Ho Won Jang | Materials Science | Best Paper Award

Prof. Dr. Ho Won Jang | Materials Science | Best Paper Award

Professor at Seoul National University, South Korea

Prof. Ho Won Jang is a distinguished professor in the Department of Materials Science and Engineering at Seoul National University (SNU), South Korea. With a career spanning over two decades, he has made groundbreaking contributions to materials science, particularly in electronic and electrochemical applications. His research focuses on advanced materials, including memristive materials, nanostructures, and epitaxial thin films, which have significant implications for nanoelectronics, neuromorphic computing, and sustainable energy solutions. As a globally recognized scientist, he has been actively involved in editorial boards, international collaborations, and high-impact research publications, shaping the future of electronic materials. His leadership roles in academia and professional societies highlight his commitment to advancing science and mentoring young researchers. With an extensive portfolio of research excellence and prestigious accolades, Prof. Jang continues to be a driving force in cutting-edge materials research, contributing significantly to the evolution of modern technologies.

Professional Profile

Education

Prof. Ho Won Jang earned his Ph.D. in Materials Science and Engineering from POSTECH (Pohang University of Science and Technology), Korea, in 2004, after completing his M.S. (2001) and B.S. (1999) degrees at the same institution. His academic journey was marked by a strong foundation in nanomaterials, thin films, and semiconductor physics, which paved the way for his pioneering research in advanced materials. During his Ph.D., he focused on the design and synthesis of functional materials for electronic applications, laying the groundwork for his future studies in epitaxial thin films and nanostructured devices. His early research contributions were recognized through multiple prestigious awards, demonstrating his academic excellence and innovative approach to materials science. His education at one of Korea’s leading engineering institutions provided him with the technical expertise and research capabilities that would later define his career as a top-tier scientist in the field.

Professional Experience

Prof. Jang began his professional career as a Postdoctoral Fellow at POSTECH (2004-2005) before moving to the University of Wisconsin-Madison (2006-2009) as a Research Associate. In 2006, he joined the Korea Institute of Science and Technology (KIST) as a Senior Research Scientist, where he led several high-impact projects in nanoelectronics and electrochemical applications. His transition to Seoul National University in 2012 as a Professor marked a significant milestone in his career, where he has since played a crucial role in advancing research in materials science and engineering. Over the years, he has served as an editor for multiple international journals, collaborated with leading global researchers, and contributed to key advancements in electronic materials. His leadership positions, including serving as Associate Dean at SNU’s College of Engineering (2021-2024), highlight his influence in shaping the future of materials research and education.

Research Interests

Prof. Jang’s research focuses on epitaxial thin films, memristive materials, electrochemical catalysts, and nanosensors for next-generation electronic and energy applications. His studies on Mott insulators, neuromorphic computing, and electronic nose/tongue technologies have led to innovative breakthroughs in artificial intelligence-driven materials and nanoelectronic devices. Additionally, his work on localized surface plasmon resonance sensors and micro-light-emitting diodes (µLEDs) has potential applications in biomedical sensing and next-generation displays. His research in electrodes and catalysts for water splitting and CO₂ reduction aligns with global efforts toward sustainable and renewable energy solutions. By integrating multidisciplinary approaches, including nanotechnology, chemistry, and physics, he continues to explore novel materials with enhanced functionalities for computing, sensing, and clean energy applications, making significant contributions to both fundamental science and industrial innovation.

Awards and Honors

Prof. Ho Won Jang has received numerous prestigious awards for his outstanding contributions to materials science and engineering. His accolades include the Top 2% Scientists ranking by Stanford University (2022), the ACS Nano Top Contributor in Korea (2024), and the Academic Research and Education Award from SNU (2023). He has also been recognized with the 2021 Science and Technology Excellence Paper Award of Korea and multiple Best Paper Awards from leading conferences and institutions. His early achievements include the Young Ceramist Award (2014) and Young Scholarship Award (2014), highlighting his contributions to ceramic materials research. Additionally, he has played a vital role as an editorial board member for major scientific journals and a reviewer for over 200 high-impact journals, further solidifying his reputation as a leading scientist in materials research. His numerous honors reflect his exceptional research impact, leadership, and dedication to advancing materials science.

