Mohammad Madani | Chemistry | Best Research Article Award

Dr. Mohammad Madani | Chemistry | Best Research Article Award

Polymeric Nanocomposite at University of Tehran, Iran

Dr. Mohammad Madani is a distinguished researcher in polymer chemistry and nanotechnology. With a strong academic background and extensive research experience, he has contributed significantly to the fields of electrospinning, nanofibers, and polymeric materials. He has been affiliated with renowned institutions, including the University of Tehran and Qatar University, working on advanced polymeric materials with applications in membranes, sensors, and nanocomposites. His collaborative research with international teams has resulted in several high-quality publications in leading journals. Throughout his career, he has been involved in pioneering studies that bridge fundamental chemistry with industrial applications. His expertise in organic-inorganic hybrid materials, functional nanofibers, and membrane technology highlights his dedication to advancing material sciences. Dr. Madani’s work has had a profound impact on fields such as medical sciences, environmental engineering, and advanced materials development, making him a well-respected scientist in his domain.

Education

Dr. Madani completed his Bachelor of Science in Pure Chemistry from the University of Tehran in 2002. He continued his studies at the same institution, earning a Master of Science in Organic Chemistry in 2006, where he focused on developing crosslinkable medium-density polyethylene on a semi-industrial scale. His doctoral research, completed in 2010, specialized in nanofiber preparation via electrospinning, a cutting-edge technique in polymer chemistry. His Ph.D. dissertation, supervised by Dr. N. Sharifi-Sanjani, explored novel methods to fabricate organic-inorganic hybrid nanofibers. Dr. Madani further expanded his expertise through a postdoctoral project at Qatar University (2012–2014), where he worked on polymeric adhesives containing carbon nanotubes. Additionally, he served as a Scientific Board member at the Agricultural Biotechnology Research Institute of Iran (2014–2020), contributing to material science applications in agricultural biotechnology. His educational background has provided a strong foundation for his research in polymeric materials and nanotechnology.

Professional Experience

Dr. Madani has held various prestigious academic and research positions. He served as a Scientific Board Member at the Agricultural Biotechnology Research Institute of Iran (ABRII) from 2014 to 2020, where he contributed to the development of polymeric and nanomaterial-based solutions for agricultural applications. During his postdoctoral tenure at Qatar University (2012–2014), he worked extensively on carbon nanotube-based polymeric adhesives, a project that bridged academia and industrial applications. Additionally, he has been affiliated with the University of Tehran, where he conducted groundbreaking research in electrospinning, membrane separation, and nanofiber synthesis. His expertise extends to supervising students, collaborating on international research projects, and publishing extensively in high-impact chemistry and engineering journals. Dr. Madani has also contributed to the development of advanced polymeric materials for applications in membrane technology, sensors, and biomedical sciences, positioning him as a leading expert in his field.

Research Interests

Dr. Madani’s research primarily focuses on polymeric materials, electrospinning techniques, nanofiber synthesis, and membrane separation technologies. He has made significant contributions to the development of organic-inorganic hybrid nanofibers, which have applications in filtration, drug delivery, and energy storage. His work on polystyrene/titanium dioxide (PS/TiO₂) composite nanofibers has improved the surface-to-volume ratio of materials used in advanced material engineering. Additionally, he has investigated hollow fiber membrane contactors for use in medical and pharmaceutical applications. His recent projects include carbon nanotube-reinforced adhesives, which have potential industrial applications in electronics, aerospace, and biomedical engineering. Dr. Madani’s interdisciplinary approach integrates polymer science, nanotechnology, and material engineering, making his research impactful across multiple scientific domains. His dedication to developing novel materials continues to push the boundaries of polymer chemistry and applied nanotechnology.

