KeChrist Obileke | Energy | Best Researcher Award

Dr. KeChrist Obileke | Energy | Best Researcher Award

Research Fellow at University of Fort Hare, South Africa

Dr. KeChrist Obileke is a distinguished researcher specializing in renewable energy, biofuels, and food processing technologies. Currently a Research Fellow at the University of Fort Hare, South Africa, he has extensive experience in energy conversion, biogas digesters, and microbial fuel cells for sustainable electricity generation. His work bridges multiple disciplines, including Chemical Engineering, Applied Physics, and Electrical Engineering, reflecting his passion for innovative energy solutions. Dr. Obileke has played a pivotal role in biogas technology deployment in South African rural communities, contributing to clean energy solutions. With an h-index of 19, his impactful research is widely recognized in scientific literature. Beyond research, he is an educator and mentor, teaching physics and engineering courses at both undergraduate and postgraduate levels. His dedication to academia, research, and sustainable development makes him a key figure in advancing renewable energy technologies for a greener future.

Professional Profile

Education

Dr. Obileke holds a PhD in Applied Physics (Renewable Energy-Biomass/Bioenergy) from the University of Fort Hare, South Africa (2019). His interdisciplinary academic background includes an M.Eng. in Chemical Engineering from the University of Benin, Nigeria (2011) and a B.Eng. in Chemical Engineering from the Federal University of Technology, Owerri, Nigeria (2007). Additionally, he completed a National Diploma in Electrical/Electronic Engineering at the Federal Polytechnic Nekede, Nigeria (2008). His studies have focused on renewable energy technologies, environmental sustainability, and industrial processes, with his PhD research contributing significantly to biogas digester development for efficient energy production. His academic achievements, combined with practical training, have enabled him to develop innovative solutions in energy, waste-to-energy conversion, and food processing. His commitment to research and education underscores his role as a leader in advancing clean energy technologies.

Professional Experience

Dr. Obileke has amassed diverse experience in both academia and industry. He began his career with industrial training at Niger Gas Limited and Agility Chemical & Allied Products Ltd, Nigeria, focusing on chemical processing and energy systems. He later served as a Physics Lecturer and Researcher at the University of Benin (2010–2012). His expertise in renewable energy systems led him to the University of Fort Hare, South Africa, where he has worked as a Renewable Energy Researcher, Postdoctoral Fellow, and now Research Fellow. He has also collaborated with the University of Birmingham, UK, on food processing and preservation projects. His professional journey showcases expertise in energy systems design, biofuel technology, and engineering education, while his contributions to community-based biogas digester installations reflect his commitment to sustainable development and technological innovation.

Research Interests

Dr. Obileke’s research focuses on renewable energy, biofuel production, and food processing technologies. His expertise lies in biomass gasification, anaerobic digestion, microbial fuel cells, and hybrid energy systems for efficient power generation. His PhD research led to the design and fabrication of high-density polyethylene (HDPE) biogas digesters, providing alternative solutions for sustainable biogas production. He is also interested in non-thermal food preservation technologies, exploring methods like radio-frequency heating, cold plasma, and pulsed light to enhance food safety and shelf-life. His work extends to environmental engineering, particularly in waste-to-energy conversion and optimizing bioenergy systems for practical applications. His interdisciplinary approach ensures that his research not only advances scientific knowledge but also contributes to real-world solutions in clean energy and food security.

Awards and Honors

Dr. Obileke’s contributions to renewable energy and environmental sustainability have earned him several recognitions. He is a Professional Physicist (Pr.Phys) accredited by the South African Institute of Physics (SAIP) and a member of the South African Institution of Chemical Engineers (SAIChE). His research excellence has been acknowledged through conference presentations, journal publications, and invitations to review editorial boards, including Bioprocess Engineering in Frontiers in Bioengineering and Biotechnology. His work on biogas digester systems has been presented at major conferences like SAIP, Renewable Energy Symposiums, and Global Change Conferences. He has also received certifications in Health, Safety, and Environmental (HSE) practices and occupational safety training. Through these accolades, Dr. Obileke continues to solidify his reputation as a leading researcher dedicated to sustainable energy innovations and environmental preservation.

Conclusion

Dr. KeChrist Obileke is a highly qualified and impactful researcher in renewable energy, biofuels, and food engineering. His strong academic record, interdisciplinary expertise, and community-driven research make him a strong candidate for the Best Researcher Award.

