Jeremie Zaffran | Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Chemistry | Best Researcher Award

Researcher at CNRS, France

Dr. Jeremie Zaffran is a distinguished computational chemist specializing in heterogeneous catalysis and machine learning. He is a Tenured Research Fellow at the French National Center for Scientific Research (CNRS), based at the E2P2L (Eco Efficient Products and Processes Lab) in Shanghai, China. With a strong background in computational techniques, Zaffran’s work focuses on using ab initio calculations and microkinetics simulations to address challenges in renewable energy, including CO2 storage, biomass transformation, and solar water splitting. His interdisciplinary approach combines advanced computational methods with close collaboration with experimentalists. Zaffran’s career includes high-profile roles at institutions like ShanghaiTech University, the Technion–Israel Institute of Technology, and Ecole Normale Superieure de Lyon. Known for his leadership and project management skills, he has supervised multiple PhD students and worked on several large-scale research projects. He is also deeply involved in mentoring, contributing to the development of future scientific leaders.

Professional Profile

Education

Dr. Jeremie Zaffran completed his PhD in Chemistry at Ecole Normale Superieure de Lyon, France, in 2014, where he graduated with the highest distinction. His dissertation focused on computational methods for biomass transformation, specifically in designing solid catalysts using Density Functional Theory (DFT). He also holds a Master’s degree in Materials Science from Université Paris Diderot-Paris 7, where he graduated summa cum laude in 2010, ranking first in his class. Zaffran’s academic foundation was further enriched with a Bachelor’s degree in Chemistry from the same institution, where he was ranked fifth in his cohort. During his doctoral research, he worked under the guidance of Prof. Philippe Sautet and collaborated with experimental teams from IRCELYON and NOVANCE, bridging theory and application in catalysis. His academic journey laid the groundwork for his successful career in computational chemistry and materials science, with a focus on catalysis and energy-related research.

Professional Experience

Dr. Zaffran’s professional experience spans over a decade of groundbreaking work in computational catalysis. From 2011 to 2017, he worked at leading institutions such as the Technion-Israel Institute of Technology and ShanghaiTech University, where he held roles as a Postdoctoral Fellow and Research Assistant Professor. At ShanghaiTech, Zaffran led efforts to design efficient electrocatalysts using DFT and machine learning. Since 2020, he has served as a Research Fellow at CNRS, where he leads research in the E2P2L lab in Shanghai, China. His work focuses on developing sustainable technologies in catalysis for renewable energy applications, including CO2 valorization and biomass conversion. He has also contributed significantly to large interdisciplinary projects, leading computational teams for projects like “Smart Digital Catalysis.” Throughout his career, Zaffran has demonstrated expertise in collaborating across disciplines and industries, coordinating research efforts that bridge computational chemistry and experimental science.

Research Interests

Dr. Zaffran’s primary research interests lie in computational heterogeneous catalysis, with a particular focus on applying machine learning and advanced computational techniques such as ab initio calculations, microkinetics simulations, and Density Functional Theory (DFT) to solve real-world problems. His research aims to design and optimize catalysts for renewable energy applications, including biomass transformation, CO2 storage and valorization, and solar water splitting. Zaffran is also actively involved in integrating machine learning models into catalysis design, enhancing the efficiency and speed of identifying viable catalysts. His work on microkinetic simulations, especially using tools like CatMAP, has provided valuable insights into catalytic reaction mechanisms. Zaffran’s interdisciplinary approach combines computational chemistry with experimental collaborations, making his research highly relevant to sustainable energy and environmental challenges. He is particularly interested in advancing green chemistry solutions by developing catalysts that can facilitate cleaner industrial processes and renewable energy production.

Awards and Honors

Dr. Zaffran has received numerous prestigious awards and honors throughout his career. He was awarded the Lady Davis Fellowship from the Technion–Israel Institute of Technology in 2016 and the Grand Technion Energy Program (GTEP) Fellowship for Outstanding Post-Doctoral Fellows the same year. His research excellence was also recognized by the Israel Ministry of Aliyah and Immigrant Absorption Fellowship in 2015. During his academic journey, Zaffran earned the highest distinction for his PhD, summa cum laude for his Master’s degree, and cum laude for his Bachelor’s degree. His research contributions have been supported by significant grants, including those from CNRS and the National Natural Science Foundation of China (NSFC), allowing him to lead high-impact projects in the field of computational catalysis. Zaffran’s continued success in securing funding for innovative research reflects his standing as a leader in his field and his ability to attract international recognition.