Awards and Honors

Dr. Madani has received recognition for his contributions to polymer chemistry and nanotechnology. His research on nanofibers, membrane technology, and polymer composites has been acknowledged in international forums. He has published in high-impact journals, earning citations and recognition from peers in material science, chemical engineering, and nanotechnology. He has also been an invited speaker at scientific conferences, where he has presented his innovative research on advanced polymeric materials. As a postdoctoral researcher at Qatar University, he played a crucial role in developing carbon nanotube-based adhesives, a project that earned recognition for its industrial applicability. His contributions to hollow fiber membrane contactors in medical sciences have been widely appreciated. Dr. Madani’s commitment to cutting-edge research has positioned him as a leading figure in polymer chemistry, and he continues to contribute to scientific advancements in materials science and engineering.

Conclusion

Dr. Mohammad Madani is a strong candidate for the award based on his contributions to polymer chemistry, electrospinning, and nanomaterials. However, to be a top contender, he should further enhance the visibility and impact of his work through higher-impact publications, patents, and industry collaborations. If his nominated research article presents novel advancements in polymer science or nanotechnology, he would be a worthy recipient.

Publications Top Noted

  • Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology

    • Authors: N. Naderi, F. Agend, R. Faridi-Majidi, N. Sharifi-Sanjani, M. Madani
    • Year: 2008
    • Citations: 32
  • PS/TiO₂ (polystyrene/titanium dioxide) composite nanofibers with higher surface-to-volume ratio prepared by electrospinning: Morphology and thermal properties

    • Authors: M. Madani, N. Sharifi-Sanjani, A. Hasan-Kaviar, M. Choghazardi
    • Year: 2013
    • Citations: 28
  • Distinguished discriminatory separation of CO₂ from its methane-containing gas mixture via PEBAX mixed matrix membrane

    • Authors: P.A. Gamali, A. Kazemi, R. Zadmard, M.J. Anjareghi, A. Rezakhani, R. Rahighi, M. Madani
    • Year: 2018
    • Citations: 19
  • Multi-phase composite nanofibers via electrospinning of latex containing nanocapsules with core-shell morphology

    • Authors: R. Faridi-Majidi, M. Madani, N. Sharifi-Sanjani, S. Khoee, A. Fotouhi
    • Year: 2012
    • Citations: 19
  • Preparation of granular crosslinkable medium-density polyethylene

    • Authors: M. Madani, N. Sharifi-Sanjani, E. Rezaei-Zare, R. Faridi-Majidi
    • Year: 2007
    • Citations: 17
  • Preparation of nanocapsules via emulsifier-free miniemulsion polymerization

    • Authors: M. Barari, R. Faridi-Majidi, M. Madani, N. Sharifi-Sanjani, M.A. Oghabian
    • Year: 2009
    • Citations: 14
  • Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization

    • Authors: M. Madani, N. Sharifi-Sanjani, R. Faridi-Majidi
    • Year: 2011
    • Citations: 13
  • A novel potentiometric Ni²⁺-sensor based on a Ni²⁺ ion-imprinted polymer

    • Authors: N. Hamidi, T. Alizadeh, M. Madani
    • Year: 2018
    • Citations: 10
  • Aureole nanofibers by electrospinning of PAMAM-PEO solution

    • Authors: M. Madani, N. Sharifi-Sanjani, R. Iraji-Rad
    • Year: 2009
    • Citations: 9
  • Applications of Hollow Fiber Membrane Contactors in Advanced Medical Sciences and Pharmaceutics

    • Authors: H. Tabesh, G. Amoabediny, M. Madani, M.H. Gholami, A. Kashefi, K. Mottaghy
    • Year: 2012
    • Citations: 5
  • Preparation of manganese oxide–polyethylene oxide hybrid nanofibers through in situ electrospinning

    • Authors: M. Madani, N. Sharifi-Sanjani, S. Khoee, A. Hasan-Kaviar, A. Kazemi
    • Year: 2010
    • Citations: 5
  • Synthesis of Calcium Carbonate-Polyethylene Oxide Hybrid Nanofibers Through In-Situ Electrospinning

    • Authors: R. Faridi-Majidi, N. Sharifi-Sanjani, M. Madani
    • Year: 2008
    • Citations: 5
  • Preparation of core-shell and hollow fibers using layer-by-layer (LbL) self-assembly of polyelectrolytes on electrospun submicrometer-scale silica fibers

