Blasius Ngayakamo | Materials Science | Best Researcher Award

Dr. Blasius Ngayakamo | Materials Science | Best Researcher Award

Lecturer at Dar es Salaam Institute of Technology, Tanzania

Dr. Blasius Henry Ngayakamo is a dedicated researcher and educator specializing in sustainable construction materials, waste valorization, and climate resilience in engineering. With a PhD in Materials Science and Engineering, his work focuses on developing eco-friendly solutions like geopolymer earthen blocks and green concrete to address global sustainability challenges. Dr. Ngayakamo is also committed to advancing STEM education by creating hands-on learning tools for students, emphasizing real-world applications in sustainable engineering. His academic journey spans multiple institutions worldwide, including roles at California Polytechnic State University, the African University of Science and Technology, and the Fraunhofer Institute for Ceramic Technologies. His research has led to impactful publications on sustainable materials and waste utilization, and he actively mentors students and junior researchers. As a passionate advocate for interdisciplinary collaboration, Dr. Ngayakamo bridges academic research with industry applications to drive solutions for a sustainable, climate-resilient future.

Professional Profile 

Scopus Profile

Education

Dr. Blasius Henry Ngayakamo holds an extensive academic background, starting with a Bachelor of Education in Science (Chemistry and Biology) from St. Augustine University of Tanzania. He went on to earn a Master’s in Materials Science and Engineering from the Nelson Mandela African Institution of Science and Technology, Tanzania. He later completed a PhD in Materials Science and Engineering at the African University of Science and Technology, Nigeria, followed by a Postdoctoral Fellowship in Materials Engineering at California Polytechnic State University, USA. This robust academic foundation has equipped him with a diverse set of skills and knowledge, enabling him to tackle complex challenges in sustainable construction and materials science.

Professional Experience

Dr. Ngayakamo’s professional journey spans several prestigious institutions. He currently serves as a Lecturer and Researcher at the Dar es Salaam Institute of Technology, Tanzania. His previous roles include postdoctoral fellowships and teaching positions at California Polytechnic State University, the African University of Science and Technology, and international research stints in Germany and Malaysia. Throughout his career, he has worked on pioneering interdisciplinary research projects focusing on sustainable construction materials and their integration into education. His experience also includes mentoring students and collaborating with industry partners to develop real-world, scalable solutions for sustainability in engineering.

Research Interest

Dr. Ngayakamo’s research interests are centered on sustainable construction materials, waste valorization, and climate resilience in engineering. His work focuses on developing eco-friendly solutions, such as geopolymer earthen blocks and green concrete, with a particular emphasis on integrating these technologies into educational tools. He is committed to addressing global sustainability challenges by developing innovative materials that contribute to low-carbon construction practices. Dr. Ngayakamo’s research also explores the intersection of interdisciplinary STEM education, promoting hands-on learning and practical solutions to sustainability issues in the built environment. His work fosters collaboration between academia, industry, and communities to achieve impactful results in sustainable infrastructure.

Award and Honor

Dr. Ngayakamo has received several academic and professional recognitions for his groundbreaking work in materials science and sustainable construction. As a member of the African Materials Research Society and the Society for Geology Applied to Mineral Deposits, he is recognized within global scientific communities. His research contributions, particularly in waste valorization and eco-friendly materials, have garnered attention through published articles in leading scientific journals. His work has been acknowledged for its practical applications in addressing pressing global sustainability challenges, especially in the construction industry. His ongoing involvement in international research projects further highlights his reputation as a dedicated scholar in the field.

Conclusion

Dr. Blasius Ngayakamo is an exemplary researcher and educator whose work at the intersection of sustainable construction, waste valorization, and interdisciplinary STEM education makes him a leader in the field of materials science. With a rich academic background, extensive professional experience, and a passion for fostering the next generation of engineers, Dr. Ngayakamo’s contributions have far-reaching impacts on both education and industry. His innovative approach to eco-friendly construction materials and his commitment to addressing climate resilience through practical, scalable solutions make him a standout figure in the global effort for sustainability. His ongoing research, mentorship, and collaborations continue to shape the future of sustainable engineering and education.

