Oladele Afolalu | Engineering | Best Researcher Award

Dr. Oladele Afolalu | Engineering | Best Researcher Award

Postdoctoral Fellow at Durban University of Technology, South Africa

Dr. Oladele Felix Afolalu is a distinguished researcher and academic in the field of Electrical and Telecommunications Engineering. Born on August 29, 1976, in Nigeria, he has made significant contributions to the advancement of ICT, telecommunications, and enterprise networking. With a strong passion for innovation, he has worked extensively in academia, research, and industry collaborations to improve modern communication systems. Currently a Postdoctoral Fellow at the Durban University of Technology, South Africa, Dr. Afolalu has played a crucial role in developing cutting-edge solutions in 5G networks, interference coordination, and network optimization. His leadership in academic institutions, numerous publications, and participation in international conferences reflect his dedication to research excellence. As a member of several prestigious engineering societies, including IEEE (USA & South Africa), COREN, and MNSE, he continues to impact the engineering community through mentorship, teaching, and groundbreaking studies in the field of telecommunications and ICT.

Professional Profile

Education

Dr. Afolalu’s academic journey is marked by a strong foundation in electrical and electronic engineering, with degrees from top institutions in Nigeria and South Africa. He earned his Ph.D. in Electrical and Telecommunication Engineering from the University of Cape Town, South Africa, where he specialized in 5G network optimization and inter-cell interference coordination. Prior to that, he completed an M.Sc. in Electronic/Electrical Engineering from Obafemi Awolowo University, Nigeria, where his research focused on communication systems and signal processing. His undergraduate studies culminated in a B.Eng. (Hons.) in Electrical/Electronics Engineering from the Federal University of Technology, Akure. Additionally, he holds a National Diploma in Electrical/Electronics Engineering from Federal Polytechnic, Ado-Ekiti. His diverse academic background has provided him with expertise in ICT systems, telecommunications, and engineering education, equipping him to contribute significantly to cutting-edge research and technology advancements.

Professional Experience

Dr. Afolalu has amassed over two decades of experience in teaching, research, and academic administration. He served as Head of the Department and Principal Lecturer at Federal Polytechnic, Ede, Nigeria, where he played a key role in curriculum development, student mentorship, and research supervision. He also worked as an Adjunct Senior Lecturer and Acting Head of Department at Joseph Ayo Babalola University, where he was instrumental in advancing research initiatives in physics electronics. His postdoctoral research at Durban University of Technology, South Africa, involves cutting-edge projects in enterprise networking and ICT systems. Additionally, he has served as a tutor at the University of Cape Town, helping students enhance their understanding of telecommunication systems. Throughout his career, he has been actively involved in examination committees, research committees, and industrial training programs, contributing significantly to the development of engineering education in Nigeria and beyond.

Research Interests

Dr. Afolalu’s research is centered on wireless communication networks, telecommunications engineering, and ICT innovations. His primary focus is on 5G and beyond technologies, network optimization, and inter-cell interference coordination. His Ph.D. research on Ultra-Dense Networks (UDNs) has contributed to improving network efficiency and power allocation in next-generation communication systems. He has also explored the application of artificial intelligence in network performance enhancement, particularly in resource allocation and signal processing. Additionally, his research extends to renewable energy integration in communication networks, aiming for sustainable and efficient power management in ICT infrastructure. His contributions to machine learning applications in network traffic optimization and security have been recognized in top-tier journals. Through his extensive research, he aims to bridge the gap between theoretical telecommunications advancements and practical industry implementations, ensuring that emerging technologies are efficiently deployed for societal benefit.

Awards and Honors

Dr. Afolalu has been recognized for his outstanding contributions to research, engineering education, and technological innovation. He has received accolades for his work on 5G networks, including best paper awards at international conferences such as the Southern Africa Telecommunication Networks and Applications Conference (SATNAC). His research on carrier aggregation-enabled NOMA techniques for enhanced 5G network performance has gained global recognition. He has also been honored for his mentorship and academic leadership, particularly in the development of engineering curricula and innovative teaching methodologies. His membership in prestigious engineering societies such as IEEE, COREN, and MNSE further highlights his excellence in the field. Additionally, he has participated as a panelist and keynote speaker at workshops and conferences, where his expertise in wireless communication and ICT infrastructure has been widely acknowledged. His commitment to research and education continues to inspire future engineers and researchers globally.