    • Authors: A. Kazemi, J. Lahann, M. Madani, N. Sharifi-Sanjani, A. Hasan-Kaviar
    • Year: 2010
    • Citations: 2
  • Using Electrospinning Technique for Preparation of Cobalt Hydroxide Nanoparticles

    • Authors: M. Madani, A.S. Hamouda
    • Year: 2016
    • Citations: 1
  • Preparation of polyethylene oxide-cobalt hydroxide hybrid nanofibers

    • Authors: M. Madani
    • Year: —-
    • Citations: —-

 

Hongjian Qin | Sustainable and Green Chemistry | Best Researcher Award

Dr. Hongjian Qin | Sustainable and Green Chemistry | Best Researcher Award

Research Director, Shanghai Institute of Materia Medica, China

Dr. Hongjian Qin is a passionate researcher specializing in sustainable chemistry and organic synthesis. He is currently affiliated with the Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Dr. Qin holds a PhD in Organic Chemistry, where he has demonstrated remarkable expertise in process development of drug substances and medicinal administration. His research focuses on improving the sustainability of chemical processes, particularly in the context of drug development. With over three years of hands-on experience, Dr. Qin has contributed to high-impact research aimed at tackling environmental challenges in chemical synthesis. His work bridges the gap between green chemistry and pharmaceutical processes, positioning him as a promising figure in both academic and industry-driven research.

Profile

             Strong Academic Background

    • Hongjian Qin holds a PhD in Organic Chemistry with a specialization in sustainable chemistry, particularly focusing on the process development of drug substances and medicinal administration. The recognition as an “Excellent Graduate student” from the University of Chinese Academy of Sciences further highlights his academic excellence.
  1. Research Experience:
    • Dr. Qin has over three years of progressive research experience, contributing significantly to the field of sustainable chemistry, with an emphasis on drug development. His work spans important topics such as improved synthesis methods for pharmaceutical intermediates, process optimization, and green chemistry.
  2. Collaborative and High-Impact Publications:
    • He has co-authored numerous publications in reputable journals, contributing to the advancement of sustainable practices in medicinal chemistry and organic synthesis. Notably, articles like “Direct esterification of amides by the dimethylsulfate-mediated activation of amide C–N bonds” and “An Alternative Approach to Synthesize Sildenafil” indicate that his work addresses critical challenges in both process efficiency and sustainability.
    • These papers are contributing to novel drug development strategies and offer potential solutions for large-scale pharmaceutical manufacturing.
  3. Contribution to Drug Development and Sustainability:
    • His research is closely aligned with addressing key environmental challenges and improving sustainability in the pharmaceutical industry. His focus on improving the synthesis of complex molecules like tecovirimat, sildenafil, and telmisartan positions him at the forefront of green chemistry in drug development.
  4. Innovative Approach to Chemical Synthesis:
    • Dr. Qin has demonstrated expertise in applying innovative catalytic processes, such as copper-catalyzed cyclization, iron-catalyzed cross-coupling reactions, and iodine-catalyzed aromatization reactions, to streamline synthetic pathways. His research offers valuable insights for efficient, cost-effective, and environmentally friendly drug synthesis.

Areas for Improvement

  1. Wider Research Impact and Citations:
    • While Dr. Qin’s publications are highly relevant and promising, some papers have low citation counts, indicating a potential opportunity for greater visibility. More engagement in high-visibility platforms, collaborations with larger research groups, and increased dissemination of findings could amplify the impact of his work.
  2. Development of Leadership Roles:
    • As Dr. Qin is still early in his career, taking on more leadership roles, such as leading independent research projects or mentoring junior researchers, would further solidify his standing as a leader in his field.
  3. Broader International Collaboration:
    • Expanding his network and collaboration opportunities beyond his immediate research community, especially in industry, could provide avenues for translating his research into practical applications.

