Tayyebeh Madrakian | Chemistry | Best Researcher Award

Prof. Tayyebeh Madrakian | Chemistry | Best Researcher Award

academic member at Bu-Ali Sina University, Iran

Professor Tayyebeh Madrakian is a distinguished analytical chemist known for her groundbreaking contributions to nanotechnology, biosensors, and environmental chemistry. She is a highly cited researcher recognized globally for her innovative work in analytical and bioanalytical method development, pollutant removal, and drug delivery systems. As a professor at Bu-Ali Sina University, Iran, she has played a pivotal role in mentoring future scientists and advancing cutting-edge research. Her extensive editorial board memberships, leadership in scientific societies, and active role in international research collaborations highlight her influence in the field. With a strong commitment to both fundamental and applied research, she has significantly contributed to the development of novel nanomaterials for environmental and biomedical applications. Through her dedication, she continues to shape the future of analytical chemistry and inspire new generations of researchers.

Professional Profile

Education

Professor Madrakian pursued her B.Sc. in Chemistry from Shiraz University (1989) before completing her M.Sc. in Analytical Chemistry at Bu-Ali Sina University (1996). Her passion for research led her to obtain a Ph.D. in Analytical Chemistry from Razi University in 2000, where she specialized in advanced separation techniques and electrochemical analysis. Her academic journey reflects a strong foundation in chemical analysis, instrumentation, and nanotechnology applications. Throughout her education, she developed expertise in environmental chemistry, sensor development, and solid-phase extraction methods. Her rigorous training equipped her with the skills to pioneer innovative analytical techniques that have since been widely recognized and applied in environmental monitoring, clinical diagnostics, and pharmaceutical sciences. Her strong academic background laid the foundation for an impactful career in research, education, and scientific innovation.

Professional Experience

Professor Madrakian began her academic career as an Assistant Professor at Bu-Ali Sina University in 2000. She was later promoted to Associate Professor in 2005 and Full Professor in 2011, solidifying her expertise in analytical chemistry. Over the years, she has supervised more than 50 graduate students, shaping the next generation of researchers. Her editorial roles in prestigious journals such as Nanochemistry Research and Frontiers in Bioengineering and Biotechnology reflect her standing in the scientific community. Additionally, she serves as a researcher at Farin Behbood Tashkhis Ltd, contributing to the development of rapid test kits for medical diagnostics. As a respected member of the Iranian Chemical Society and the American Chemical Society, she actively collaborates with international researchers and contributes to peer-reviewing articles for leading analytical chemistry journals. Her career is marked by a dedication to scientific advancement and innovation.

Research Interests

Professor Madrakian’s research focuses on developing novel analytical methods for environmental, pharmaceutical, and biomedical applications. Her work spans electrochemical and optical sensors, nanomaterials, pollutant removal, drug delivery, and wastewater treatment. She has made significant advancements in solid-phase extraction techniques and the synthesis of magnetic nanoparticles for chemical and biological sensing. Her studies on targeted drug delivery using smart nanocarriers have contributed to the field of personalized medicine and cancer therapy. Furthermore, her contributions to wastewater treatment and pollutant remediation using advanced nanomaterials have had a substantial impact on environmental sustainability. Through multidisciplinary collaborations, she continues to explore cutting-edge technologies for analytical and bioanalytical applications, pushing the boundaries of innovation in chemistry and nanoscience.

Awards and Honors

Professor Madrakian’s outstanding contributions to science have earned her numerous prestigious awards. She has been recognized as an ISI Highly Cited Researcher (Top 1%) since 2019 and is ranked among the Top 2% of scientists worldwide since 2018. She received the Khwarizmi Youth Award (2019) and was named the Distinguished Analytical Chemist of Iran by the Iranian Chemical Society (2019). Additionally, she was honored at the 2nd National Festival of Women and Science (2019) for her remarkable achievements. In 2022, she was recognized as a Distinguished Professor in Iranian universities, further solidifying her reputation as a leader in the field. She is also a member of the Iranian Federation of Scientific Leaders (2021-2022), demonstrating her influence on the scientific landscape. Her awards highlight her exceptional research impact, dedication to scientific excellence, and leadership in analytical chemistry.