Conclusion

Dr. Oladele Felix Afolalu has a strong research portfolio, significant academic experience, and notable contributions to ICT and 5G telecommunications. His leadership roles, professional memberships, and conference engagements make him a worthy candidate for the Best Researcher Award. Strengthening high-impact publications, industry collaborations, and international research engagements will further solidify his standing in the global research community.

Publications Top Noted

  1. Carrier Aggregation‐Enabled Non‐Orthogonal Multiple Access Approach Towards Enhanced Network Performance in 5G Ultra‐Dense Networks

    • Author(s): O Afolalu, N Ventura

    • Year: 2021

    • Citations: 10

  2. A Survey of Interference Challenges and Mitigation Techniques in 5G Heterogeneous Cellular Networks

    • Author(s): OF Afolalu, JO Petinrin, MA Ayoade

    • Year: 2016

    • Citations: 4

  3. Internet of Things and Software Applications in Patient Safety Adverse Event Detection and Reporting: A Comprehensive Literature Review

    • Author(s): OO Afolalu, SA Afolalu, OF Afolalu, OA Akpor

    • Year: 2024

    • Citations: 2

  4. Inter-Cell Interference Coordination in 5G Ultra-Dense Networks

    • Author(s): OF Afolalu

    • Year: 2021

    • Citations: 2

  5. Internet of Things Applications in Health Systems’ Equipment: Challenges and Trends in the Fourth Industrial Revolution

    • Author(s): OO Afolalu, OA Akpor, SA Afolalu, OF Afolalu

    • Year: 2024

    • Citations: 1

  6. Application of Particle Swarm Optimization Method to Economic Dispatch of Nigerian Power System Considering Valve-Point Loading Effect

    • Author(s): GA Adepoju, MA Tijani, MO Okelola, MA Ayoade, OF Afolalu

    • Year: 2021

    • Citations: 1

  7. Enterprise Networking Optimization: A Review of Challenges, Solutions, and Technological Interventions

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  8. A Novel Security Solution for Efficient Connectivity in Software-Defined Wide Area Network (SD-WAN)

    • Author(s): O Afolalu, MS Tsoeu

    • Year: 2025

    • Citations: Not available yet

  9. Sickle Cell Disease Epidemiology and Management in Africa: Current Trends and Future Directions in Digital Health Technologies

    • Author(s): AO Olajumoke, O Akpor, AS Afolalu, OF Afolalu, HB Oyewole, AO Oke

    • Year: 2024

    • Citations: Not available yet

  10. Analysis of Spectrum Occupancy of Active FM Band within Federal Polytechnic Ede Northern Campus

  • Author(s): AK Adebayo, JO Agbolade, IA Bamikefa, OF Afolalu, MA Ayoade

  • Year: 2021

  • Citations: Not available

  1. Development of Induction Motor Monitoring System with Protection Against Abnormal Voltage, Current, and Temperature

  • Author(s): MA Ayoade, IA Bamikefa, MA Tijani, OF Afolalu, AK Adebayo

  • Year: 2018

  • Citations: Not available

  1. Effects of Angles of Inclinations on the Performances of Photovoltaic (PV) Arrays

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, MA Tijani, MA Sanusi

  • Year: 2017

  • Citations: Not available

  1. Development of a Wireless Induction Motor Unbalanced Voltage Detection and Control System for Hazardous Environments

  • Author(s): MA Ayoade, OF Afolalu, IA Bamikefa, AK Adebayo, MA Sanusi

  • Year: 2017

  • Citations: Not available

 

Yongho Lee | Engineering | Best Researcher Award

Dr. Yongho Lee | Engineering | Best Researcher Award

Researcher at Kwangwoon University, South Korea

Yongho Lee, born on November 15, 1991, is an accomplished researcher and engineer specializing in RF communication, antenna design, and semiconductor technologies. With a strong foundation in electrical engineering, he has contributed significantly to cutting-edge research in areas such as CMOS RF transmitters, phased arrays, and wireless communication systems. Currently, he is a postdoctoral researcher at UCLA, California, after having completed a similar position at Kwangwoon University, Seoul, Korea. Throughout his academic and professional journey, Yongho has demonstrated exceptional skills in advanced tools like Virtuoso, SpectreRF, and Matlab, as well as expertise in programming languages such as C++, Python, and C#. His work is recognized for its innovative approach to solving complex problems, particularly in the realm of high-frequency communications and antenna systems. As a mentor and lecturer, he has also demonstrated a passion for teaching and guiding the next generation of engineers in microelectronics. With a drive for both academic excellence and practical technological advancements, Yongho continues to make valuable contributions to his field, gaining international recognition for his achievements.

