Muhammad Hussain | Materials Science | Best Researcher Award

Mr. Muhammad Hussain | Materials Science | Best Researcher Award

Academician/Research Scholar at UOW Australia, Australia

Muhammad Hussain is a dedicated mechanical engineer with a strong background in design, development, and automation of mechanical systems. With over eight years of professional experience, he has worked extensively on customized engineering solutions, advanced manufacturing techniques, and material processing technologies. His expertise spans 3D modeling, finite element simulations, laser spectroscopy, and additive manufacturing. Throughout his career, he has collaborated with various research institutions and industries to enhance mechanical system automation. His commitment to innovation and research excellence makes him a leading figure in the field of mechanical engineering.

Professional Profile

Education

Muhammad Hussain holds a Master’s degree in Mechanical Engineering, which provided him with a solid foundation in engineering design, thermomechanical analysis, and automation technologies. His academic journey was marked by active participation in research projects, advanced material processing, and welding technology studies. He has also undertaken specialized training in nondestructive testing (NDT), quality control, and industrial manufacturing systems, equipping him with a diverse skill set that bridges theoretical knowledge with practical applications.

Professional Experience

Muhammad Hussain has had an extensive professional career, notably serving at NCC-PINSTECH complex from October 2014 to May 2023 as a Design and Development Engineer. His work includes 3D computer-aided manufacturing (CAM), finite element analysis, and automation of mechanical systems. He has played a key role in mechanized material handling, welding automation, and HVAC system design. Additionally, he has contributed to contract management, quality assurance, and interdisciplinary research projects, making significant advancements in industrial manufacturing technologies.

Research Interests

His research interests focus on additive manufacturing, automated welding systems, thermomechanical welding, and advanced material processing. He has been actively involved in developing experimental setups, performing spectroscopy analysis, and studying composite materials like W-Cu for industrial applications. His expertise in Wire Arc Additive Manufacturing (WAAM) and Laser-Induced Breakdown Spectroscopy (LIBS) showcases his commitment to pushing the boundaries of mechanical engineering and manufacturing technology.

Awards and Honors

Muhammad Hussain has been recognized for his significant contributions to engineering and research. He has published research in peer-reviewed journals, including studies on welding metallurgy and composite material fabrication. His work in design and automation has led to numerous acknowledgments from research institutions and industrial partners. He continues to strive for excellence in mechanical engineering, automation, and material science, making him a strong candidate for prestigious research awards.

Conclusion

Muhammad Hussain has a strong technical background, with proven expertise in mechanical engineering, automation, and material science research. His innovations, interdisciplinary collaborations, and published work make him a strong candidate for the Best Researcher Award. However, to further enhance his research impact, expanding publication records, obtaining patents, and increasing involvement in mentorship or academic activities would strengthen his case.

Publications Top Noted

APA (7th Edition):

Hussain, M., Dong, B., Qiu, Z., Garbe, U., Pan, Z., & Li, H. (2025). A review on the additive manufacturing of W-Cu composites. Metals, 15(2), 197. https://doi.org/10.3390/met15020197.

IEEE:

M. Hussain, B. Dong, Z. Qiu, U. Garbe, Z. Pan, and H. Li, “A review on the additive manufacturing of W-Cu composites,” Metals, vol. 15, no. 2, p. 197, Feb. 2025. DOI: 10.3390/met15020197.

MLA:

Hussain, Muhammad, et al. “A Review on the Additive Manufacturing of W-Cu Composites.” Metals, vol. 15, no. 2, 2025, p. 197, https://doi.org/10.3390/met15020197.

Mohammad Jellur Rahman | Materials Science | Best Researcher Award

Prof Dr. Mohammad Jellur Rahman | Materials Science | Best Researcher Award

Professor, Department of Physics, Bangladesh University of Engineering and Technology, Bangladesh

Dr. Mohammad Jellur Rahman is a distinguished Professor in the Department of Physics at Bangladesh University of Engineering and Technology (BUET) in Dhaka. With expertise in his field, he contributes significantly to the academic and research landscape. His dedication to teaching and mentoring students has earned him admiration and respect within the university community. As a leading figure in physics education, Dr. Rahman’s work inspires 🌟 and motivates budding scientists. His presence enriches BUET’s academic environment, fostering a culture of excellence and innovation.