Publications Top Noted

1. Microbial Fuel Cells, a Renewable Energy Technology for Bio-Electricity Generation: A Mini-Review

  • Authors: Obileke KC, Onyeaka H, Meyer EL, Nwokolo N
  • Journal: Electrochemistry Communications 125, 107003
  • Year: 2021
  • Citations: 344

2. Minimizing Carbon Footprint via Microalgae as a Biological Capture

  • Authors: Onyeaka H, Miri T, Obileke KC, Hart A, Anumudu C, Al-Sharify ZT
  • Journal: Carbon Capture Science & Technology 1, 100007
  • Year: 2021
  • Citations: 245

3. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production

  • Authors: Nwokolo N, Mukumba P, Obileke KC, Enebe M
  • Journal: Processes 8(10), 1224
  • Year: 2020
  • Citations: 126

4. Anaerobic Digestion: Technology for Biogas Production as a Source of Renewable Energy—A Review

  • Authors: Obileke KC, Nwokolo N, Makaka G, Mukumba P, Onyeaka H
  • Journal: Energy & Environment 32(2), 191-225
  • Year: 2021
  • Citations: 124

5. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging

  • Authors: Onyeaka H, Obileke KC, Makaka G, Nwokolo N
  • Journal: Polymers 14(6), 1126
  • Year: 2022
  • Citations: 114

6. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods

  • Authors: Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A
  • Journal: Food Engineering Reviews 14(4), 535-554
  • Year: 2022
  • Citations: 75

7. Preventing Chemical Contaminants in Food: Challenges and Prospects for Safe and Sustainable Food Production

  • Authors: Onyeaka H, Ghosh S, Obileke K, Miri T, Odeyemi OA, Nwaiwu O, et al.
  • Journal: Food Control 155, 110040
  • Year: 2024
  • Citations: 70

8. Recent Advances in Radio Frequency, Pulsed Light, and Cold Plasma Technologies for Food Safety

  • Authors: Obileke KC, Onyeaka H, Miri T, Nwabor OF, Hart A, Al-Sharify ZT, et al.
  • Journal: Journal of Food Process Engineering 45(10), e14138
  • Year: 2022
  • Citations: 41

9. Design and Fabrication of a Plastic Biogas Digester for the Production of Biogas from Cow Dung

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N
  • Journal: Journal of Engineering 2020(1), 1848714
  • Year: 2020
  • Citations: 38

10. Bioenergy from Bio-Waste: A Bibliometric Analysis of the Trend in Scientific Research from 1998–2018

  • Authors: Obileke KC, Onyeaka H, Omoregbe O, Makaka G, Nwokolo N, et al.
  • Journal: Biomass Conversion and Biorefinery
  • Year: 2020
  • Citations: 36

11. Global Nutritional Challenges of Reformulated Food: A Review

  • Authors: Onyeaka H, Nwaiwu O, Obileke KC, Miri T, Al-Sharify ZT
  • Journal: Food Science & Nutrition 11(6), 2483-2499
  • Year: 2023
  • Citations: 33

12. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material

  • Authors: Obileke KC, Makaka G, Nwokolo N, Meyer EL, Mukumba P
  • Journal: ChemEngineering 6(5), 67
  • Year: 2022
  • Citations: 31

13. Value-Added Materials Recovered from Waste Bone Biomass: Technologies and Applications

  • Authors: Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor OF, Obileke KC
  • Journal: RSC Advances 12(34), 22302-22330
  • Year: 2022
  • Citations: 31

14. Financial and Economic Feasibility of Bio-Digesters for Rural Residential Demand-Side Management and Sustainable Development

  • Authors: Meyer EL, Overen OK, Obileke KC, Botha JJ, Anderson JJ, Koatla TAB, et al.
  • Journal: Energy Reports 7, 1728-1741
  • Year: 2021
  • Citations: 31

15. Sous Vide Processing: A Viable Approach for the Assurance of Microbial Food Safety

  • Authors: Onyeaka H, Nwabor O, Jang S, Obileke KC, Hart A, Anumudu C, Miri T
  • Journal: Journal of the Science of Food and Agriculture 102(9), 3503-3512
  • Year: 2022
  • Citations: 30

16. Biogas and Syngas Production from Sewage Sludge: A Sustainable Source of Energy Generation

  • Authors: Enebe NL, Chigor CB, Obileke KC, Lawal MS, Enebe MC
  • Journal: Methane 2(2), 192-217
  • Year: 2023
  • Citations: 27

17. Comparative Study on the Performance of Aboveground and Underground Fixed‐Dome Biogas Digesters

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N, Onyeaka H
  • Journal: Chemical Engineering & Technology 43(1), 68-74
  • Year: 2020
  • Citations: 24

18. Development of a Mathematical Model and Validation for Methane Production Using Cow Dung as Substrate in the Underground Biogas Digester

  • Authors: Obileke KC, Mamphweli S, Meyer EL, Makaka G, Nwokolo N
  • Journal: Processes 9(4), 643
  • Year: 2021
  • Citations: 22

19. Minimizing Carbon Footprint via Microalgae as a Biological Capture

  • Authors: Onyeaka H, Miri T, Obileke K, Hart A, Anumudu C, Al-Sharify ZT
  • Journal: Carbon Capture Science & Technology 1, 100007
  • Year: 2021
  • Citations: 22