Professional Profile

Education

Yongho Lee’s academic journey began with a Bachelor of Science degree from Daejin University in Pocheon, Korea, where he laid the groundwork for his future studies in electrical engineering. Afterward, he pursued a Master of Science degree at Kwangwoon University, Seoul, Korea, where his focus shifted toward advanced research in RF and semiconductor technologies. This foundation prepared him for his doctoral studies at the same institution, where he earned a Ph.D. in 2023. Throughout his academic career, Yongho has gained in-depth knowledge of complex topics such as phased-array antennas, RF IC design, and wireless communication systems. His educational path has been marked by a strong emphasis on both theoretical principles and practical applications. He further honed his skills during his time as a postdoctoral researcher, applying his knowledge to real-world projects at renowned institutions like UCLA and Kwangwoon University. With a solid academic foundation and a drive for innovation, Yongho continues to excel in his field, pushing the boundaries of current research in RF technologies.

Professional Experience

Yongho Lee has had a distinguished professional career with extensive experience in both academia and industry. His most recent position as a postdoctoral researcher at UCLA, California, allowed him to delve into advanced projects in RF communication and semiconductor technologies. Prior to this, he served as a postdoctoral researcher at Kwangwoon University, Seoul, Korea, where he contributed significantly to multiple high-profile projects, including the development of RF transmitters, antennas, and phase shifters. Additionally, Yongho gained practical industry experience during an internship at Kings Information & Network Co., Ltd. in Hanam, Korea, where he was involved in various technology development projects. His work experience spans both theoretical research and the practical application of cutting-edge technologies, providing him with a well-rounded skill set. Throughout his career, he has demonstrated a keen ability to bridge the gap between academic research and real-world technological solutions, making him a highly valued contributor to his field.

Research Interests

Yongho Lee’s primary research interests lie in the fields of RF communication, antenna design, and semiconductor technologies, with a focus on high-frequency applications such as 60GHz and 220GHz wireless systems. His research has significantly contributed to the development of advanced CMOS RF transmitters, phased-array antennas, and frequency synthesizers, with an emphasis on low power consumption, miniaturization, and improved performance. He has also worked extensively on the development of novel calibration techniques for RF systems and the integration of advanced antennas for mobile communication and satellite receiver applications. Another key area of his research is the design of high-performance, low-cost RF components for next-generation wireless devices, including Bluetooth and IoT technologies. Yongho’s work not only advances theoretical knowledge but also aims to address practical challenges in wireless communication, including signal integrity, power efficiency, and system integration. His diverse research portfolio reflects a strong commitment to pushing the boundaries of current technology and solving real-world problems in communication systems.

Awards and Honors

Throughout his career, Yongho Lee has earned several accolades in recognition of his exceptional contributions to research and engineering. His achievements in the development of advanced RF communication systems and antenna designs have earned him recognition both within academic circles and in the industry. In particular, his work on the 220GHz 16nm CMOS phased array and his innovations in the development of low-profile phased-array antennas for satellite receivers have garnered significant attention. Although specific awards and honors are not listed in his profile, his involvement in highly funded and impactful research projects speaks to the level of recognition he has received within the scientific community. His research contributions continue to influence the development of next-generation wireless communication systems, further solidifying his standing as a leading researcher in his field. Moving forward, his continued work and potential future awards will undoubtedly add to his growing reputation as a prominent figure in RF and semiconductor research.

Conclusion

Yongho Lee is highly qualified for the “Best Researcher Award,” with his strong academic credentials, advanced technical expertise, and significant contributions to research and teaching. To further enhance his candidacy, a more detailed track record of published research and a stronger public presence in the research community could solidify his standing as an influential researcher.