Profile

Scopus

Orcid

Education

Dr. Mohammad Jellur Rahman’s academic journey showcases an impressive array of achievements. He obtained his Ph.D. in Optoelectronics and Nanostructure Science from Shizuoka University, Japan, delving into carbon nanotubes’ production and applications. Earlier, he earned an M.Phil. from Bangladesh University of Engineering and Technology, focusing on plasma polymerized thin films. His dedication to research is evident through numerous fellowships, including MEXT and ICT, and accolades such as STRC Fellowship. Rahman’s educational foundation includes an M.S. from the University of Dhaka and a B.Sc. with honors, reflecting his commitment to excellence since his schooling days. 🎓

Professional Career 

Dr. Mohammad Jellur Rahman’s professional journey illustrates his commitment to academia and research. Currently serving as a Professor at the Department of Physics, Bangladesh University of Engineering and Technology (BUET), he imparts knowledge to both undergraduate and postgraduate students while actively contributing to curriculum enhancement. Previously, as an Associate Professor and Assistant Professor at BUET, Rahman mentored graduate students and facilitated research endeavors. His tenure as a Lecturer saw him diligently educating undergraduates while pursuing his Master of Philosophy (MPhil). Prior to academia, Rahman held a role at Bangladesh Bank, honing skills in central banking and monetary policy. 🎓

Research Experience

During his academic pursuits, Dr. Mohammad Jellur Rahman engaged in impactful research ventures across prestigious institutions. At Shizuoka University, Japan, as a Graduate Researcher, he delved into the intricate realms of carbon nanotubes’ production and applications. His tenure at the Department of Physics, BUET, Dhaka, Bangladesh, witnessed intensive exploration of plasma polymerized thin films’ optical, structural, and electrical properties. Additionally, as a Research Fellow at the Semiconductor Technology Research Centre, University of Dhaka, Rahman contributed to the synthesis and analysis of pure and cerium-doped barium titanate. These endeavors reflect Rahman’s dedication to advancing scientific knowledge and innovation. 🔬

Field of Interest 

Dr. Mohammad Jellur Rahman’s research interests span a diverse array of materials science disciplines, with a particular focus on carbon nanotubes and nanomaterials. His expertise extends to plasma modification of carbon nanomaterials, elucidating their unique properties. Additionally, Rahman explores the optical, structural, and electrical characteristics of plasma polymerized thin films, alongside investigating ceramics materials‘ structural and electrical properties. Furthermore, his work encompasses comprehensive studies of soft condensed matters, including crystallization, phase transition, and surface morphology, enhancing our understanding of their mechanical, thermal, and electrical properties. Rahman’s multifaceted research contributes significantly to advancing materials science.

Punlications Top Notes

“Schottky conduction mechanism in plasma polymerized N-benzylaniline thin films” (2024)

“Direct current conduction mechanism in the methyl acrylate–vinyl acetate composite thin films” (2023)

“Structural and optical behaviours of methyl acrylate-vinyl acetate composite thin films synthesized under dynamic low-pressure plasma” (2023)

“Carbon Nanotube Reinforced Natural Rubber Nanocomposite as a Stretchable Electronic Material” (2023)

“Thickness dependence of structural and optical behavior of plasma polymerized 3,4-ethylenedioxythiophene thin films” (2022)

“Thickness dependent thermal and optical properties of plasma polymerized N-benzylaniline thin films” (2021)

“Structural and thickness-dependent optical parameters of plasma polymerized 2-vinylpyridine thin films” (2022)

“Effect of M (Ni, Cu, Zn) doping on the structural, electronic, optical, and thermal properties of CdI2: DFT based theoretical studies” (2021)

“Thickness dependent structural and surface properties of plasma polymerized N-benzylaniline thin films” (2021)

“Carbon nanotube-incorporated cellulose nanocomposite sheet for flexible technology” (2020)