Dr Idrees Khan | Applied Chemistry | Best Researcher Award
Postdoctoral fellow,School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
Dr. Idrees Khan is a renowned scientist specializing in Applied Chemistry with expertise in nanomaterials and nanocomposites for environmental applications. With over 60 research publications and more than 8,000 citations, Dr. Khan’s work has garnered international recognition, including his inclusion in the top 2% scientists of 2024. His pioneering research focuses on enhancing the photocatalytic efficiency of metal oxide nanoparticles, contributing significantly to environmental sustainability. Dr. Khan is a Postdoctoral Fellow at Northwestern Polytechnical University, China, and an Honorary Postdoctoral Fellow at INTI International University, Malaysia. His efforts in computational simulations, alongside experimental techniques, position him as a leader in his field. Dr. Khan is dedicated to advancing innovative solutions for environmental pollution using cutting-edge nanotechnology, with his review article on nanoparticles being the most popular on Science Direct.
Profile
Strengths for the Award:
- Extensive Research Contributions:
- Dr. Khan has an impressive track record with over 60 research articles published in reputable journals and more than 8,000 citations, a testament to the impact and quality of his work. His review article on nanoparticles, “Nanoparticles: Properties, applications, and toxicities,” has garnered significant attention, making it one of the most popular articles on ScienceDirect with the highest citations.
- High Research Impact:
- His inclusion in the top 2% of scientists in 2024 highlights his global recognition and the influence of his research in his field. His work has contributed to enhancing the photocatalytic efficiency of metal oxide nanoparticles, which has vital implications for environmental sustainability.
- Interdisciplinary Expertise:
- Dr. Khan’s expertise spans both experimental and computational research, covering the synthesis of advanced nanomaterials, their applications in environmental cleanup, and computational simulations. This broad skill set gives him an edge in tackling multifaceted problems in applied chemistry and materials science.
- International Collaboration and Recognition:
- His experience as a postdoctoral fellow at prestigious institutions like Northwestern Polytechnical University in China and INTI International University in Malaysia underscores his global network and recognition in the scientific community. This international experience enriches his research and outreach efforts.
- Diverse Range of Research Topics:
- His research interests range from photocatalysis, material science, and environmental monitoring to toxicology and nanocomposite development. Such diversity broadens his ability to solve complex environmental problems, contributing significantly to sustainable technologies.
- Academic Background and Teaching Experience:
- Dr. Khan has demonstrated strong teaching capabilities, having worked as a visiting lecturer at the University of Malakand and currently serving as an honorary postdoctoral fellow. His ability to bridge teaching with research adds another layer to his profile as a well-rounded academic.
- Leadership in Research Publications:
- His high citation count, coupled with his leadership in publishing high-impact articles, indicates his strong research direction and ability to lead projects that resonate with the scientific community. His involvement in cutting-edge studies like photocatalytic applications and microwave absorption for environmental remediation demonstrates his leadership in emerging fields.
Areas for Improvement:
- Public Outreach and Broader Engagement:
- While Dr. Khan’s research is impactful, there is potential for expanding his public engagement efforts. He could focus on bridging the gap between scientific research and public awareness by making his findings more accessible to non-experts, particularly in the context of environmental sustainability.
- Diversity in Research Funding and Projects:
- Seeking more diverse funding sources or collaborative projects could enhance his research scope. Additionally, focusing on applications of nanotechnology in renewable energy or climate change mitigation could be an area for further growth.
- Collaboration with Industry:
- Increased collaboration with industry could allow for the practical application of his research, translating his findings from theoretical studies to real-world, commercialized technologies. Partnering with industry experts in nanomaterials development and environmental engineering could lead to impactful innovations.