Publications Top Noted

  • Article

    • Title: A 28 GHz GaN 6-Bit Phase Shifter MMIC with Continuous Tuning Calibration Technique
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Journal: Sensors (Switzerland), 2024
    • Citations: 0 citations
  • Conference Paper

    • Title: A 28 GHz 5-Bit Phase Shifter MMIC with 5.4° RMS Phase Error in GaN HEMT Process
    • Authors: S. Seo, J. Lee, Y. Lee, H. Shin
    • Citations: 1 citation
    • Source Information: Not available

 

Ananya Kuri | Engineering | Best Researcher Award

Ms. Ananya Kuri | Engineering | Best Researcher Award

Scientist | R&D Project Manager at Siemens AG, Germany

Ananya Kuri is an accomplished R&D Project Manager at Siemens AG, specializing in electrical power engineering and grid stability. With over 10 years of experience in the power systems sector, she has played a pivotal role in dynamic performance analysis, inverter-based resource modeling, and power grid optimization. Ananya holds a Ph.D. from FAU Erlangen (dissertation under review) and an M.Sc. in Electrical Power Engineering from RWTH Aachen University. She is known for her leadership in managing complex projects, mentoring teams, and collaborating with global customers. Her expertise lies in enhancing power system stability, modeling and analyzing power plants, and supporting grid compliance efforts. Ananya’s work spans across consulting, R&D, and training, with significant contributions to Siemens’ technology in power systems and microgrids. Her professional journey reflects a blend of innovation, technical excellence, and strong industry engagement, making her a respected figure in the energy sector.

Professional Profile

Education

Ananya Kuri’s academic credentials lay a solid foundation for her extensive career in power systems engineering. She holds a Ph.D. in Electrical Engineering from FAU Erlangen, where her dissertation is currently under review. Prior to this, she completed her M.Sc. in Electrical Power Engineering from RWTH Aachen University, one of Germany’s premier technical institutions. During her time at RWTH Aachen, Ananya developed a deep understanding of electrical power technologies and systems, which has been pivotal in her professional journey. Her B.Eng. in Electrical and Electronics Engineering from M.S. Ramaiah Institute of Technology in Bangalore, India, provided her with early insights into power systems, further shaping her technical expertise. Throughout her academic tenure, Ananya demonstrated a strong commitment to research, resulting in multiple published works and contributions to cutting-edge developments in the power systems domain, paving the way for her successful professional career.

Professional Experience

Ananya Kuri’s professional experience spans a decade of working with Siemens AG, where she has made significant contributions in both consulting and research roles. She began her career as a Senior Power Systems Consultant and Portfolio Element Owner in Siemens’ Digital Grid, focusing on transmission systems, inverter-based resources, and power grid stability. Her technical expertise was key in the modeling and analysis of various Siemens power systems products, including the Power Plant Controller and Microgrid Controller. Ananya has also held leadership roles as an R&D Project Manager, where she led projects like ENSURE Phase 3 for inverter-based resources and kurSyv for corrective system management in distribution networks. She has mentored teams, managed global consulting projects, and played an integral role in Siemens’ advancements in grid compliance, ensuring Siemens’ power systems meet the evolving needs of modern electrical grids. Her extensive work with international clients and R&D initiatives highlights her strong professional impact.

Research Interests

Ananya Kuri’s research interests lie primarily in the areas of power system stability, grid integration, and inverter-based technologies. Her work revolves around enhancing the dynamic performance of power grids, with a focus on transient stability, small-signal analysis, and frequency regulation. Ananya is particularly interested in the modeling and control of inverter-based resources, as these technologies are crucial in supporting the transition to renewable energy sources and the modernization of grid infrastructures. Her research also extends to the development of advanced control strategies for microgrids and power plants, aiming to improve grid stability and resilience. She is actively involved in R&D projects that address the operational challenges of integrating renewable energy into power systems, such as enhanced inverter control techniques. Ananya’s contributions to power system modeling, grid compliance studies, and dynamic simulations aim to drive innovations in power system operations and support the reliable and efficient operation of future grids.

Awards and Honors

Ananya Kuri’s outstanding contributions to the field of power systems engineering have earned her recognition within both the academic and professional communities. She has been actively involved in global research and development initiatives and has contributed to numerous successful consulting projects. Although specific awards are not mentioned, her leadership roles in industry-standard working groups like CIGRE and IEC, along with her involvement in over 35 working groups and 17+ published works, underscore her high standing in the industry. Ananya’s influence extends beyond her immediate work at Siemens, as she is recognized as a key member of international committees shaping the future of power system operations and standards. Her expertise in developing Siemens’ key products, such as the SICAM Power Plant Controller and Microgrid Controller, also highlights her significant contributions to the global energy sector. These honors and recognitions reflect her impact as a thought leader in electrical power engineering.

