Tong Deng | Mechanical and Process Engineering | Best Researcher Award

Dr. Tong Deng | Mechanical and Process Engineering | Best Researcher Award

Senior Lecturer at University of Greenwich, United Kingdom.

Short Biography 📖✨

Dr. Tong Deng (BSc, BEng, MSc, PhD, FHEA) is a distinguished expert in solids erosion, electrostatics, powder segregation, adhesion, and powder flow 🏗️🔬. With over three decades of experience in academia and industry, he serves as a Senior Lecturer and Consultant Engineer at the University of Greenwich 🎓. His extensive research has significantly contributed to industries such as food, pharmaceuticals, and energy ⚡💊. As a mentor, researcher, and educator, he has supervised numerous students and led groundbreaking projects 📚💡. Dr. Deng is a prolific author with 60+ publications, making a lasting impact in his field 📑🌍.

Profile🔍

Google Scholar

Orcid

Education & Experience 🎓🔍

Doctor of Philosophy (PhD) – University of Greenwich, UK (2001) 🏛️
Master of Science (MSc) in Instrumentation & Analytical Science – University of Manchester (1997) 🧪
Bachelor of Engineering (BEng) in Mechatronics Engineering – Shenyang Ligong University (1992) ⚙️
Bachelor of Science (BSc) in Theoretical Physics – Liaoning University (1987) 🌀

Experience:
📌 Senior Lecturer & Consultant Engineer – University of Greenwich (2014–Present) 🏫
📌 Lecturer & Consultant Engineer – University of Greenwich (2013–2014) 🎓
📌 Research & Consultant Engineer – University of Greenwich (2006–2013) 🧑‍🔬
📌 Research Fellow – University of Greenwich (2001–2006) 📖
📌 Engineer – Shenyang Light Industrial Machinery Co. Ltd, China (1989–1996) 🏭
📌 Teacher – Shenyang Coal Miner’s High School, China (1987–1989) 🎓

Professional Development 🚀📘

Dr. Tong Deng has dedicated his career to advancing research and innovation in bulk solids handling and powder technology 🏗️🔬. A Fellow of the Higher Education Academy (FHEA), he actively contributes to academia through teaching, mentoring, and supervising research students 📚🎓. His collaborations with industries and funding bodies have led to numerous groundbreaking projects in materials processing, electrostatics, and segregation science 💡💰. Dr. Deng also plays a key role in organizing international conferences, reviewing top-tier journals, and delivering professional training courses, ensuring that his expertise benefits both the scientific community and industry leaders globally 🌍🧑‍🏫.

Research Focus 🔬📊

Dr. Deng’s research revolves around the science of bulk solids handling, with a particular focus on solids erosion, electrostatics, powder segregation, adhesion, and powder flow 💨⚡. His work plays a crucial role in optimizing industrial processes for food, pharmaceuticals, minerals, and energy sectors 🌾💊⚡. He investigates particle behavior in flow systems, powder caking, and electrostatic charging to enhance manufacturing efficiency 📈🔍. With extensive funding and industry collaborations, he has developed novel techniques for powder characterization and process optimization. His research directly contributes to improving material handling, reducing energy consumption, and ensuring sustainable industrial practices ♻️🏭.

Awards & Honors 🏆🎖️

🏅 Fellow of the Higher Education Academy (FHEA) – UK (2022) 🎓
🏅 Outstanding Reviewer Award – Particuology Journal (2022-2024) 🏅
🏅 Co-chair of 9th UK-China International Particle Technology Forum – Greenwich (2023) 🌏
🏅 Scientific Advisory Committee Member – 8th UK-China PTF (2021) 🏛️
🏅 Session Chair – CHoPS International Conference (2018) 🎤
🏅 US & UK Patent Contributor – Pneumatic Conveying Feedback Control (2023, 2025) 📜💡

Publications📖

📖 A novel model for hourly PM2.5 concentration prediction based on CART and EELM – Z Shang, T Deng, J He, X Duan | Science of The Total Environment | Cited by: 104 | Year: 2019

⚙️ Effect of particle concentration on erosion rate of mild steel bends in a pneumatic conveyor – T Deng, AR Chaudhry, M Patel, I Hutchings, MSA Bradley | Wear | Cited by: 85 | Year: 2005

