Ho Won Jang | Materials Science | Best Paper Award

Prof. Dr. Ho Won Jang | Materials Science | Best Paper Award

Professor at Seoul National University, South Korea

Prof. Ho Won Jang is a distinguished professor in the Department of Materials Science and Engineering at Seoul National University (SNU), South Korea. With a career spanning over two decades, he has made groundbreaking contributions to materials science, particularly in electronic and electrochemical applications. His research focuses on advanced materials, including memristive materials, nanostructures, and epitaxial thin films, which have significant implications for nanoelectronics, neuromorphic computing, and sustainable energy solutions. As a globally recognized scientist, he has been actively involved in editorial boards, international collaborations, and high-impact research publications, shaping the future of electronic materials. His leadership roles in academia and professional societies highlight his commitment to advancing science and mentoring young researchers. With an extensive portfolio of research excellence and prestigious accolades, Prof. Jang continues to be a driving force in cutting-edge materials research, contributing significantly to the evolution of modern technologies.

Professional Profile

Education

Prof. Ho Won Jang earned his Ph.D. in Materials Science and Engineering from POSTECH (Pohang University of Science and Technology), Korea, in 2004, after completing his M.S. (2001) and B.S. (1999) degrees at the same institution. His academic journey was marked by a strong foundation in nanomaterials, thin films, and semiconductor physics, which paved the way for his pioneering research in advanced materials. During his Ph.D., he focused on the design and synthesis of functional materials for electronic applications, laying the groundwork for his future studies in epitaxial thin films and nanostructured devices. His early research contributions were recognized through multiple prestigious awards, demonstrating his academic excellence and innovative approach to materials science. His education at one of Korea’s leading engineering institutions provided him with the technical expertise and research capabilities that would later define his career as a top-tier scientist in the field.

Professional Experience

Prof. Jang began his professional career as a Postdoctoral Fellow at POSTECH (2004-2005) before moving to the University of Wisconsin-Madison (2006-2009) as a Research Associate. In 2006, he joined the Korea Institute of Science and Technology (KIST) as a Senior Research Scientist, where he led several high-impact projects in nanoelectronics and electrochemical applications. His transition to Seoul National University in 2012 as a Professor marked a significant milestone in his career, where he has since played a crucial role in advancing research in materials science and engineering. Over the years, he has served as an editor for multiple international journals, collaborated with leading global researchers, and contributed to key advancements in electronic materials. His leadership positions, including serving as Associate Dean at SNU’s College of Engineering (2021-2024), highlight his influence in shaping the future of materials research and education.

Research Interests

Prof. Jang’s research focuses on epitaxial thin films, memristive materials, electrochemical catalysts, and nanosensors for next-generation electronic and energy applications. His studies on Mott insulators, neuromorphic computing, and electronic nose/tongue technologies have led to innovative breakthroughs in artificial intelligence-driven materials and nanoelectronic devices. Additionally, his work on localized surface plasmon resonance sensors and micro-light-emitting diodes (µLEDs) has potential applications in biomedical sensing and next-generation displays. His research in electrodes and catalysts for water splitting and CO₂ reduction aligns with global efforts toward sustainable and renewable energy solutions. By integrating multidisciplinary approaches, including nanotechnology, chemistry, and physics, he continues to explore novel materials with enhanced functionalities for computing, sensing, and clean energy applications, making significant contributions to both fundamental science and industrial innovation.

Awards and Honors

Prof. Ho Won Jang has received numerous prestigious awards for his outstanding contributions to materials science and engineering. His accolades include the Top 2% Scientists ranking by Stanford University (2022), the ACS Nano Top Contributor in Korea (2024), and the Academic Research and Education Award from SNU (2023). He has also been recognized with the 2021 Science and Technology Excellence Paper Award of Korea and multiple Best Paper Awards from leading conferences and institutions. His early achievements include the Young Ceramist Award (2014) and Young Scholarship Award (2014), highlighting his contributions to ceramic materials research. Additionally, he has played a vital role as an editorial board member for major scientific journals and a reviewer for over 200 high-impact journals, further solidifying his reputation as a leading scientist in materials research. His numerous honors reflect his exceptional research impact, leadership, and dedication to advancing materials science.

Conclusion

Prof. Ho Won Jang is highly suitable for the Research Best Paper Award, given his exceptional research contributions, prestigious recognitions, and leadership in the field of materials science and engineering. His extensive publication record, awards, and editorial roles further validate his expertise. If the award criteria favor cutting-edge innovation and research influence, he would be an excellent candidate. Strengthening the application by highlighting real-world applications, interdisciplinary collaborations, and mentoring efforts could further solidify his case.