Conclusion

Jeremie Zaffran is highly qualified for the Best Researcher Award. His technical expertise in computational chemistry, successful collaborations in sustainable energy research, and strong track record in leadership and mentorship make him a deserving candidate. While there are areas like expanding research diversity and increasing visibility through publications, his accomplishments to date place him among the leaders in his field.

Publications Top Noted

  • Stoichiometric Selective Carbonylation of Methane to Acetic Acid by Chemical Looping
    Authors: Y. Wang, C. Dong, M.V. Shamzhy, A.Y. Khodakov, V.V. Ordomsky
    Journal: ACS Catalysis
    Year: 2025
    Citations: 0

  • Unveiling the Phenol Direct Carboxylation Reaction Mechanism at ZrO2 Surface
    Authors: K. Zhang, C. Ma, S. Paul, J. Zaffran
    Journal: Molecular Catalysis
    Year: 2024
    Citations: 2

 

Lin Hu | Chemistry | Best Researcher Award

Dr. Lin Hu | Chemistry | Best Researcher Award

Jiaxing University, China

Dr. Hu Lin, a Ph.D. and Master’s supervisor, is an accomplished researcher specializing in organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic device fabrication. After earning his Master’s degree from Nanchang University in 2016 and his Ph.D. from Huazhong University of Science and Technology in 2019, he joined Jiaxing University. Despite being early in his academic career, Dr. Hu has made remarkable contributions, publishing over 30 high-impact SCI papers in esteemed journals such as Advanced Materials and Journal of Materials Chemistry A. His innovative approach is further reflected in six patent applications, three of which have been granted. As both a mentor and a researcher, he plays a pivotal role in advancing renewable energy technologies and materials science. With a strong foundation in cutting-edge research and a growing reputation, Dr. Hu Lin exemplifies excellence in academic productivity and innovation.

Professional Profile

Education

Dr. Hu Lin’s academic journey reflects a strong foundation in materials science and innovation. He earned his Master’s degree from Nanchang University in 2016 under the guidance of Professor Yiwang Chen, focusing on advanced materials research. Building on this, he pursued his Ph.D. at Huazhong University of Science and Technology, completing it in 2019 under the mentorship of Professor Yinhua Zhou. During his doctoral studies, Dr. Hu delved deeper into the development of organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic devices, establishing himself as an expert in these fields. His rigorous academic training equipped him with the technical expertise and innovative mindset needed to tackle critical challenges in renewable energy and materials science. These educational experiences laid the groundwork for his impactful research career and his ongoing contributions as a faculty member and mentor at Jiaxing University.

Professional Experience

Dr. Hu Lin has rapidly established himself as a prominent researcher and educator in materials science. In 2019, he joined Jiaxing University as a faculty member immediately after completing his Ph.D. at Huazhong University of Science and Technology. His professional work focuses on cutting-edge research in organic and perovskite solar cells, PEDOT:PSS conductive polymers, and flexible electronic devices—areas of significant importance for renewable energy and advanced electronics. As both a researcher and a Master’s supervisor, Dr. Hu has published over 30 high-impact SCI papers in renowned journals such as Advanced Materials and Advanced Functional Materials. His innovative contributions extend beyond academia, with six patent applications, including three granted patents, underscoring his commitment to translating research into practical solutions. Dr. Hu’s dedication to academic excellence, innovation, and mentorship has solidified his reputation as a rising leader in materials science and renewable energy technologies.

