Prashant Awasthi | Artificial Intelligence and Machine Learning | Best Researcher Award

Mr. Prashant Awasthi | Artificial Intelligence and Machine Learning | Best Researcher Award

Tech Architecture Manager at Accenture LLP, United States

Mr. Prashant Awasthi is a seasoned technology leader and researcher with extensive experience in Generative AI, DevOps, Cloud Computing, and Machine Learning. With a strong professional background in managing large-scale projects for global clients, he has consistently bridged advanced research with practical industry applications. His contributions to academia include multiple publications in reputed journals and international conferences on diverse topics such as AI, cloud computing, IoT security, cryptocurrencies, and human activity recognition. Beyond publishing, he has played active roles as a reviewer, session chair, and invited speaker at global conferences, demonstrating his recognition and influence within the research community. He is also a member of IEEE and IAENG, further reflecting his engagement with international scientific networks. Known for his technical expertise, leadership, and dedication, Mr. Awasthi continues to make meaningful contributions that advance innovation and knowledge, establishing him as a strong candidate for research recognition and awards.

Professional Profile 

Google Scholar | Scopus Profile

Education

Mr. Prashant Awasthi has built a strong educational foundation that supports his extensive professional and research career. His academic journey reflects a balance between theoretical learning and practical application, with a focus on computer science, information technology, and software engineering. Throughout his education, he developed expertise in programming, system design, and emerging technologies, which laid the groundwork for his later specialization in cloud computing, DevOps, and artificial intelligence. His continuous learning mindset is evident in his pursuit of globally recognized professional certifications, including AWS Cloud Solutions Architect, HashiCorp Terraform, and ITIL V4. These advanced credentials demonstrate his commitment to staying updated with evolving technologies and applying them effectively in real-world environments. His academic and professional learning paths are closely integrated, allowing him to contribute significantly to both industry and research. This strong educational background has enabled him to engage in innovative research and knowledge-sharing at the global level.

Experience

Mr. Prashant Awasthi has more than eighteen years of experience in the IT industry, with a career spanning leadership roles in global organizations such as Accenture, HSBC, and Harbinger Systems. At Accenture LLP, he has served as a Tech Architecture Manager, overseeing end-to-end project lifecycles, from requirement analysis to deployment, while managing large teams and delivering solutions for Fortune 500 clients, particularly in the banking and finance sectors. His professional expertise extends across Generative AI, cloud computing, DevOps, CI/CD pipelines, software development, and middleware systems. He has consistently demonstrated strong leadership by guiding teams, driving client engagements, and ensuring the delivery of high-quality solutions. His background also includes hands-on technical skills in Java, Python, Unix/Linux, and database systems. This combination of managerial and technical expertise allows him to effectively integrate innovation into business solutions. His professional experience illustrates a successful balance between technical depth, organizational leadership, and research-driven development.

Research Focus

Mr. Prashant Awasthi’s research focus lies at the intersection of artificial intelligence, cloud computing, cybersecurity, and emerging digital technologies. His published work addresses critical areas such as reinforcement learning, heuristic algorithms, human activity recognition using CNNs, framework-agnostic JavaScript libraries, and the role of AI-powered systems like ChatGPT. He has also explored blockchain, cryptocurrencies, and IoT security frameworks, highlighting his multidisciplinary approach to solving contemporary technology challenges. His work often emphasizes integrating advanced algorithms with real-world applications, such as improving system efficiency, scalability, and security in cloud environments. He has a strong interest in sustainable and innovative computing solutions, as reflected in his research on digital twins, wireless fog-IoT networks, and environmental data analysis. By contributing to both applied and theoretical dimensions of research, he bridges academia and industry, ensuring that his work remains relevant and impactful. His focus on practical implementation ensures that his research benefits technological advancement globally.

Award and Honor

Mr. Prashant Awasthi has received recognition for his contributions to research, academia, and the professional community through various prestigious roles and honors. He has been invited as a speaker at international conferences, where he has shared his insights on artificial intelligence, machine learning, and generative AI. His expertise has also earned him appointments as a session chair and reviewer at globally recognized conferences, including events organized by Springer, Elsevier, and international academic bodies. By serving as a reviewer and technical committee member, he has contributed to maintaining research quality and supporting innovation within the global scientific community. His memberships with leading professional associations such as IEEE and IAENG further highlight his standing as a respected contributor to the field. These honors, combined with his published research in reputed journals and conferences, reflect his dedication to advancing technology and academia. His recognition underscores his credibility as a global researcher and thought leader.