Publications Top Noted

  1. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    • Authors: A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, et al.
    • Year: 2009
    • Citations: 685
  2. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices

    • Authors: S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, et al.
    • Year: 2010
    • Citations: 550
  3. Giant piezoelectricity on Si for hyperactive MEMS

    • Authors: S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, et al.
    • Year: 2011
    • Citations: 514
  4. One-dimensional oxide nanostructures as gas-sensing materials: review and issues

    • Authors: K. J. Choi, H. W. Jang
    • Year: 2010
    • Citations: 473
  5. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination

    • Authors: S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. V. Le, H. W. Jang, et al.
    • Year: 2020
    • Citations: 446
  6. Organolead halide perovskites for low operating voltage multilevel resistive switching

    • Authors: J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, et al.
    • Year: 2016
    • Citations: 361
  7. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films

    • Authors: H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, et al.
    • Year: 2009
    • Citations: 351
  8. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate

    • Authors: S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J. L. Lee
    • Year: 2017
    • Citations: 334
  9. Ferroelectricity in strain-free thin films

    • Authors: H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, et al.
    • Year: 2010
    • Citations: 334
  10. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending

  • Authors: Y. H. Kim, S. J. Kim, Y. J. Kim, Y. S. Shim, S. Y. Kim, B. H. Hong, H. W. Jang
  • Year: 2015
  • Citations: 326
  1. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
  • Authors: C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, et al.
  • Year: 2011
  • Citations: 312
  1. Strain-induced polarization rotation in epitaxial (001) thin films
  • Authors: H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, et al.
  • Year: 2008
  • Citations: 309
  1. Perspectives and challenges in multilayer ceramic capacitors for next-generation electronics
  • Authors: K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, H. W. Jang
  • Year: 2019
  • Citations: 307
  1. Organic–Inorganic hybrid halide perovskites for memories, transistors, and artificial synapses
  • Authors: J. Choi, J. S. Han, K. Hong, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 303
  1. Metallic and insulating oxide interfaces controlled by electronic correlations
  • Authors: H. W. Jang, D. A. Felker, C. W. Bark, Y. Wang, M. K. Niranjan, C. T. Nelson, et al.
  • Year: 2011
  • Citations: 287
  1. Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective
  • Authors: Q. V. Le, H. W. Jang, S. Y. Kim
  • Year: 2018
  • Citations: 278
  1. Spin injection/detection using an organic-based magnetic semiconductor
  • Authors: J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, A. J. Epstein
  • Year: 2010
  • Citations: 260
  1. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures
  • Authors: H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, J. H. Lee
  • Year: 2013
  • Citations: 259
  1. Low-dimensional halide perovskites: review and issues
  • Authors: K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang
  • Year: 2018
  • Citations: 257
  1. Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions
  • Authors: K. Hong, M. Sajjadi, J. M. Suh, K. Zhang, M. Nasrollahzadeh, H. W. Jang, et al.
  • Year: 2020
  • Citations: 252

 

John Mantilla | Nanomaterials | Best Research Article Award

Dr. John Mantilla | Nanomaterials | Best Research Article Award

Dr. John Mantilla, Universidade de Uberlandia, Brazil

Dr. John Mantilla is a prominent researcher in the field of nanomaterials, recognized for his innovative contributions and impactful studies. His work focuses on the synthesis, characterization, and applications of nanomaterials, addressing key challenges in various industries. John has published extensively, earning the Best Research Article Award for his groundbreaking research that advances the understanding of nanomaterials and their potential uses. With a commitment to fostering scientific excellence, he continues to inspire both peers and students through his dedication to research and education in nanotechnology.

Publication Profile

orcid

 

Areas of Focus

Dr. John Mantilla‘s areas of expertise encompass a range of disciplines within the Exact and Earth Sciences. His work primarily focuses on Physics, specifically in the subfield of Condensed Matter Physics, where he specializes in Magnetic Materials and Magnetic Properties. Additionally, he explores Magnetic Resonance and Relaxation in Condensed Matter, including Mössbauer Effects and Angular Correlation. His research also extends to Nanosstructured Systems, contributing to advancements in these critical areas of study.