🔄 The influence of particle rotation on the solid particle erosion rate of metals – T Deng, MS Bingley, MSA Bradley | Wear | Cited by: 77 | Year: 2004

📏 Influence of particle size, density, particle concentration on bend erosive wear in pneumatic conveyors – R Macchini, MSA Bradley, T Deng | Wear | Cited by: 70 | Year: 2013

🧪 The effect of carbon nanotube orientation on erosive wear resistance of CNT-epoxy based composites – J Chen, IM Hutchings, T Deng, MSA Bradley, KKK Koziol | Carbon | Cited by: 52 | Year: 2014

🔄 Effect of bend orientation on life and puncture point location due to solid particle erosion of a high concentration flow in pneumatic conveyors – T Deng, M Patel, I Hutchings, MSA Bradley | Wear | Cited by: 52 | Year: 2005

📊 Determination of a particle size distribution criterion for predicting dense phase pneumatic conveying behaviour of granular and powder materials – T Deng, M Bradley | Powder Technology | Cited by: 50 | Year: 2016

Conclusion:

Dr. Tong Deng’s exceptional research output, industry collaborations, funding success, and mentorship contributions make him a top candidate for a Best Researcher Award. His work not only advances scientific understanding but also translates into real-world industrial applications, making a lasting impact on multiple sectors. 🚀🏆

Sunday Olayinka Oyedepo | Mechanical Engineering | Excellence in Research Award

Prof Dr. Sunday Olayinka Oyedepo | Mechanical Engineering | Excellence in Research Award

Professor, Bells University of Technology, Nigeria

Profile

Orcid

Professor Sunday Olayinka Oyedepo is a highly accomplished academic with over 22 years of experience in teaching and research in Mechanical Engineering. He currently serves as a Professor at Covenant University, Nigeria, and specializes in thermal energy system design, energy management, and sustainable technologies. With numerous publications and collaborations, Professor Oyedepo is recognized for his contributions to energy systems and noise pollution research. He has a rich history of guiding students at various academic levels and is a registered engineer in Nigeria.

Education 🎓

Professor Oyedepo obtained his Bachelor’s degree in Mechanical Engineering from the University of Ilorin, followed by a Master’s degree from the University of Ibadan, both in Nigeria. He completed his PhD at Covenant University, focusing on the thermodynamic performance analysis of gas turbine power plants in Nigeria.

Experience 🌍

Starting his academic career in 2000 as a lecturer at Kwara State Polytechnic, Professor Oyedepo moved to Covenant University in 2005, where he has been pivotal in research and administration. He has supervised multiple PhD, Master’s, and undergraduate students, contributing to both academic and applied engineering practices. He also served as the Head of the Department of Mechanical Engineering at Covenant University from 2017 to 2019.

Research Interests 🔬

Professor Oyedepo’s research focuses on energy system design and optimization, including gas and steam turbine power plants, energy conservation, exergy analysis, renewable energy technologies, heat transfer, and noise pollution control. He is actively involved in studying sustainable energy development and industrial energy management.

Awards 🏆

He was recognized as one of the Top 2% Scholars globally in 2021, based on data published by Elsevier. In December 2021, he received the Outstanding Researcher Award in Mechanical Engineering by STAIR Progressive Forum, India.

Publications Top Notes 📚

Professor Oyedepo has over 170 publications, including notable papers in international journals such as Renewable and Sustainable Energy Reviews, Energy Conversion and Management, and Environmental Monitoring Assessment. Below are some of his key works:

Experimental Investigation of Used Vegetable Oil-Diesel Blends as Alternative to Fossil Fuel in Compression Ignition Engine (2024) – Book Chapter

Experimental investigation of heating values and chemical compositions of selected fuel woods as bio-fuel sources in developing countries (2023) – Fuel

Numerical modeling of heat transfer performance and optimization of car radiator using (H2O/Al2O3) nanofluids as coolant (2022) – Numerical Heat Transfer

Progress in the experimental and computational methods of work function evaluation of materials: A review (2022) – Heliyon

Waste Heat Recovery Technologies: Pathway to Sustainable Energy Development (2021) – Journal of Thermal Engineering