Publication Top Notes

Title: Framework-Agnostic JavaScript Component Libraries: Benefits, Implementation Strategies, and Commercialization Models
Authors: KK Gupta, P Awasthi, M Shaik, PR Kaveri
Year: 2024
Citations: 6

Title: ChatGPT: The Power Of AI
Authors: P Awasthi, DPR Kaveri
Year: 2023
Citations: 2

Title: Effect of Prompt Engineering on Education Sector: A Mixed Case Study
Authors: P Awasthi
Year: 2021
Citations: 2

Title: Evaluating the Need of Reinforcement Learning by Implementing Heuristic Algorithms with Its Load Balancing and Performance Testing in Cloud
Authors: KDPA Prathamesh Vijay Lahande, Parag Ravikant Kaveri, Vinay Chavan
Year: 2025

Title: Explainability and Interpretability of Large Language Models in Critical Applications
Authors: PA Vinod Goje, Rohit Jarubula, Sai Krishna Kalakonda
Year: 2025

Title: Real-Time Human Motion Behaviour Recognition Using Deep Learning Models
Authors: P Awasthi
Year: 2025

Title: Integrating Human Motion Dynamics in CNN Architecture to Recognize Human Activity from Different Camera Angles
Authors: KK Gupta, JH Lee, PR Kaveri, P Awasthi
Year: 2025

Title: Seasonal Variations and Water Quality Dynamics: Analysis of Kanota Dam in Relation to WHO Standards
Authors: DK Meena, S Singh, SK Singh, V Pandey, RS Rana, B Sajan, P Awasthi, et al.
Year: 2024

Title: History, Current, and Prospective of Bitcoin and Cryptocurrency
Authors: MD Prashant Awasthi
Year: 2024

Conclusion

Mr. Prashant Awasthi’s publication record reflects a strong blend of technical innovation, academic contribution, and interdisciplinary research. His works span critical areas such as artificial intelligence, machine learning, cloud computing, blockchain, and applied deep learning, highlighting both depth and versatility. With multiple papers published in reputed conferences and journals, along with growing citation impact, his research demonstrates recognition and relevance in the scholarly community. Additionally, his contributions as a sole author and as part of collaborative teams show his ability to lead as well as integrate within diverse research environments. While some of his recent works are yet to accumulate citations, they address timely and impactful topics that are likely to gain traction in the coming years. Overall, his research portfolio establishes him as a promising and impactful contributor to academia and industry, making him a strong candidate for recognition in awards and honors related to research excellence.

Sarah Marzen | Data Science | Best Researcher Award

Prof. Sarah Marzen | Data Science | Best Researcher Award

Associate Professor Claremont McKenna College, United States

Sarah Marzen is a distinguished physicist and interdisciplinary researcher whose work bridges information theory, cognitive science, and biology. As an associate professor, she has contributed extensively to the study of sensory prediction, reinforcement learning, and resource rationality, securing leadership roles in numerous federally funded research projects. Her academic background includes a Ph.D. from the University of California, Berkeley, and postdoctoral work at MIT. She has published widely in peer-reviewed journals and played a vital role as a guest editor for multiple special issues. Sarah is actively involved in professional service, mentoring, and organizing scientific workshops. Her research stands out for its originality and interdisciplinary reach, tackling complex questions in neural computation and theoretical biology. Through her editorial work, teaching, and committee service, she has helped shape the scientific community’s understanding of cognition and prediction. Sarah Marzen’s scholarly excellence and leadership position her as a significant figure in contemporary scientific research.

Professional Profile 

Google Scholar | Scopus Profile

Education

Sarah Marzen pursued her undergraduate studies in physics at the California Institute of Technology, where she developed a strong foundation in theoretical and experimental research. She continued her academic journey at the University of California, Berkeley, earning a Ph.D. in physics. Her doctoral work focused on bio-inspired problems in rate-distortion theory, under the guidance of Professor Michael R. DeWeese. This research bridged information theory and biological systems, laying the groundwork for her future interdisciplinary pursuits. In addition to her formal degrees, she attended several prestigious summer schools and workshops, including the Santa Fe Institute’s Complex Systems School and the Machine Learning Summer School. These programs helped her expand her understanding of machine learning, complex systems, and computational neuroscience. Sarah’s educational background is marked by both academic excellence and a consistent interest in the convergence of physics, information theory, and biological intelligence, making her uniquely equipped for innovative cross-disciplinary research.