Conclusion

Ananya Kuri is highly suitable for the Best Researcher Award based on her extensive experience, leadership in R&D, technical expertise, and contributions to global research projects. Her work in inverter control strategies, grid stability, and model development for Siemens’ products directly addresses the challenges facing modern power systems. The only area for improvement would be completing her Ph.D. and further enhancing her public engagement. Overall, she represents the qualities of a forward-thinking researcher with significant industry impact.

Publications Top Noted

Title: Power Dispatch Capacity of a Grid-Forming Control Based on Phase Restoring Principle
Authors: A. Kuri, Ananya; R. Zurowski, Rainer; G. Mehlmann, Gert; M. Luther, Matthias
Journal: IEEE Systems Journal
Year: 2023
Citations: 3

 

Chung-Horng Lung | Engineering | Best Researcher Award

Chung-Horng Lung | Engineering | Best Researcher Award

Full Professor at Carleton University, Canada

Dr. Chung-Horng Lung is a distinguished professor in the Department of Systems and Computer Engineering at Carleton University, Ottawa. With a career spanning over three decades in academia and industry, he has made significant contributions to software engineering, network security, and artificial intelligence. Recognized as one of the world’s top 2% most-cited researchers (Stanford-Elsevier, 2022 & 2023), his work has influenced various domains, including machine learning-based security systems, intelligent data processing, and network optimization. Prior to joining Carleton University, he held senior engineering positions at Nortel Networks, where he worked on software architecture, network traffic engineering, and MPLS-based communication technologies. His extensive research, mentorship, and interdisciplinary collaborations have earned him a reputation as a leading scholar in his field. Alongside his academic contributions, Dr. Lung is also a Professional Engineer (P.Eng.) in Ontario, further validating his expertise and impact in the engineering community.

Professional Profile

Education

Dr. Lung holds a Ph.D. in Computer Science and Engineering from Arizona State University, Tempe, earned in 1994. His journey in academia began with a Master’s degree in Computer Science and Engineering from the same institution in 1988, following a Bachelor’s degree in Computer Science and Engineering from Chung-Yuan Christian University, Taiwan, in 1982. His academic background provided him with a strong foundation in software engineering, network security, and intelligent computing. During his doctoral studies, he worked extensively on distributed systems and software engineering methodologies, laying the groundwork for his future research. His educational trajectory showcases a commitment to innovation and excellence, equipping him with the expertise needed to bridge academia and industry. Through continuous learning and research advancements, Dr. Lung has remained at the forefront of emerging technologies in computing and engineering.

Professional Experience

Dr. Lung has a rich professional background in both academia and industry. He is currently a Professor at Carleton University, where he has been a faculty member since 2001. Before becoming a full professor in 2015, he served as an Associate Professor in the same department. His industry experience includes senior roles at Nortel Networks, where he worked as a Senior Software Designer and Network Engineer on Optical Packet Interworking and MPLS-based Traffic Engineering. He was also a Senior Software Architecture Engineer at Nortel’s Software Engineering Analysis Lab (SEAL), contributing to critical advancements in software engineering and network technologies. Additionally, he has worked as an Instructor and Research Assistant at Arizona State University and a Software Engineer at Electronics Research & Service Organization in Taiwan. His diverse career path reflects his versatility and expertise in both theoretical and applied computing disciplines.

Research Interests

Dr. Lung’s research focuses on machine learning, cybersecurity, software engineering, and network optimization. His work in machine learning-based intrusion detection systems (IDS) has led to the development of AI-driven security solutions for SCADA and power systems. Additionally, his research on knowledge graphs and unstructured data processing has contributed to advancements in data-driven decision-making. His expertise extends to network traffic analysis, software reliability engineering, and intelligent data sampling, with applications in forest fire detection, industrial automation, and smart city infrastructures. His interdisciplinary approach has fostered collaborations with academic institutions, industry partners, and government agencies, ensuring that his research has real-world impact. By integrating AI, cybersecurity, and software engineering principles, Dr. Lung continues to explore innovative solutions to modern technological challenges.

