: Tianyu Yu, Zixuan Chen, Soojeong Park, Yunhae Kim
    Year: Not specified

Ankica Šarić | Materials Science | Best Researcher Award

Dr. Ankica Šarić | Materials Science | Best Researcher Award

scientific advisor, Ruđer Bošković Institute, Croatia

Profile

Google Scholar

📜 Short Biography:

Dr. Ankica Šarić is a distinguished research associate at the Division of Materials Physics at the Ruđer Bošković Institute in Zagreb, Croatia. She is highly regarded for her contributions in the field of physical chemistry, with a focus on molecular physics and the synthesis of new materials. Her academic journey and dedication to research have led her to become an integral part of the scientific community, working on diverse projects related to materials science and chemistry.

🎓 Education:

Dr. Šarić completed her Ph.D. in Physical Chemistry in 1999 at the University of Zagreb, Faculty of Science, Department of Chemistry. She also holds an M.Sc. in Physical Chemistry (1994) and a B.Sc. in Chemistry (1987), both from the same institution. Her academic background in chemistry has been pivotal in shaping her research in material science and synthesis.

🧪 Experience:

As a research associate at the Ruđer Bošković Institute, Dr. Šarić has made significant contributions to the Division of Materials Physics, particularly in the Laboratory for Molecular Physics and Synthesis of New Materials. Her work spans from studying the microstructural properties of materials to solvothermal synthesis techniques. With years of experience, she collaborates with both national and international researchers.

🔬 Research Interests:

Dr. Šarić’s research is primarily centered around physical chemistry, focusing on materials science, particularly the synthesis and characterization of nanomaterials like zinc oxide (ZnO), iron oxides, and rhodium hydrous oxides. She is interested in understanding the microstructural properties of materials and exploring various synthesis methods to manipulate these properties for diverse applications.

🏆 Awards:

While specific awards are not listed, Dr. Šarić is an active member of prestigious professional societies, such as the Croatian Chemical Society, the Croatian Nuclear Society, and the Croatian Crystallographic Association, showcasing her recognition and involvement in the scientific community.

📚 Publications Top Notes:

  1. Solvothermal synthesis of zinc oxide microspheres, Journal of Alloys and Compounds, 2015, cited by 91.
    Solvothermal synthesis of zinc oxide microspheres
  2. Chromium Environment within Cr-doped BaAl2O4: Correlation of XRD and XAS Investigations, Inorganic Chemistry, 2015, cited by 54.
    Chromium Environment within Cr-doped BaAl2O4
  3. Varying the microstructural properties of ZnO particles using different synthesis routes, Journal of Molecular Structure, 2011, cited by 219.
    Varying the microstructural properties of ZnO particles
  4. Dependence of the microstructural properties of ZnO particles on their synthesis, Journal of Alloys and Compounds, 2008, cited by 277.
    Dependence of the microstructural properties of ZnO particles
  5. Synthesis and characterization of nanocrystalline RuO2 powders, Materials Letters, 2004, cited by 1431.
    Synthesis and characterization of nanocrystalline RuO2 powders