Experience

Sarah Marzen’s academic career reflects deep engagement with both research and teaching. She currently serves as an associate professor of physics at the W. M. Keck Science Department, affiliated with Claremont McKenna, Pitzer, and Scripps Colleges. Prior to this, she was an assistant professor in the same department and a postdoctoral fellow at MIT, where she worked with Professors Nikta Fakhri and Jeremy England. Her early research experience includes graduate work at UC Berkeley and multiple assistantships and fellowships during her undergraduate years at Caltech. She has also held advisory roles in academia and private research, such as mentoring for Google Summer of Code and advising a stealth startup. Her experience spans experimental physics, theoretical modeling, machine learning, and neuroscience. Alongside her teaching, she contributes significantly to committee service and program development within her department, reflecting a well-rounded academic profile. Her professional trajectory demonstrates a strong commitment to both discovery and mentorship.

Research Focus 

Sarah Marzen’s research centers on understanding how intelligent systems—both biological and artificial—predict and adapt to their environments. Her primary focus areas include sensory prediction, reinforcement learning, and resource rationality, particularly through the lens of information theory. She explores the ways in which brains and machines can perform efficient, predictive computations under constraints, contributing to theoretical frameworks that bridge physics, neuroscience, and cognitive science. Her work has applications in neural networks, artificial intelligence, and computational biology. She also investigates how delayed feedback and memory structures affect learning dynamics, as reflected in her studies of reservoir computing and time-delayed decision processes. Through her interdisciplinary approach, she addresses fundamental questions about how information is processed and used by complex systems. Her research aims to uncover principles of learning and adaptation that apply across different domains of intelligence, providing insight into both natural cognition and the design of intelligent machines.

Award and Honor

Sarah Marzen has received numerous honors and awards recognizing her academic excellence and contributions to interdisciplinary research. Early in her career, she was awarded prestigious fellowships including the NSF Graduate Research Fellowship and the MIT Physics of Living Systems Fellowship. At Caltech and UC Berkeley, she earned several merit-based scholarships and prizes for outstanding performance in physics. As her career progressed, she received grants and awards from major institutions such as the Sloan Foundation, Templeton Foundation, and the Air Force Office of Scientific Research. She has also been recognized for her editorial leadership, serving as guest editor for prominent journals like Entropy and Journal of the Royal Society Interface Focus. Her selection as a Scialog Fellow and finalist for the SIAM-MGB Early Career Fellowship further highlight her growing influence in computational neuroscience and mathematical biology. Her service and scholarly impact reflect a sustained commitment to advancing science across disciplinary boundaries.

Publications Top Notes

  • Title: Statistical mechanics of Monod–Wyman–Changeux (MWC) models
    Authors: S. Marzen, H. G. Garcia, R. Phillips
    Year: 2013
    Cited by: 128

  • Title: On the role of theory and modeling in neuroscience
    Authors: D. Levenstein, V. A. Alvarez, A. Amarasingham, H. Azab, Z. S. Chen, …
    Year: 2023
    Cited by: 100

  • Title: The evolution of lossy compression
    Authors: S. E. Marzen, S. DeDeo
    Year: 2017
    Cited by: 65

  • Title: Informational and causal architecture of discrete-time renewal processes
    Authors: S. E. Marzen, J. P. Crutchfield
    Year: 2015
    Cited by: 46

  • Title: Predictive rate-distortion for infinite-order Markov processes
    Authors: S. E. Marzen, J. P. Crutchfield
    Year: 2016
    Cited by: 45

  • Title: Time resolution dependence of information measures for spiking neurons: Scaling and universality
    Authors: S. E. Marzen, M. R. DeWeese, J. P. Crutchfield
    Year: 2015
    Cited by: 42

  • Title: Difference between memory and prediction in linear recurrent networks
    Authors: S. Marzen
    Year: 2017
    Cited by: 39

  • Title: Nearly maximally predictive features and their dimensions
    Authors: S. E. Marzen, J. P. Crutchfield
    Year: 2017
    Cited by: 39

  • Title: Structure and randomness of continuous-time, discrete-event processes
    Authors: S. Marzen, J. P. Crutchfield
    Year: 2017
    Cited by: 37

  • Title: Informational and causal architecture of continuous-time renewal processes
    Authors: S. Marzen, J. P. Crutchfield
    Year: 2017
    Cited by: 31

