75 / 100

Ms. Ritu Tanwar | Artificial intelligence | Best Researcher Award

Research Scholar | NIT Uttarakhand | India

Best Researcher Award

Strengths for the Award

Innovative Research Focus: Ms. Tanwar’s research is at the cutting edge of deep learning, artificial intelligence, and stress recognition. Her focus on multimodal physiological signals for affective state recognition and wearable technology is highly relevant and forward-looking.

Strong Academic Foundation: She is pursuing a PhD at the National Institute of Technology, Uttarakhand, with a well-defined thesis on deep learning frameworks for affective state recognition. Her previous education, including an M.Tech. in Emotion Recognition and a B.Tech. in Electronics & Communication Engineering, complements her current research focus.

Quality Publications: Ms. Tanwar has a strong publication record with peer-reviewed journal articles in high-impact journals like Engineering Applications of Artificial Intelligence and Computers in Biology and Medicine. Her conference papers and book chapters also demonstrate her active engagement with the academic community.

Recognition and Support: She has received a Senior Research Fellow Scholarship, highlighting her recognized potential in her field. Her involvement in teaching and supervision further indicates her commitment to academic excellence and leadership.

Technical Skills: Proficiency in Python, MATLAB, and deep learning frameworks enhances her ability to conduct high-quality research. Her experience with various software tools and programming languages supports her research in data analysis and machine learning.

Areas for Improvement

Broader Impact and Application: While Ms. Tanwar’s work is innovative, expanding the application of her research to practical, real-world scenarios could enhance its impact. Exploring collaborations with industry partners could provide valuable insights into the practical applications of her research findings.

Interdisciplinary Integration: Integrating her research with other disciplines, such as psychology or healthcare, could provide a more comprehensive understanding of stress recognition and its applications. This interdisciplinary approach might strengthen her research outcomes and broaden her impact.

Public Engagement and Outreach: Increasing her presence in public forums and engaging with broader audiences could amplify the reach of her research. Participating in outreach activities and science communication initiatives might help in translating her research for non-specialist audiences.

Conclusion

Ms. Ritu Tanwar demonstrates significant promise as a researcher, with a strong foundation in innovative areas of deep learning and stress recognition. Her research contributions are noteworthy, and she has established a solid track record with quality publications and academic achievements.

For the “Best Researcher Award,” Ms. Tanwar’s strengths in cutting-edge research, quality publications, and technical expertise make her a strong candidate. Addressing the suggested areas for improvement could further enhance her research impact and recognition in the field.

Short Bio

👩‍🔬 Ms. Ritu Tanwar is a dedicated Research Scholar in Electronics Engineering at the National Institute of Technology, Uttarakhand, India. With a focus on stress and emotion recognition through innovative technologies, she is pursuing a PhD under the supervision of Dr. Pankaj Kumar Pal and Dr. Ghanapriya Singh. Her extensive background in deep learning and artificial intelligence positions her as a notable contributor to the field of physiological signal analysis.

Profile

Orcid

Education

🎓 PhD (pursuing)April 2021-present
Department of Electronics Engineering, National Institute of Technology, Uttarakhand, India
Thesis: A deep learning framework for affective state recognition using multimodal physiological signals
Thesis Supervisors: Dr. Pankaj Kumar Pal and Dr. Ghanapriya Singh

🎓 M. Tech.July 2018
Department of Electronics & Communication Engineering, University Institute of Engineering & Technology, Kurukshetra, India
Thesis: Emotion Recognition from Audio Signals
Thesis Supervisor: Dr. Deepti Chaudhary

🎓 B. Tech.July 2013
Department of Electronics & Communication Engineering, University Institute of Engineering & Technology, Kurukshetra, India

Experience

📚 Teaching Assistant
Department of Electronics Engineering, National Institute of Technology, Uttarakhand, India

  • Microcontroller and Interfacing (Jan–May 2024)
  • Digital Signal Processing (July–Dec 2021, July–Dec 2023)
  • Speech Signal Processing (July–Dec 2022)
  • Image Processing (Jan–July 2022)

📝 Supervision Experience
National Institute of Technology, Uttarakhand, India

  • Undergraduate Supervision: Kunal Kavi and Shivam Purwal (Completion year: 2024)

Research Interests

🔬 Stress and Emotion Recognition: Focused on understanding and analyzing stress and emotional states through physiological signals.
🧠 Data Analysis and Deep Learning: Leveraging advanced data analysis techniques and deep learning models to enhance emotion and stress recognition.
🤖 Artificial Intelligence and Machine Learning: Applying AI and ML technologies to improve the accuracy and effectiveness of stress recognition systems.

Awards

🏆 Senior Research Fellow Scholarship2021-present
Awarded for exceptional research potential and academic performance in the field of Electronics Engineering.

Publications

  1. Tanwar, R., Phukan, O. C., Singh, G., Pal, P. K., & Tiwari, S. (2024). Attention based hybrid deep learning model for wearable based stress recognition. Engineering Applications of Artificial Intelligence, 127, 107391.
  2. Tanwar, R., Singh, G., & Pal, P. K. (2024). A Hybrid Transposed Attention Based Deep Learning Model for Wearable and Explainable Stress Recognition. Computers and Electrical Engineering (Accepted).
  3. Tanwar, R., Singh, G., & Pal, P. K. (2024). Explainable Artificial Intelligence System For Stress Recognition Using Multimodal Physiological Signals. Computers in Biology and Medicine (under review).
  4. Tanwar, R., Singh, G., & Pal, P. K. (2024). Stress-Wed: Stress recognition autoencoder using Wearables Data. Second International Conference on Artificial Intelligence: Towards Sustainable Intelligence, Springer (Accepted).
  5. Tanwar, R., Singh, G., & Pal, P. K. (2024, July). Wearables Based Personalised Stress Recognition Using Signal Processing and Hybrid Deep learning Model. 2024 2nd International Conference on Computer, Electronics, Electrical Engineering and their Applications (IC2E3), IEEE.
  6. Tanwar, R., Singh, G., & Pal, P. K. (2023, July). FuSeR: Fusion of wearables data for StrEss Recognition using explainable artificial intelligence models. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE.
  7. Tanwar, R., Phukan, O. C., Singh, G., & Tiwari, S. (2022). CNN-LSTM Based Stress Recognition Using Wearables. CEUR Workshop Proceedings, Springer.
Ritu Tanwar | Artificial intelligence | Best Researcher Award

You May Also Like

Leave a Reply

Your email address will not be published. Required fields are marked *