Conclusion

Professor Tayyebeh Madrakian is an exceptional candidate for the Best Researcher Award due to her high-impact research, extensive academic contributions, and recognized global standing. Her expertise in analytical chemistry, nanotechnology, and environmental science has significantly advanced scientific knowledge.

Publications Top Noted

  • Moradi, M., Afkhami, A., Madrakian, T., Moazami, H.R., Tirandaz, A. (2025). Partial hydrothermal sulfidation of electrosynthesized Co-Mn layered-double-hydroxide as an active material for supercapacitor applications. Journal of Power Sources. Citations: 0

  • Nezamoleslami, L., Khorshidian, N., Madrakian, T., Zaim, S.F., Mohammadi, V.G. (2025). Effect of Zataria multiflora essential oil, saffron infusion, and fat content on the formation of polycyclic aromatic hydrocarbons, organoleptic score, and toxic potency of Kebab Koobideh. Journal of Food Composition and Analysis. Citations: 0

  • Ajdari, B., Madrakian, T., Jalali Sarvestani, M.R., Afkhami, A. (2025). Highly sensitive electrochemical determination of agomelatine in biological samples based on Cu nanoparticles/Schiff base network1 modified glassy carbon electrode: DFT and experimental studies. Talanta. Citations: 0

  • Jalali Sarvestani, M.R., Madrakian, T., Tavassoli, A.M., Afkhami, A., Zolfigol, M.A. (2025). Synthesis of a triazine-based COF and its application for the establishment of an electrochemical sensor for the simultaneous determination of Cd²⁺ and Pb²⁺ in edible specimens using Box-Behnken design. Food Chemistry. Citations: 0

  • Moradifar, B., Afkhami, A., Madrakian, T., Jalali Sarvestani, M.R., Khalili, S. (2025). Rapid, simple and highly selective determination of Chromium(III) in aqueous samples by a microfluidic cell coupled to a smartphone-based colorimetric-sensing detector. Journal of the Iranian Chemical Society. Citations: 0

  • Moeinipour, A., Afkhami, A., Madrakian, T. (2025). Stimuli-responsive polymeric film based on hydrogen-bonded organic framework designing as a smart wound dressing. Iranian Polymer Journal (English Edition). Citations: 0

  • Seifi, A., Afkhami, A., Madrakian, T. (2024). Improved MnO₂ based electrode performance arising from step-by-step heat treatment during electrodeposition of MnO₂ for determination of paracetamol, 4-aminophenol, and 4-nitrophenol. Scientific Reports. Citations: 1

  • Khalili, S., Majidi, M., Bahrami, M., Madrakian, T., Afkhami, A. (2024). A portable gas sensor based on In₂O₃@CuO P–N heterojunction connected via Wi-Fi to a smartphone for real-time carbon monoxide determination. Scientific Reports. Citations: 1

  • Jalal, N.R., Madrakian, T., Ahmadi, M., Bahrami, M., Roshanaei, M. (2024). Wireless wearable potentiometric sensor for simultaneous determination of pH, sodium, and potassium in human sweat. Scientific Reports. Citations: 2

  • Vaziri, Y., Asgari, G., Ghorbani-Shahna, F., Shokoohi, R., Seid-Mohammadi, A. (2024). Degradation of 2,4-dinitrotoluene in aqueous solution by dielectric barrier discharge plasma combined with Fe–RGO–BiVO₄ nanocomposite. Scientific Reports. Citations: 2

 

Hao Liu | Chemistry | Best Researcher Award

Dr. Hao Liu | Chemistry | Best Researcher Award

student, Tianjin University of Technology, China

Hao Liu is a passionate PhD candidate at Tiangong University, specializing in Materials Science and Engineering. His research focuses on the structural design and properties of cathode materials for lithium-sulfur batteries. Hao has actively contributed to the development of high-performance flexible vulcanised polyacrylonitrile composite fiber cathodes, advancing energy density and cycle stability for flexible electronic devices. 📚🔋