  • Title: Information anatomy of stochastic equilibria
    Authors: S. Marzen, J. P. Crutchfield
    Year: 2014
    Cited by: 30

  • Title: Statistical signatures of structural organization: The case of long memory in renewal processes
    Authors: S. E. Marzen, J. P. Crutchfield
    Year: 2016
    Cited by: 26

  • Title: First-principles prediction of the information processing capacity of a simple genetic circuit
    Authors: M. Razo-Mejia, S. Marzen, G. Chure, R. Taubman, M. Morrison, R. Phillips
    Year: 2020
    Cited by: 25

  • Title: Optimized bacteria are environmental prediction engines
    Authors: S. E. Marzen, J. P. Crutchfield
    Year: 2018
    Cited by: 24

  • Title: Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
    Authors: W. Zhong, J. M. Gold, S. Marzen, J. L. England, N. Yunger Halpern
    Year: 2021
    Cited by: 22

Conclusion

Sarah Marzen’s publication record reflects a strong and sustained impact across interdisciplinary fields such as statistical physics, neuroscience, and information theory. Her most highly cited work, including studies on Monod–Wyman–Changeux models and theoretical frameworks in neuroscience, demonstrates both depth in fundamental science and relevance to contemporary research challenges. The consistent citation of her papers over more than a decade indicates the enduring influence of her contributions. Many of her works are co-authored with leading researchers, reflecting strong collaborative networks and thought leadership. Her research not only advances theoretical understanding but also bridges to applied domains like machine learning and biological computation. Overall, the citation metrics, combined with the quality and diversity of topics, reinforce Sarah Marzen’s stature as a respected and influential figure in modern scientific research, making her a compelling candidate for recognition such as the Best Researcher Award.

XinYing Chew | Computer Science | Young Scientist Award

Assoc. Prof. Dr. XinYing Chew | Computer Science | Young Scientist Award

Associate Professor at Universiti Sains Malaysia (USM), Malaysia

Associate Professor Ts. Dr. Chew XinYing is a distinguished academic and researcher at Universiti Sains Malaysia (USM), where she serves in the School of Computer Sciences. With extensive expertise in industrial computing and advanced analytics, she has made significant contributions to data-driven research, quality control, and artificial intelligence applications. As a Program Manager for both Computer Science and Offshore Programs at USM, she plays a vital role in shaping academic curricula and fostering industry collaborations. Her work spans interdisciplinary domains, including AI in tourism, environmental sustainability, and predictive analytics, making her a key figure in modern computational research. Dr. Chew has co-authored numerous high-impact journal publications and actively collaborates with international scholars, reflecting her commitment to advancing knowledge globally. With her leadership, research acumen, and dedication to academic excellence, she continues to drive innovation in data analytics and computational intelligence, contributing to both academia and industry applications.

Professional Profile

Education

Dr. Chew XinYing holds a Ph.D. in Computer Science from Universiti Sains Malaysia (USM), where she specialized in industrial computing and advanced statistical methodologies. Prior to her doctoral studies, she earned her Bachelor of Information Technology (Hons.) from Universiti Kebangsaan Malaysia (UKM), laying the foundation for her expertise in data analytics and computational intelligence. Throughout her academic journey, she has demonstrated a deep passion for integrating statistical process control techniques with modern computing approaches, making her a key researcher in quality control and decision-making systems. Her educational background has equipped her with advanced knowledge in artificial intelligence, predictive modeling, and big data analytics. This strong academic foundation has not only fueled her research contributions but also positioned her as a mentor and educator, guiding students in cutting-edge technological advancements. Dr. Chew’s commitment to continuous learning has made her a well-rounded scholar in the field of computational sciences.

Professional Experience

Dr. Chew XinYing is currently an Associate Professor at the School of Computer Sciences, Universiti Sains Malaysia (USM), where she also serves as the Program Manager for both Computer Science and Offshore Programs. Her professional career spans years of academic excellence, with a focus on curriculum development, student mentorship, and research leadership. She has played a pivotal role in shaping USM’s computer science programs, ensuring they align with industry standards and emerging technological trends. Beyond academia, she has engaged in industry collaborations, applying her expertise in industrial computing and analytics to solve real-world challenges. Her research extends into diverse fields such as artificial intelligence in business intelligence, statistical process control, and environmental sustainability. Dr. Chew’s extensive experience in both research and academic leadership has positioned her as a key contributor to Malaysia’s technological and educational advancements, fostering a new generation of computational scientists and researchers.