Research Interest

Dr. Hu Lin’s research interests lie at the forefront of materials science, with a strong focus on renewable energy and advanced electronic devices. His work centers on organic and perovskite solar cells, exploring innovative approaches to improve their efficiency, stability, and scalability for practical applications. Additionally, he specializes in PEDOT:PSS conductive polymers, investigating their potential as versatile materials for flexible and transparent electronics. Dr. Hu is also dedicated to advancing the fabrication of flexible electronic devices, which have promising applications in wearable technology and next-generation displays. By combining fundamental research with practical innovations, he aims to address critical challenges in energy sustainability and device miniaturization. His research not only contributes to the academic understanding of these materials but also paves the way for real-world applications, making significant strides in both environmental and technological advancements. Dr. Hu’s work embodies a vision of merging science with innovation for a sustainable future.

Award and Honor

Dr. Hu Lin has been recognized for his exceptional contributions to materials science and renewable energy research through various awards and honors. Although specific accolades are not detailed in his profile, his accomplishments as a prolific researcher and innovator speak volumes about his growing reputation. With over 30 high-impact publications in prestigious journals such as Advanced Materials and Advanced Functional Materials, and multiple granted patents, Dr. Hu’s work has undoubtedly earned him respect in the academic and scientific communities. His early-career achievements, including groundbreaking advancements in organic and perovskite solar cells, showcase his potential for further recognition at both national and international levels. As a Master’s supervisor and active contributor to cutting-edge technologies, Dr. Hu’s dedication to innovation and mentorship positions him as a strong contender for prestigious awards in renewable energy, materials science, and applied research in the future.

Conclusion

Hu Lin is a strong candidate for the Best Researcher Award. His prolific publishing record, innovative contributions in cutting-edge research areas, and dedication to both academic and applied advancements establish him as a rising star in materials science. Addressing the areas of improvement, such as showcasing the broader impact of his research and securing notable international recognition, could further solidify his eligibility. Overall, his accomplishments and potential make him a highly competitive nominee for this award.

Publications top noted

  • Title: Ionized Phenanthroline Derivatives Suppressing Interface Chemical Interactions with Active Layer for High-efficiency Organic Solar Cells with Exceptional Device Stability
    Authors: Hu, L., Quan, J., Li, J., Li, Z., Chen, Y.
    Journal: Advanced Materials
    Year: 2024
    Volume: 36(49), Article number 2413232
    Citations: 1
  • Title: PEDOT Counterions Enabled Oriented Polyaniline Nanorods for High Performance Flexible Supercapacitors
    Authors: Jin, Y., Li, Z., Huang, S., Wang, H., Li, Z.
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024
    Volume: 697, Article number 134461
    Citations: 3
  • Title: Ethyl Thioglycolate Assisted Multifunctional Surface Modulation for Efficient and Stable Inverted Perovskite Solar Cells
    Authors: Wang, Y., Wang, F., Song, J., Yan, W., Gao, F.
    Journal: Advanced Functional Materials
    Year: 2024
    Volume: 34(38), Article number 2402632
    Citations: 4
  • Title: Small Molecule Perylene Diimide Derivatives with Different Bay Site Modifications as Cathode Interface Layers for Organic Solar Cells
    Authors: Wang, Y., Zhou, D., Lan, S., Xu, Z., Chen, L.
    Journal: Chemical Engineering Journal
    Year: 2024
    Volume: 496, Article number 154206
    Citations: 2
  • Title: N-Type Small Molecule Electrolyte Cathode Interface Layer with Thickness Insensitivity for Organic Solar Cells
    Authors: Zhou, D., Wang, Y., Li, Y., Xu, Z., Chen, L.
    Journal: Nano Energy
    Year: 2024
    Volume: 128, Article number 109890
    Citations: 5
  • Title: Synergistically Modulating the Bay and Amid Sites of a Perylene Diimide Cathode Interface Layer for High-Efficiency and High-Stability Organic Solar Cells
    Authors: Wang, J., Zhou, D., Quan, J., Li, Z., Chen, L.
    Journal: ACS Sustainable Chemistry and Engineering
    Year: 2024
    Volume: 12(30), Pages 11385–11395
    Citations: 3
  • Title: Biobased Thermoset Substrate for Flexible and Sustainable Organic Photovoltaics
    Authors: Tian, J., You, Y., Zhou, H., Xie, Y., Hu, X.
    Journal: Advanced Functional Materials
    Year: 2024
    Volume: 34(29), Article number 2400547
    Citations: 5
  • Title: Synchronous Modulation of Hole-Selective Self-Assembled Monolayer and Buried Interface for Inverted Perovskite Solar Cells
    Authors: Wang, Y., Ye, J., Song, J., Li, Z., Yan, W.
    Journal: Cell Reports Physical Science
    Year: 2024
    Volume: 5(6), Article number 101992
    Citations: 1
  • Title: Doping of ZnO Electron Transport Layer with Organic Dye Molecules to Enhance Efficiency and Photo-Stability of the Non-Fullerene Organic Solar Cells
    Authors: Hu, L., Han, L., Quan, J., Li, Z., Chen, L.
    Journal: Small
    Year: 2024
    Volume: 20(21), Article number 2310125
    Citations: 3
  • Title: N-Type Small Molecule Electron Transport Layers with Excellent Surface Energy and Moisture Resistance Siloxane for Non-Fullerene Organic Solar Cells
    Authors: Li, Y., Zhou, D., Han, L., Xu, H., Chen, L.
    Journal: Small
    Year: 2024
    Volume: 20(19), Article number 2308961
    Citations: Not specified in the provided data.