Education 

Dr. Hongjian Qin holds a Doctor of Philosophy (PhD) degree in Organic Chemistry, awarded in June 2024 from the Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Xinjiang, China. He also completed a Master of Engineering (M.Eng.) in Organic Chemistry (Process Development of Drug Substances) at the School of Chemistry and Chemical Engineering, Guangxi University, in June 2006. Prior to his master’s, Dr. Qin earned a Bachelor of Science (B.Sc.) in Organic Chemistry, also from the School of Chemistry and Chemical Engineering, Guangxi University, in June 2003. Throughout his education, Dr. Qin has focused on sustainable chemistry, particularly in the development of eco-friendly processes in drug synthesis

 

Research Focus 

Dr. Hongjian Qin’s research primarily focuses on sustainable chemistry, with particular emphasis on improving the environmental footprint of drug development processes. His expertise lies in organic synthesis, process optimization, and green chemistry. He has worked on the development of eco-friendly synthetic pathways for key pharmaceutical intermediates, striving to reduce waste, energy consumption, and the use of toxic reagents. His work includes the application of innovative catalytic processes, such as copper-catalyzed cyclization and iodine-catalyzed reactions, to streamline drug synthesis. Additionally, Dr. Qin has contributed to the study of impurity profiles in drug substances, such as tecovirimat, and has investigated new methods for large-scale, efficient production of pharmaceutical compounds. His research aims to bridge the gap between green chemistry principles and industrial applications, with the goal of creating more sustainable, cost-effective methods for producing pharmaceuticals while minimizing environmental impact.

Publications 

  1. “Direct esterification of amides by the dimethylsulfate-mediated activation of amide C–N bonds” 🧪💡
  2. “An Alternative Approach to Synthesize Sildenafil via Improved Copper-Catalyzed Cyclization” 💊🔬
  3. “Impurity study of tecovirimat” 🔬📚
  4. “Improved and ligand-free copper-catalyzed cyclization for an efficient synthesis of benzimidazoles from o-bromoarylamine and nitriles” 🔧⚙️
  5. “Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents with Alkenyl Carbonate” 🧲⚗️
  6. “A review of the synthetic strategies toward the antiviral drug tecovirimat” 📖💊
  7. “An Improved Iodine-Catalyzed Aromatization Reaction and Its Application in the Synthesis of a Key Intermediate of Cannabidiol” 💡🌿
  8. “Optimized Synthesis of the Key Intermediate of Telmisartan via the Cyclization of 2-Bromoarylamine with n-Butyronitrile” 💊🧪
  9. “Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene” 🔬⚙️
  10. “An efficient synthesis of the last step key intermediate for telmisartan via Pd-catalyzed carbonylative cyclization” 🔬💡

Conclusion

Dr. Hongjian Qin is an exceptional candidate for the “Best Researcher Award” due to his innovative contributions to the field of sustainable chemistry and drug development. His dedication to advancing environmentally friendly synthetic methods and his ability to solve complex challenges in pharmaceutical chemistry make him a strong contender. With a few improvements in visibility and leadership, Dr. Qin’s research could have an even broader influence on both academia and industry. His combination of academic excellence, innovative research, and commitment to sustainability positions him as a leading researcher in his field.

Saad Aljlil | Chemical Engineering | Best Researcher Award

Prof. Saad Aljlil | Chemical Engineering | Best Researcher Award

Senior researcher, King Abdullaziz City for Science and Technology, Saudi Arabia

🌍 Saad Aljlil is a distinguished Chemical Engineer with a focus on sustainable materials and membrane technology. With over 15 years of experience, he has significantly contributed to research and academia. Currently an Assistant Professor, he is recognized for his innovative work in chemical engineering and has received prestigious awards for his inventions and scientific contributions.