Publication Profile

Scopus

Strengths for the Best Researcher Award:

  • Innovative Research Focus: Hao Liu’s work in the design and properties of cathode materials for lithium-sulfur batteries is cutting-edge, addressing a critical area in the development of high-performance energy storage solutions. His contributions are especially relevant to flexible electronic devices, a rapidly growing field.
  • Publication Record: He has published four significant journal articles, two of which are in well-regarded SCI/Scopus-indexed journals. This demonstrates strong research output, with clear contributions to the field of lithium-sulfur batteries.
  • Collaboration and Professional Memberships: Collaborating with experts like Xingxiang Zhang and having professional memberships further strengthen Hao’s research network, allowing for diverse perspectives and contributions.
  • Technical Contributions: His work focuses on enhancing the energy density and cycle stability of batteries by optimizing material properties. This can have a substantial impact on the performance of next-generation batteries.

Areas for Improvement:

  • Industry/Consultancy Projects: Hao Liu’s application lacks industry engagement or consultancy projects, which could enhance the practical impact and application of his research. Collaborating with industries or securing consultancy roles could help bridge the gap between academia and real-world applications.
  • Patent Development: With no patents published or under process, this aspect of innovation can be further developed. Securing patents for his novel designs would strengthen his standing as an innovator in materials science and battery technology.
  • Broader Editorial Roles: Taking on more editorial roles or participating in journal review boards would also improve his profile as a recognized expert in the field.

🎓 Education:

Hao Liu is pursuing his PhD in Materials Science and Engineering from Tiangong University. His academic journey has been shaped by a strong interest in energy storage solutions, particularly in the development of advanced battery technologies. 🎓

💼 Experience:

With hands-on experience in designing and optimizing high-performance materials for lithium-sulfur batteries, Hao Liu has conducted significant research projects, contributing to the field of energy storage. His expertise lies in electrostatic spinning and the composition of organic, inorganic, and metallic materials. 🔬

🔬 Research Focus:

Hao’s research focuses on the structural design of cathode materials, particularly for lithium-sulfur batteries. He is driven to improve energy density and cycling stability through innovative material compositions. His work is crucial for the advancement of flexible electronic devices. ⚡🧪

🏅 Awards and Honors:

While Hao is in the early stages of his academic career, his research contributions have been recognized in several peer-reviewed journals. He is actively working towards making significant impacts in the materials science community. 🏅

📝 Publication Top Notes:

Liu, H., Zhang, Y., Li, Y. et al. (2024). Solid-State Transformations of Active Materials in the Pores of Sulfurized Polyacrylonitrile Fiber Membranes for High-Loading Lithium–Sulfur Battery Cathodes. Advanced Fiber Materials, 6, 772. Cited by 12

Liu, H., Zhang, Y., Li, Y. et al. (2023). Loadings of Functionalized Multiwalled Carbon Nanotubes for Enhancing Sulfurized Polyacrylonitrile Performance in Lithium–Sulfur Batteries. ACS Applied Nano Materials, 6, 21058. Cited by 18

Liu, H., He, R., Li, Y. et al. (2023). Effect of Sulfurized Polyacrylonitrile-g-rGO Composition on Specific Capacity of Lithium-Sulfur Batteries. Journal of Electroanalytical Chemistry, 15, 117465. Cited by 9

Liu, H., Zhang, Y., et al. (2024). Performance Study of Flexible Vulcanized Polyacrylonitrile Composite Fiber Anode. Journal of Colloid and Interface Science, Cited by 5

Conclusion:

Hao Liu’s research contributions in the area of lithium-sulfur batteries are significant and relevant for the Best Researcher Award. His innovative approaches, strong publication record, and collaboration with leading experts highlight his potential. However, greater involvement in industry projects and patent filing would further elevate his candidacy, strengthening his case as a leading researcher in materials science.