Publications Top Notes

  • Title: Investigation of plastic-sand paving blocks: A sustainable solution using recycled plastic waste

  • Authors: B.H. Ngayakamo, Blasius Henry

  • Year: 2025

  • Citation: Ngayakamo, B.H. (2025). Investigation of plastic-sand paving blocks: A sustainable solution using recycled plastic waste. Hybrid Advances, 2025.

Yuriy Chumlyakov | Materials Science | Best Researcher Award

Prof. Yuriy Chumlyakov | Materials Science | Best Researcher Award

head of laboratory at Tomsk State University, Russia

Yuriy Ivanovich Chumlyakov is a prominent Russian scientist renowned for his groundbreaking contributions to materials science and solid-state physics. Currently, he is the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, Tomsk State University, and also a professor at Tomsk State University. Over his distinguished career, Chumlyakov has gained international recognition for his pioneering research on high-strength single crystals, including studies on mechanical twinning, thermoelastic martensitic transformations, and shape memory alloys. His work has not only enriched theoretical physics but also influenced practical applications in material engineering, particularly in areas like superelasticity and plastic deformation. Throughout his career, he has collaborated with leading research institutions globally and played a key role in advancing the scientific understanding of materials’ behavior under stress and transformation. His academic and professional pursuits have made him a leading figure in his field, contributing extensively to both research and teaching.

Professional Profile

Education

Yuriy Chumlyakov’s academic journey is marked by an unwavering commitment to advancing knowledge in solid-state physics. He completed his undergraduate degree at Tomsk State University, where he earned a diploma in physics in 1970. Building upon this foundation, he pursued graduate studies at the same institution, earning his Ph.D. in solid-state physics in 1980. His expertise in the field was further solidified when he obtained the prestigious Doctor of Science degree in 1989 from the Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Tomsk. Chumlyakov’s education provided him with the deep theoretical understanding and practical research skills necessary for his long-term contributions to the study of material properties, including those related to crystal structures, plasticity, and shape memory alloys. His academic background has played an essential role in shaping his successful career as a researcher and educator, allowing him to mentor future generations of scientists.

Professional Experience

Yuriy Ivanovich Chumlyakov’s professional career spans several decades, with significant contributions to both academic research and the advancement of materials science. Since 1989, he has served as the head of the Laboratory of Physics of Strength and Plasticity at the Siberian Physical-Technical Institute, where he has overseen numerous research projects focused on the behavior of high-strength single crystals under various stress conditions. Additionally, since 1993, Chumlyakov has been a professor at Tomsk State University, educating students in solid-state physics and materials science. His career also includes a long tenure as a senior research worker at the same institute, where he initially gained prominence. Throughout his career, Chumlyakov has been involved in numerous international collaborations, contributing to the global scientific community. His leadership and extensive experience in experimental and theoretical physics have positioned him as a key figure in the study of materials’ mechanical properties and transformations.

Research Interests

Yuriy Chumlyakov’s research interests lie at the intersection of solid-state physics, materials science, and applied physics. His primary focus is on the behavior of single crystals, particularly in the context of mechanical twinning, plastic deformation, and fracture mechanisms. He has extensively studied thermoelastic martensitic transformations in homogeneous and non-homogeneous crystals, including materials like NiTi, FeNiCoAl, and TiNiFe. Chumlyakov’s work on shape memory alloys and superelasticity has contributed to advancing the understanding of materials that undergo reversible transformations when subjected to external stimuli, such as temperature or stress. His expertise also extends to the dislocation structures in crystals and the plastic deformation of single crystals, which are vital for applications in aerospace, automotive, and medical fields. The practical implications of his work are vast, especially in the development of advanced materials for engineering solutions, including applications in structural health monitoring and high-performance materials.