Publication Profile

Scopus

Strengths for the Award

  1. Diverse Educational Background: Saad Aljlil holds a Ph.D. in Chemical Engineering from Syracuse University, along with a B.Sc. and M.Sc. from King Saud University. This diverse academic background forms a solid foundation for his research credentials.
  2. Notable Work Experience: His vast experience as an engineer at SABIC and as an assistant professor at the College of Technology in Riyadh showcases a blend of industry and academic expertise, enriching his research approach.
  3. Prestigious Awards: Aljlil’s honors include being recognized by King Abdullah bin Abdulaziz’s Prize to honor inventors and talented individuals and receiving the International Association of Advanced Materials Scientist Medal in 2023, which highlights his global recognition.
  4. Impactful Publications: Aljlil has published extensively in high-impact journals, with several papers in 2024 alone, focused on sustainable environmental technologies, including membrane technologies and wastewater treatment. His work contributes to solving pressing environmental problems, making his research highly relevant.
  5. Innovative Contributions: His doctoral thesis being published as a scientific book, available on Amazon, speaks to the academic value and impact of his research. His development of eco-adsorbent films and various water treatment innovations underscores his originality and practical contribution to the field.

Areas for Improvement

  1. Broader International Collaboration: Although he has numerous impactful publications, building further international collaborations could boost his profile. Engaging in research projects with global institutions might provide him with broader exposure and enhance his research impact.
  2. Focus on Emerging Areas: While his research on water treatment and membrane technology is impressive, expanding into emerging fields such as AI in chemical engineering or renewable energy systems could further diversify his contributions.
  3. Increased Visibility in Conferences: While publications are key, Aljlil could increase his presence in high-profile international conferences. Presenting his innovative findings at well-regarded platforms could extend the reach and influence of his research.

 

Education

🎓 Saad Aljlil holds a Ph.D. in Chemical Engineering from Syracuse University, New York, U.S.A. He also earned his M.Sc. and B.Sc. degrees in Chemical Engineering from King Saud University, Riyadh, Saudi Arabia.

Experience

👨‍🏫 Saad Aljlil’s career started at SABIC in the Studies Department, followed by teaching roles at the Chemical Technology Department in Riyadh. He is now an Assistant Professor of Chemical Engineering at the College of Technology, Riyadh, where he focuses on membrane technology and water treatment.

Research Focus

🔬 His research focuses on sustainable materials, membrane technology, and wastewater treatment. He has developed eco-friendly solutions, such as using waste materials for pollutant removal and creating innovative membrane technologies for water purification.

Awards and Honors

🏆 Saad has received several prestigious accolades, including the International Association of Advanced Materials Scientist Medal in 2023. He was also recognized as one of the winners of the King Abdullah bin Abdulaziz Prize for inventors and talented individuals. His Ph.D. thesis was published as a scientific book and is available on Amazon.

Publication Top Notes

📚 His key publications include groundbreaking work on eco-adsorbent films and ceramic membranes for water treatment, published in high-impact journals like the Journal of Membrane Science. Saad’s research has been widely cited for its innovation in the field of membrane technology and sustainability.

Developing a new sustainable eco-adsorbent film from flexographic printing plate waste, 2024 (Impact factor: 3.9)
Cited by 10 articles.

Fabrication and characterization of coated ceramic membranes from natural sources for water treatment applications, Journal of Membrane Science, 2024 (Impact factor: 9.5)
Cited by 12 articles.

Application of Anionic Hydrogels from Date Palm Waste for Dye Adsorption in Wastewater Treatment, 2024 (Impact factor: 5.0)
Cited by 8 articles.

Innovative Polyelectrolyte Multilayer Nanofiltration Membrane Fabricated through spin-spray Assisted layer-by-layer Assembly, 2024 (SUBMITTED) (Impact factor: 3.5)
Under review.

Enhancement of membrane distillation performance by polymer membranes incorporated with porous organic & inorganic materials: A state-of-the-art review, 2024 (SUBMITTED) (Impact factor: 5.7)
Under review.

Conclusion

Saad Aljlil’s combination of advanced education, extensive industry and academic experience, prestigious awards, and impactful publications makes him a strong candidate for the Best Researcher Award. His contributions to environmental engineering, particularly in wastewater treatment and membrane technology, address critical global challenges. With some additional focus on international collaboration and engagement in emerging fields, he could further enhance his research standing. Overall, his research excellence and innovative mindset position him well for this prestigious recognition.