Awards and Honors

Dr. Lung has received numerous accolades throughout his career, with his most notable recognition being listed among the world’s top 2% most-cited scholars (Stanford-Elsevier, 2022 & 2023). This honor reflects the global impact of his research and his contributions to computer science and engineering. Additionally, he is a registered Professional Engineer (P.Eng.) in Ontario, demonstrating his adherence to the highest professional standards in engineering. Over the years, he has received multiple best paper awards, research grants, and industry recognitions for his work in machine learning, cybersecurity, and network optimization. His mentorship of students and early-career researchers has also been acknowledged through teaching excellence awards and faculty recognitions. With a distinguished academic and professional career, Dr. Lung continues to push the boundaries of innovation in computing and engineering, solidifying his position as a leading researcher in the field.

Conclusion

Dr. Chung-Horng Lung is a highly qualified and impactful researcher, making significant contributions in Computer Science, Machine Learning, and Network Engineering. His strong publication record, industry experience, and citation impact make him a strong contender for the Best Researcher Award. Addressing minor gaps in funding details, patents, and international collaborations could further strengthen his case.

Publications Top Noted

📖 Journal Articles

1️⃣ In-Network Caching for ICN-Based IoT (ICN-IoT): A Comprehensive Survey 🏆

  • Author(s): Zhang, Z., Lung, C.-H., Wei, X., Chatterjee, S., Zhang, Z.
  • Year: 2023
  • Citations: 41 🔥
  • Published in: IEEE Internet of Things Journal

2️⃣ iCache: An Intelligent Caching Scheme for Dynamic Network Environments in ICN-Based IoT Networks 🧠

  • Author(s): Zhang, Z., Wei, X., Lung, C.-H., Zhao, Y.
  • Year: 2023
  • Citations: 17 📈
  • Published in: IEEE Internet of Things Journal

3️⃣ Knowledge Graph Generation and Application for Unstructured Data Using Data Processing Pipeline 🤖

  • Author(s): Sukumar, S.T., Lung, C.-H., Zaman, M., Panday, R.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: IEEE Access

🎤 Conference Papers

4️⃣ A Federated Learning Framework Based on Spatio-Temporal Agnostic Subsampling (STAS) for Forest Fire Prediction 🔥

  • Author(s): Mutakabbir, A., Lung, C.-H., Ajila, S.A., Sampalli, S., Ravichandran, T.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: IEEE COMPSAC 2024

5️⃣ Comparative Analysis of Real-Time Data Processing Architectures: Kafka versus MQTT Broker in IoT 📡

  • Author(s): Ho, C.L.D., Lung, C.-H., Mao, Z.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: IEEE ICEIB 2024

6️⃣ DDoS Flood Detection and Mitigation using SDN and Network Ingress Filtering – an Experiment Report 🛡️

  • Author(s): Marleau, S., Rahman, P., Lung, C.-H.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: IEEE ICEIB 2024

7️⃣ Big Data Synthesis and Class Imbalance Rectification for Enhanced Forest Fire Classification Modeling 🔥📊

  • Author(s): Tavakoli, F., Naik, K., Zaman, M., Lung, C.-H., Ravichandran, T.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: International Conference on Agents and Artificial Intelligence

8️⃣ Forest Fire Prediction Using Multi-Source Deep Learning 🌲🔥

  • Author(s): Mutakabbir, A., Lung, C.-H., Ajila, S.A., Purcell, R., Sampalli, S.
  • Year: 2024
  • Citations: 0 (New Publication) 🚀
  • Published in: LNICST Conference Proceedings

9️⃣ A Data Integration Framework with Multi-Source Big Data for Enhanced Forest Fire Prediction 🌍🔥

  • Author(s): Kaur, P., Naik, K., Purcell, R., Zaman, M., Mutakabbir, A.
  • Year: 2023
  • Citations: 1 📊
  • Published in: IEEE Big Data 2023

🔟 Unstructured Transportation Safety Board Findings Categorization Using the Knowledge Graph Pipeline 🚗📊

  • Author(s): Panday, R., Lung, C.-H.
  • Year: 2023
  • Citations: 1 🏆
  • Published in: IEEE Big Data 2023