Sikander Ali | Chemistry | Young Scientist Award

Mr. Sikander Ali | Chemistry | Young Scientist Award

Research Associate Riphah international university-Lahore. Pakistan

Sikander Ali is an accomplished researcher in applied mathematics, specializing in graph theory, cryptography, and fault-tolerant systems. An active member of international research groups, he has consistently contributed to the advancement of mathematical theory and practical applications through innovative research projects and collaborations.

Profile

Scopus.com

Education 🎓

  • MS in Mathematics (2021–2023): COMSATS University, Sahiwal Campus, GPA 3.42, with a focus on Applied Mathematics and Graph Theory.
  • MSc in Mathematics (2018–2020): COMSATS University, Sahiwal Campus, GPA 3.45, specializing in Cryptography and Numerical Analysis; awarded a 2nd position medal.
  • Bachelor’s in Mathematics (2015–2017): GOVT College Bahawal Nagar, with a solid foundation in mathematics and physics.
  • Intermediate in Pre-Engineering (2013–2015): GOVT College Bahawal Nagar.

Experience 📈

Sikander has extensive teaching experience, having served as a lecturer at prominent institutions like Riphah International University and Army Public School and College System. His teaching expertise covers both fundamental and advanced mathematics, where he focuses on fostering deep comprehension among his students.

Research Interests 🔍

Sikander’s research is centered on advanced topics in mathematics, including:

  • Graph Theory: Resolvability Parameters and Graph Labelling
  • Cryptography: Developing secure frameworks
  • Fault-Tolerant Embedding: Emphasis on nanosheet and nanotube structures
  • Neutrosophic Fuzzy Sets: Applications in various mathematical problems

Awards 🏆

  • 2nd Position Medal in MSc: Recognized for academic excellence at COMSATS University.
  • PEEF Scholarship: Awarded for outstanding performance.
  • Inter-Campus First Prize: Earned recognition as a top debater.
  • Vice President of COMSATS Sports Society: Led the sports society and promoted active participation.

Publications Top Notes📚:

Sikander has published widely in reputable journals, covering topics like graph theory and nano-structures. Below are some highlights:

Ali, S., Azeem, M., Zahid, M. A. Double Resolvability Parameters of Fosmidomycin Anti-Malaria Drug and Exchange Property. Heliyon (2024). DOI: 10.1016/j.heliyon.2024.e33211.

Ali, S., Azeem, M., Jamil, M. K. Resolving Set and Exchange Property in Nanotube. AIMS Mathematics, 9(8), 20 June 2023. DOI:10.3934/math.20231035.

Ali, S., Koam, N. A., Azeem, M. Double Edge Resolving Set for Nanosheet Structure. Heliyon (2024). DOI: 10.1016/j.heliyon.2024.e26992.