Research Interests

Dr. Chew XinYing’s research interests lie at the intersection of industrial computing, artificial intelligence, quality control, and advanced analytics. She has conducted extensive studies on statistical process control (SPC) and predictive modeling, focusing on their applications in business intelligence and decision-making. Additionally, her work explores artificial intelligence in tourism, environmental sustainability, and customer behavior analytics, reflecting her ability to integrate computing technologies into diverse domains. She is particularly interested in machine learning algorithms, big data analytics, and AI-driven decision support systems, which have wide-ranging applications in healthcare, financial analytics, and industrial optimization. Her interdisciplinary approach has led to impactful research in areas such as green technology, metaverse ethics, and orthopedic disease detection using AI. By bridging computational science with real-world applications, Dr. Chew continues to push the boundaries of data-driven innovation and contribute to advancements in both academic and industrial sectors.

Awards and Honors

Dr. Chew XinYing has been recognized for her outstanding contributions to research and academia through various awards and honors. Her scholarly achievements are reflected in her numerous high-impact journal publications, earning her recognition as a leading researcher in industrial computing and AI-driven analytics. She has received international accolades for her work in predictive modeling, AI in tourism, and quality control methodologies, demonstrating the real-world impact of her research. As a highly cited researcher, her studies have influenced multiple fields, positioning her among the top contributors in data-driven decision-making research. In addition to academic awards, she has been invited as a keynote speaker and panelist at international conferences, highlighting her expertise in machine learning and computational intelligence. Her dedication to academic excellence, combined with her leadership in research and education, continues to earn her prestigious honors, further establishing her as a respected figure in computer science and analytics.

Conclusion

Associate Professor Ts. Dr. Chew XinYing is a strong candidate for the Research for Young Scientist Award due to her high research productivity, interdisciplinary expertise, and leadership roles. To further solidify her eligibility, she could focus on independent research contributions, securing significant research grants, and emphasizing industry impact through patents and collaborations.

Publications Top Noted

1. Blockchain and Innovation Resistance

  • Title: Navigating the Power of Blockchain Strategy: Analysis of Technology-Organization-Environment (TOE) Framework and Innovation Resistance Theory Using PLS-SEM and ANN Insights
  • Authors: Alnoor, A.M., Abbas, S., Sadaa, A.M., Chew, X., Erkol Bayram, G.E.
  • Year: 2025
  • Journal: Technological Forecasting and Social Change
  • Citations: 0

2. Statistical Process Control and Quality Engineering

  • Title: Optimal Designs of the Group Runs Exponentially Weighted Moving Average X and t Schemes

  • Authors: Khaw, K.W., Chew, X., Teh, S.

  • Year: 2025

  • Journal: Quality and Reliability Engineering International

  • Citations: 0

  • Title: The One-Sided Variable Sampling Interval Exponentially Weighted Moving Average X? Charts Under the Gamma Distribution

  • Authors: Goh, K.L., Chew, X.

  • Year: 2024

  • Journal: Sains Malaysiana

  • Citations: 0

3. Organizational Communication and IT

  • Title: How Information Technology Influences Organizational Communication: The Mediating Role of Organizational Structure
  • Authors: Chew, X., Alharbi, R.K., Khaw, K.W., Alnoor, A.M.
  • Year: 2024
  • Journal: PSU Research Review
  • Citations: 2

4. Consumer Behavior and Decision-Making

  • Title: Unveiling the Optimal Configuration of Impulsive Buying Behavior Using Fuzzy Set Qualitative Comparative Analysis and Multi-Criteria Decision Approach
  • Authors: Alnoor, A.M., Abbas, S., Khaw, K.W., Raad Muhsen, Y.R., Chew, X.
  • Year: 2024
  • Journal: Journal of Retailing and Consumer Services
  • Citations: 6

5. E-Commerce and Customer Trust

  • Title: Symmetric and Asymmetric Modeling to Boost Customers’ Trustworthiness in Livestreaming Commerce
  • Authors: Chew, X., Alnoor, A.M., Khaw, K.W., Al Halbusi, H., Raad Muhsen, Y.R.
  • Year: 2024
  • Journal: Current Psychology
  • Citations: 2

6. Artificial Intelligence and Tourism

  • Title: The Role of Artificial Intelligence in Regenerative Tourism and Green Destinations
  • Authors: Alnoor, A.M., Erkol Bayram, G.E., Chew, X., Shah, S.H.A.
  • Year: 2024
  • Publication Type: Book
  • Citations: 0