Education
Dr. Idrees Khan holds a Ph.D. in Applied Chemistry from Bacha Khan University (2020) with a CGPA of 3.5. He completed his M.Phil. in Applied Chemistry from University of Malakand in 2016, achieving a CGPA of 3.44. Prior to his graduate studies, Dr. Khan obtained a BS in Applied Chemistry from the University of Malakand (2013), where he excelled with a CGPA of 3.56. He also earned a Bachelor of Education from Sarhad University (2015). His early education includes S.S.C and F.Sc from the BISE Saidu Sharif Swat. Dr. Khan’s strong academic foundation has empowered him to pursue a career in nanomaterials research, specializing in photocatalysis and nanocomposites. His dedication to learning and research has driven his success in both academia and scientific innovation.
Experience
Dr. Idrees Khan has significant academic and research experience. He served as a Visiting Lecturer in the Department of Chemistry at the University of Malakand (2015-2018), where he taught undergraduate students and mentored them in various chemistry courses. He is currently a Postdoctoral Fellow at Northwestern Polytechnical University, China, since May 2023, where he focuses on advanced nanomaterials for environmental applications. Additionally, Dr. Khan holds the position of Honorary Postdoctoral Fellow at INTI International University, Malaysia, since June 2023. His role involves contributing to collaborative research efforts and fostering innovation in the field of nanotechnology. His experience spans various research methodologies, including computational simulations, nanomaterials synthesis, and environmental remediation. Dr. Khan has also participated in numerous international conferences and workshops, sharing his expertise and contributing to the global scientific community.
Research Focus
Dr. Idrees Khan’s research primarily focuses on the development and application of nanomaterials and nanocomposites for environmental sustainability. He works on enhancing the photocatalytic efficiency of metal oxide nanoparticles to address environmental issues, such as pollution control and wastewater treatment. His research delves into the synthesis and characterization of nanostructured materials, particularly supported and unsupported metal oxide nanoparticles, and their photocatalytic applications for degrading organic pollutants. Dr. Khan also specializes in computational simulations, particularly in studying the behavior of nanomaterials in environmental settings. His work extends to exploring the toxicities and applications of nanoparticles in environmental decontamination. His research aims to develop sustainable, efficient solutions for environmental challenges, including water purification and air quality improvement. Dr. Khan is also working on biological applications of nanomaterials and their interactions with pollutants and microorganisms.
Publications
- Strategically coupled tungsten oxide-zinc oxide photosystems for solar-driven nerve agent simulant degradation and hydrogen evolution 🌞⚗️
- Preparation and performance of porous carbon microwave absorber with high porosity from carbonized natural plant fibers 🌱🧯
- Fabrication of polydopamine doped helical/chiral porous carbon fiber (HPCFs@PDA) and N-doped carbon layers (HPCFs@NCLs) for their application as wave absorber with ultrawide EAB 📡🔬
- Controllable and lightweight ZIF-67@PAN derived Co@C nanocomposites with tunable and broadband microwave absorption 🧲🌐
- Gold recovery through synergetic adsorption and reduction using acid–base additive-reinforced tubular carbon nanofibers 💰🧪
- Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: fundamentals, applications, and future directions 💧💡
- Highly selective sensing of toxic NOx gases for environmental monitoring using Ru-doped single-walled TiO2 nanotube: A density functional theory study 🏭⚙️
- Adsorption of thiophene over the transition metal-decorated C2N monolayer: A DFT approach 🌫️🧑🔬
- Improvement of the Photocatalytic and Biological Activities of Copper Oxide Nanoparticles by Coupling with Barium Oxide Nanoparticles 🧪🌿
- Understanding the toxicity of trinitrophenol and promising decontamination strategies for its neutralization: Challenges and future perspectives ☠️🌍
Conclusion
Dr. Idrees Khan is highly deserving of the Best Researcher Award due to his outstanding contributions to appliedchemistry and nanomaterials science, his interdisciplinary expertise, and his significant impact on environmental sustainability. His prolific research output, leadership in groundbreaking studies, and international collaborations solidify his reputation as a leader in his field. Despite some opportunities for broader outreach and industry collaboration, his overall profile is incredibly strong, making him a top contender for such an award.Dr. Khan’s extensive body of work, particularly in photocatalysis and nanocomposites, as well as his growing international recognition, aligns perfectly with the criteria typically sought in award recipients.