Awards and Honors

Yuriy Ivanovich Chumlyakov’s exemplary contributions to materials science have earned him numerous prestigious awards and honors over the years. He has been a recipient of multiple grants from the Russian Foundation for Basic Research and the Russian Ministry of Education, underscoring the significance of his research in advancing the field. Chumlyakov’s work has been widely recognized internationally, with honors including a fellowship from the Japan Society for the Promotion of Science (JSPS) and the prestigious George Miller Professorship at the University of Illinois. He has served on the editorial boards of leading journals such as the Journal of Physics of Metals and Metallography and as a guest editor for special issues on shape memory alloys in the ASME Journal of Engineering and Technology. Furthermore, his contributions to the scientific community have been acknowledged through his appointment as a permanent jury member of PhD and Doctor of Science councils at Tomsk State University. These honors reflect his standing as a leading researcher in his field.

Conclusion

Yuriy Ivanovich Chumlyakov is a highly deserving candidate for the Best Researcher Award. His long history of groundbreaking research, leadership in academia, global recognition, and extensive contributions to the fields of solid-state physics and materials science make him a standout figure in his discipline. His work on shape memory alloys and thermomechanical transformations is crucial in advancing both theoretical and practical aspects of materials science, particularly for engineering applications. Expanding his outreach and engaging with newer interdisciplinary fields would only further enhance the impact of his already impressive career.

Publications Top Noted

  • High-temperature thermoelastic martensitic transformations in Ni44Fe19Ga27Co10 single crystals
    • Authors: Timofeeva, E.E., Panchenko, E.Y., Zherdeva, M.V., Volochaev, M.N., Chumlyakov, Y.I.
    • Year: 2025
    • Journal: Materials Letters
    • Citations: 0
  • Effect of carbon on the shape memory effect of [1¯44]−Oriented Cr20Fe20Mn20Co35Ni4.9C0.1 high-entropy alloy single crystals under tension
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Vyrodova, A.V.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Cyclic stability of the elastocaloric effect in heterophase [001]-oriented TiNi single crystals
    • Authors: Surikov, N.Y., Panchenko, E., Chumlyakov, Y.I., Marchenko, E.
    • Year: 2024
    • Journal: Applied Physics Letters
    • Citations: 0
  • Influence of the number of particle variants on the cyclic stability of superelasticity in Ti-51.5at.%Ni single crystals
    • Authors: Timofeeva, E.E., Zherdeva, M.V., Tagiltsev, A.I., Panchenko, E.Y., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 1
  • Thermal and Cyclic Stability of Two-Way Shape Memory Effect in Ni44Fe19Ga27Co10 Single Crystals
    • Authors: Timofeeva, E.E., Dmitrienko, M.S., Panchenko, E.Y., Fatkullin, I.D., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Microstructure and Thermoelastic Martensitic Transformation in Ni-Low and -Rich Ni–Ti–Hf–Nb High-temperature Shape Memory Alloys
    • Authors: Eftifeeva, A.S., Timofeeva, E.E., Panchenko, E.Y., Yanushonyte, E.I., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Russian Physics Journal
    • Citations: 0
  • Orientation Dependence of Cyclic Stability of Superelasticity of Ti50.2Ni49.8 Alloy Single Crystals under Compression
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Vyrodova, A.V., Pobedennaya, Z.V., Marchenko, E.S.
    • Year: 2024
    • Journal: Physics of Metals and Metallography
    • Citations: 0
  • Influence of Heat Treatments on Martensitic Transformations and Elastocaloric Effect in Two-Phase (β + γ) NiFeGa Alloys
    • Authors: Kurlevskaya, I.D., Panchenko, E.Y., Tokhmetova, A.B., Timofeeva, E.E., Chumlyakov, Y.I.
    • Year: 2024
    • Journal: Physical Mesomechanics
    • Citations: 1
  • Superelasticity of [0 0 1]-oriented Fe–Mn–Al–Cr–Ni crystals with a negative temperature dependence of transformation stresses
    • Authors: Chumlyakov, Y.I., Kireeva, I.V., Pobedennaya, Z.V., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0
  • Formation of texture and twinning at 296 K of “Artificial” polycrystals of an equiatomic Co20Cr20Fe20Ni20Mn20 High-entropy alloy
    • Authors: Kireeva, I.V., Chumlyakov, Y.I., Kuksgauzen, I.V., Kuksgauzen, D.A.
    • Year: 2024
    • Journal: Materials Letters
    • Citations: 0