Conclusion

Prof. Ho Won Jang is highly suitable for the Research Best Paper Award, given his exceptional research contributions, prestigious recognitions, and leadership in the field of materials science and engineering. His extensive publication record, awards, and editorial roles further validate his expertise. If the award criteria favor cutting-edge innovation and research influence, he would be an excellent candidate. Strengthening the application by highlighting real-world applications, interdisciplinary collaborations, and mentoring efforts could further solidify his case.

Publications Top Noted

  1. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    • Authors: A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, et al.
    • Year: 2009
    • Citations: 685
  2. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

    • Authors: S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, et al.
    • Year: 2010
    • Citations: 550
  3. Giant piezoelectricity on Si for hyperactive MEMS

    • Authors: S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, et al.
    • Year: 2011
    • Citations: 514
  4. One-dimensional oxide nanostructures as gas-sensing materials: review and issues

    • Authors: K. J. Choi, H. W. Jang
    • Year: 2010
    • Citations: 473
  5. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination

    • Authors: S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. V. Le, H. W. Jang, et al.
    • Year: 2020
    • Citations: 446
  6. Organolead halide perovskites for low operating voltage multilevel resistive switching

    • Authors: J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, et al.
    • Year: 2016
    • Citations: 361
  7. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films

    • Authors: H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, et al.
    • Year: 2009
    • Citations: 351
  8. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate

    • Authors: S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J. L. Lee
    • Year: 2017
    • Citations: 334
  9. Ferroelectricity in strain-free thin films

    • Authors: H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, et al.
    • Year: 2010
    • Citations: 334
  10. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending

  • Authors: Y. H. Kim, S. J. Kim, Y. J. Kim, Y. S. Shim, S. Y. Kim, B. H. Hong, H. W. Jang
  • Year: 2015
  • Citations: 326
  1. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
  • Authors: C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, et al.
  • Year: 2011
  • Citations: 312
  1. Strain-induced polarization rotation in epitaxial (001) thin films
  • Authors: H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, et al.
  • Year: 2008
  • Citations: 309
  1. Perspectives and challenges in multilayer ceramic capacitors for next-generation electronics
  • Authors: K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, H. W. Jang
  • Year: 2019
  • Citations: 307
  1. Organic–Inorganic hybrid halide perovskites for memories, transistors, and artificial synapses
  • Authors: J. Choi, J. S. Han, K. Hong, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 303
  1. Metallic and insulating oxide interfaces controlled by electronic correlations
  • Authors: H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, M. K. Niranjan, C. T. Nelson, et al.
  • Year: 2011
  • Citations: 287
  1. Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective
  • Authors: Q. V. Le, H. W. Jang, S. Y. Kim
  • Year: 2018
  • Citations: 278
  1. Spin injection/detection using an organic-based magnetic semiconductor
  • Authors: J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, A. J. Epstein
  • Year: 2010
  • Citations: 260
  1. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures
  • Authors: H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, J. H. Lee
  • Year: 2013
  • Citations: 259
  1. Low-dimensional halide perovskites: review and issues
  • Authors: K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 257
  1. Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions
  • Authors: K. Hong, M. Sajjadi, J. M. Suh, K. Zhang, M. Nasrollahzadeh, H. W. Jang, et al.
  • Year: 2020
  • Citations: 252

 

Hela Ferjani | Material sciences | Best Researcher Award

Assoc.  Prof. Dr. Hela Ferjani |  Material sciences | Best Researcher Award

Associate professor, Imam Ibn Saud Univerdity, Saudi Arabia

Dr. Hela Al-Ferjani is an Associate Professor at Imam Mohammad Ibn Saud Islamic University in Riyadh, Saudi Arabia, with permanent residency in Riyadh. She has an extensive academic career, having worked at prestigious institutions such as Umm Al Qura University and the University of Tunis El-Manar. With over a decade of teaching experience, Dr. Al-Ferjani has supervised numerous undergraduate, MSc, and PhD students. She is internationally recognized for her research and has built strong collaborations with top global universities, including the University of Pennsylvania, Sorbonne University, and Southeast University. Her work spans multiple fields, including nanomaterials, hybrid materials, and organometallic complexes. Dr. Al-Ferjani’s innovative contributions to the scientific community are evident in her numerous patents, peer-reviewed publications, and academic collaborations. Her expertise has garnered recognition in both experimental and theoretical aspects of materials chemistry.

