Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Prof. Dr. Athanasios G. Mamalis | Materials Science | Academic and Industrial Collaboration Award

Scientific Director | Project Center for Nanotechnology and Advanced Engineering | Greece

Prof. Dr. Athanasios G. Mamalis is the Scientific Director of the Project Center for Nanotechnology and Advanced Engineering, a joint initiative of the Greek National Research Center “Demokritos” and the Russian Kurchatov Institute, and Emeritus Professor, Founder of the Laboratory of Manufacturing Technology at the National Technical University of Athens, Greece. A graduate in Mechanical and Electrical Engineering from the National Technical University of Athens, he earned his M.Sc. and Ph.D. in Mechanical Engineering from the Victoria University of Manchester Institute of Science and Technology. Dr. Mamalis has extensive industrial experience as Chief Engineer and Technical Manager in steelworks across Germany and Greece, complemented by long-standing collaborations with international industry including American, British, German, European, Japanese, Chinese, ex-Soviet, Hungarian, and Greek enterprises. He has held visiting professorships at Cambridge University, Universität Hannover, RWTH Aachen, and Carleton University, and full professorships at Michigan Technological University and the National Technical University of Athens. His research spans mechanics, manufacturing technology, precision and ultraprecision engineering, nanotechnology, ferrous and non-ferrous materials from macro- to nanoscale, powder production, biomechanics, vehicle structural safety, energy, environment, and industrial sustainability, resulting in over 32 books and monographs, 12 textbooks, 630 refereed journal and conference publications, and two patents. He has received numerous global recognitions, including election to several academies of sciences, multiple honorary professorships and doctorates, and fellowships and editorial roles in international scientific organizations and journals, reflecting his exceptional contributions to both theoretical and applied engineering and his enduring impact on global scientific and industrial advancement.

Profiles:  Scopus | ORCID

Featured Publications

1. Electroconsolidation method for fabrication of fine-dispersed high-density ceramics. Nanotechnology Perceptions, 2024.

2. Peculiarities of obtaining nanostructured materials compacted by the method of hot pressing due to the passage of direct electric current. Nanotechnology Perceptions, 2024.

3. Algorithmic foundations of optimization using finite element modeling of high-speed grinding technology in application to 3D micro-level models. Nanotechnology Perceptions, 2024.

4. Computer simulations of static stress-strain states for long-length pressurised pipes with external protective thin nanoengineered coating under nonuniform temperature fields. Nanotechnology Perceptions, 2024.

5. Magnetic shielding materials for electric vehicles. Nanotechnology Perceptions, 2024.

Muhammad Sarfraz | Materials Science | Best Researcher Award

Dr. Muhammad Sarfraz | Materials Science | Best Researcher Award

Associate Professor | University of Engeineering and Technology | Pakistan

Dr. Muhammad Sarfraz is an accomplished researcher and Associate Professor in Polymer and Process Engineering, with extensive experience in membrane technologies and polymeric materials. He has led the design and fabrication of advanced laboratory setups, contributed to curriculum development, and actively mentored undergraduate and postgraduate students. His research focuses on innovative solutions for carbon dioxide separation, polymer composites, and advanced membrane processes, addressing both industrial and environmental challenges. He has participated in numerous international conferences, workshops, and training programs, demonstrating his commitment to continuous learning and knowledge dissemination. Dr. Sarfraz’s work reflects a strong integration of experimental expertise and applied research, producing practical outcomes while advancing fundamental understanding in his field. His scholarly contributions are significant, as reflected in Scopus, showcasing measurable research impact: 2,525 citations, 167 documents, and an h-index of 29.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. M. Sarfraz, “Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post …,” Journal of Membrane Science, vol. 514, pp. 35–43, 2016.

2. M. Sarfraz, “Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post …,” Journal of Industrial and Engineering Chemistry, vol. 36, pp. 154–162, 2016.

3. M. Sarfraz, “A novel zeolitic imidazolate framework based mixed-matrix membrane for efficient CO2 separation under wet conditions,” Journal of the Taiwan Institute of Chemical Engineers, vol. 65, pp. 427–436, 2016.

4. M. Sarfraz, “Combined Effect of CNTs with ZIF-302 into Polysulfone to Fabricate MMMs for Enhanced CO2 Separation from Flue Gases,” Arabian Journal of Science and Engineering, vol. 41, pp. 2573–2582, 2016.

5. A. Sohail, M. Sarfraz, S. Nawaz, Z. Tahir, “Enhancing carbon capture efficiency of zeolite-embedded polyether sulfone mixed-matrix membranes via annealing process,” Journal of Cleaner Production, vol. 399, 136617, 2023.