📚 Education

Dr. John Mantilla has a strong academic foundation in the fields of Physics and Chemistry. He earned his PhD in Physics from the University of São Paulo (USP), Brazil, from 1999 to 2004, with a thesis focusing on the structural and magnetic properties of the system Zn(1-x)Mn(x)In(2)Se(4), supervised by Valdir Bindilatti. His research was supported by a scholarship from the National Council for Scientific and Technological Development (CNPq), Brazil, emphasizing magnetism, structure, and exchange interactions, and contributing to the development of new materials. Prior to his doctoral studies, he completed a Master’s in Chemistry at Universidad de los Andes (ULA), Venezuela, from 1996 to 1999, where he investigated the magnetic properties of CoIn(2-2x)Cr(2x)S(4) under the guidance of Vicente Sagredo. His academic journey began with a Bachelor’s in Physics at ULA, from 1988 to 1995, where he studied the magnetic properties of Ni In(2-2x)Cr(2x)S(4), also advised by Vicente Sagredo.

💼 Experience

Dr. John Mantilla has a diverse professional background in academia, currently serving as a Public Servant and Professor at the Federal University of Uberlândia (UFU), Brazil, since 2024, where he is a Research Professor in the Ferroelectrics and Multifunctional Materials Group (GFMM), dedicating 40 hours per week. He previously held the role of Tenured Professor from 2019 to 2021 and was a Visiting Research Professor from 2013 to 2016 at UFU, as well as at the Federal University of Mato Grosso do Sul (UFMS) and the University of Brasília (UnB), where he taught General Physics I and Physics Laboratory I and II and was responsible for the SQUID Magnetometer. During 2017-2018, he worked part-time (6 hours per week) teaching General Physics Laboratory I and II. From 2006 to 2013, he was a Research Professor and Coordinator of the Molecular Physics Center Laboratory, teaching courses including Quantum Mechanics, Electromagnetism, and Quantum Physics I and II, and serving as the Coordinator of the Graduate Program in Physics and Medical Physics from 2009 to 2013. Earlier in his career, from 1995 to 1997, he was a Visiting Contracted Professor at the Federal University of Rio Grande do Norte (UFRN), the Central University of Venezuela (U.Central), and the University of the Andes (ULA), teaching courses in Mechanics, Physics I, and Physics II, as well as supervising Physics Laboratories I and II.

 

Publication Top Notes

Structural, morphological, and magnetic characterizations of (Fe₀.₂₅Mn₀.₇₅)₂O₃ nanocrystals: A comprehensive stoichiometric determination
Materials Chemistry and Physics, 2024-12. DOI: 10.1016/j.matchemphys.2024.129943.

A sensitive and selective platinum-based electrochemical sensor for detection of neurotransmitters: Design and proof of concept
Microchemical Journal, 2023-06-30. DOI: 10.1016/j.microc.2023.109017.

Core-shell Au/Fe₃O₄ nanocomposite synthesized by thermal decomposition method: Structural, optical, and magnetic properties
Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.150290.

Structural, optical and magnetic properties of CoAlₓFe₂₋ₓO₄ nanoparticles prepared by combustion reaction method
Journal of Alloys and Compounds, 2021. DOI: 10.1016/j.jallcom.2021.161398.

Field-driven spin reorientation in SmMnO₃ polycrystalline powders
Journal of Alloys and Compounds, 2020-12-10. DOI: 10.1016/j.jallcom.2020.156327.

Magnetic properties of the double perovskites Sm₂Mn₁₊ₓCo₁₋ₓO₆ (x = 0, 0.05, 0.12 and 0.26)
Journal of Physics: Condensed Matter, 2019-12-09. DOI: 10.1088/1361-648x/ab5988.

Evidence of surface spin-glass behavior in NiFe₂O₄ nanoparticles determined using magnetic resonance technique
Journal of Magnetism and Magnetic Materials, 2019-04. DOI: 10.1016/j.jmmm.2019.01.001.

Effects of silica coating on the magnetic properties of magnetite nanoparticles
Surface Innovations, 2019-03. DOI: 10.1016/j.surfin.2018.11.005.

Evidence of particle-particle interaction quenching in nanocomposite based on oleic acid-coated Fe₃O₄ nanoparticles after over-coating with essential oil extracted from Croton cajucara Benth
Journal of Magnetism and Magnetic Materials, 2018-11. DOI: 10.1016/j.jmmm.2018.07.036.

Washing effect on the structural and magnetic properties of NiFe₂O₄ nanoparticles synthesized by chemical sol-gel method
Materials Chemistry and Physics, 2018-07. DOI: 10.1016/j.matchemphys.2018.04.022.