Profile

Education 

Dr. Hela Al-Ferjani earned her Ph.D. in Chemistry from the University of Tunis El-Manar, Tunisia, in 2014, where she specialized in solid-state chemistry. Prior to that, she completed her M.Sc. in Chemistry with a focus on solid-state chemistry at the same institution in 2010. Her academic journey began with a B.Sc. in Physics, Chemistry, and Mathematics from the University of Tunis El-Manar in 2008. Throughout her educational career, Dr. Al-Ferjani displayed exceptional aptitude in scientific research and gained a solid foundation in chemistry and material science. She has since contributed greatly to the development of organic-inorganic hybrid materials, nanomaterials, and organometallic complexes. Her educational background reflects her commitment to advancing scientific knowledge, particularly in the design and application of materials for various technologies, including solar systems, photocatalysis, and biological applications. Her academic credentials have also paved the way for her successful teaching and research career.

Experience 

Dr. Hela Al-Ferjani has extensive experience in higher education and research. She is currently an Associate Professor at Imam Mohammad Ibn Saud Islamic University in Riyadh, where she has been serving since 2022. Prior to this, she was an Assistant Professor at the same institution from 2017 to 2021. Dr. Al-Ferjani also worked as an Assistant Professor at Umm Al Qura University between 2014 and 2016 and as a Lecturer at the University of Tunis El-Manar from 2010 to 2014. In her academic career, she has taught a variety of courses, including General Chemistry, Inorganic and Organic Chemistry, and Quantum Chemistry. Additionally, Dr. Al-Ferjani has supervised numerous student projects at both undergraduate and graduate levels, showcasing her dedication to student mentorship. Her research activities have involved collaborations with leading global institutions, including the University of Pennsylvania and Sorbonne University, further enhancing her academic contributions.

Research Focus 

Dr. Hela Al-Ferjani’s primary research interests revolve around the synthesis and study of organic-inorganic hybrid materials, nanomaterials, and organometallic complexes. She focuses on designing materials with applications in solar energy systems, photocatalysis, optoelectronics, and magnetic technologies. Additionally, Dr. Al-Ferjani investigates their potential in environmental and biological contexts, including medicinal applications. Her work combines experimental and theoretical approaches, which enables the strategic design of advanced materials with tailored properties for specific applications. By exploring the structure-property relationships of these materials, Dr. Al-Ferjani aims to contribute to the development of sustainable technologies and new solutions to global challenges. Her innovative contributions have led to several patents, as well as numerous peer-reviewed publications in high-impact journals. She collaborates internationally with renowned research institutions and remains at the forefront of cutting-edge research in materials chemistry and nanotechnology, striving to advance both fundamental science and practical applications.

Publications

  • First-Principles Calculations to Investigate the Effect of Van der Waals Interactions on the Crystal and Electronic Structures of Tin-Based 0D Hybrid Perovskites 🧪💻 (2022)
  • Synthesis, crystal structure, Hirshfeld surface analysis, DFT calculations, 3D energy frameworks studies of Schiff base derivative 📊🔬 (2021)
  • Structural, Hirshfeld surface analysis, morphological approach, and spectroscopic study of new hybrid iodobismuthate containing tetranuclear 0D cluster 🔍🧑‍🔬 (2020)
  • New Quasi‐One‐Dimensional Organic‐Inorganic Hybrid Material: Synthesis, Crystal Structure, and Spectroscopic Studies 🔬🔧 (2014)
  • Facile synthesis of carbon dots by the hydrothermal carbonization of avocado peels and the photocatalytic evaluation 🥑💡 (2024)
  • Graphitic carbon nitride functionalized with Cu-doped Bi2S3 as a heterostructure photocatalyst for the visible light degradation of methyl orange ☀️🌿 (2023)
  • Dual S-scheme heterojunction g-C3N4/Bi2S3/CuS composite with enhanced photocatalytic activity 🌞🔬 (2023)
  • Broad-band luminescence involving fluconazole antifungal drug in a lead-free bismuth iodide perovskite 💊🌐 (2020)
  • Stabilization of supramolecular network of fluconazole drug polyiodide: Synthesis, computational and spectroscopic studies 🔬💊 (2022)
  • Crystal structure, Hirshfeld surface analysis, and DFT calculations of methyl (Z)-4-((4-((4-bromobenzyl) selanyl) phenyl) amino)-4-oxobut-2-enoate 🧪🔬 (2021)
  • Phyto-mediated synthesis of Ag, ZnO, and Ag/ZnO nanoparticles from leaf extract of Solanum macrocarpon 🌱💎 (2024)