20. Materials for the Design and Construction of Household Biogas Digesters for Biogas Production: A Review

  • Authors: Obileke KC, Onyeaka H, Nwokolo N
  • Journal: International Journal of Energy Research 45(3), 3761-3779
  • Year: 2021
  • Citations: 21

 

Yutaka Moritomo | Energy Material Science | Best Researcher Award

Prof. Yutaka Moritomo | Energy Material Science | Best Researcher Award

Professor, University of Tsukuba, Japan

Yutaka Moritomo is a distinguished Professor at the Faculty of Pure and Applied Science, University of Tsukuba, known for his pioneering research in thermoelectric conversion devices and battery technology. With a career spanning over three decades, his work focuses on enhancing the efficiency and performance of electrochemical systems.

Profile

Google Scholar

Strengths

  1. Depth and Breadth of Research: Yutaka Moritomo’s research spans various aspects of physical science, particularly in the fields of materials science, electrochemistry, and energy storage. His work on thermoelectric devices, battery technologies, and organic electronics showcases a deep understanding and significant contribution to these fields.
  2. High-Impact Publications: Moritomo has a strong publication record with numerous papers in high-impact journals such as Nature Materials, J. Phys. Soc. Jpn., and Energy Technology. This indicates a high level of recognition and respect within the scientific community.
  3. Innovative Contributions: His research on liquid thermoelectric devices, concentration-dependent resistance components, and thermorechargeable batteries demonstrates innovation and an ability to address cutting-edge topics. His work on improving battery performance and understanding redox potential in various materials is noteworthy.
  4. Collaborative Efforts: Moritomo has co-authored numerous papers with various researchers, showing his ability to work effectively in collaborative environments. This is crucial for advancing complex scientific research and developing new technologies.
  5. Consistency and Continuity: His consistent publication output and engagement in diverse but related research areas over the years reflect a sustained commitment to scientific inquiry and advancement.

Areas for Improvement

  1. Research Diversity: While Moritomo’s focus on electrochemistry and thermoelectric devices is impressive, diversifying into other emerging fields or interdisciplinary research could broaden his impact and address a wider range of scientific questions.
  2. Impact and Application: Although his research is technically sound, more emphasis could be placed on the practical applications and commercialization of his findings. Translating scientific discoveries into real-world solutions could enhance the societal impact of his work.
  3. Interdisciplinary Integration: Increasing integration with other scientific disciplines, such as integrating his work with developments in computational modeling or advanced materials science, could lead to new insights and applications.
  4. Public Engagement: Greater efforts in public science communication and outreach could help bridge the gap between scientific research and public understanding. This might involve writing more accessible articles or participating in science education initiatives.

Education

Dr. Moritomo earned his PhD in Physics from the University of Tokyo in 1992, where he laid the foundation for his future research in thermoelectric and battery technologies. 🎓

Experience

After completing his PhD, he worked as a JSPS Research Fellow and then held a Postdoctoral position at JRCAT. From 1996 to 2005, he was an Associate Professor at Nagoya University before joining the University of Tsukuba as a Professor in 2005. 🏛️

Research Interests

His research delves into liquid thermoelectric conversion devices, battery performance optimization, and the thermal conductivity of solutions. He aims to advance energy storage and conversion technologies through innovative electrochemical solutions. ⚛️

Awards

Dr. Moritomo has been recognized for his contributions to physics and energy science, though specific awards are not listed. 🏅

Publications Top Notes

T. Aiba and Y. Moritomo, Coated electrode for liquid thermoelectric conversion devices to enhance Fe2+/Fe3+ redox kinetics, Sustain. Energy & Fuel, 2024.

D. Inoue and Y. Moritomo, Concentration dependence of resistance components in solutions containing dissolved Fe2+/Fe3+, RSC Adv., 2024.

K. Nishitani and Y. Moritomo, Thermal conductivity of organic solutions against solute concentration, J. Phys. Soc. Jpn., 2024.

Y. Taniguchi, T. Aiba, T. Kubo, Y. Moritomo, Thermorechargeable Battery composed of mixed electrodes, Future Battery, 2024.

K. Furuuchi, Y. Taniguchi, Y. Bao, H. Niwa, and Y. Moritomo, Battery resistance and its effect on performance of laminate film-type Co-PBA/Ni-PBA tertiary battery, Jpn. J. Appl. Phys., 2024.

Conclusion

Yutaka Moritomo is a highly accomplished researcher with significant contributions to the fields of electrochemistry, materials science, and energy storage. His innovative work and high-impact publications demonstrate a strong case for the “Best Researcher Award.” To further enhance his candidacy, focusing on expanding research diversity, increasing practical applications, and improving public engagement could be beneficial.